- ASIC
- Battery management ICs
- Clocks and timing solutions
- ESD and surge protection devices
- Evaluation Boards
- High reliability
- Isolation
- Memories
- Microcontroller
- Power
- RF
- Security and smart card solutions
- Sensor technology
- Small signal transistors and diodes
- Transceivers
- Universal Serial Bus (USB)
- Wireless connectivity
- Search Tools
- Technology
- Packages
- Product Information
- Where to Buy
- Overview
- Defense
- High-reliability custom services
- New space
- Space
- Overview
- Embedded flash IP solutions
- Flash+RAM MCP solutions
- F-RAM (Ferroelectric RAM)
- NOR flash
- nvSRAM (non-volatile SRAM)
- PSRAM (Pseudostatic RAM)
- Radiation hardened and high-reliability memories
- RRAM Resistive Ram
- SRAM (static RAM)
- Wafer and die memory solutions
- Overview
- 32-bit FM Arm® Cortex® Microcontroller
- 32-bit AURIX™ TriCore™ microcontroller
- 32-bit PSOC™ Arm® Cortex® microcontroller
- 32-bit TRAVEO™ T2G Arm® Cortex® microcontroller
- 32-bit XMC™ industrial microcontroller Arm® Cortex®-M
- Legacy microcontroller
- MOTIX™ MCU | 32-bit motor control SoC based on Arm® Cortex®-M
- Sensing controllers
- Overview
- AC-DC power conversion
- Automotive conventional powertrain ICs
- Class D audio amplifier ICs
- Contactless power and sensing ICs
- DC-DC converters
- Diodes and thyristors (Si/SiC)
- Gallium nitride (GaN)
- Gate driver ICs
- IGBTs – Insulated gate bipolar transistors
- Intelligent power modules (IPM)
- LED driver ICs
- Motor control ICs
- Power MOSFETs
- Power supply ICs
- Smart power switches
- Solid state relay
- Wireless charging ICs
- Overview
- Antenna cross switches
- Antenna tuners
- Bias and control
- Coupler
- Driver amplifiers
- High Reliability Discrete
- Low noise amplifiers (LNAs)
- RF diode
- RF switches
- RF transistors
- Wireless control receiver
- Overview
- Calypso® products
- CIPURSE™ products
- Contactless memories
- OPTIGA™ embedded security solutions
- SECORA™ security solutions
- Security controllers
- Smart card modules
- Smart solutions for government ID
- Overview
- 3D ToF image sensors
- Current sensors
- Gas sensors
- Inductive position sensing
- Magnetic sensors
- MEMS microphones
- Pressure sensors
- Radar sensors
- Overview
- Bipolar transistors
- Diodes
- Small signal/small power MOSFET
- Overview
- Automotive transceivers
- Control communication
- Powerline communications
- Overview
- USB 2.0 peripheral controllers
- USB 3.2 peripheral controllers
- USB hub controllers
- USB PD high-voltage microcontrollers
- USB-C AC-DC and DC-DC charging solutions
- USB-C charging port controllers
- USB-C Power Delivery controllers
- Overview
- AIROC™ Automotive wireless
- AIROC™ Bluetooth® and multiprotocol
- AIROC™ connected MCU
- AIROC™ Wi-Fi + Bluetooth® combos
- Overview
- Commercial off-the-shelf (COTs) memory portfolio
- Defense memory portfolio
- High-reliability power conversion and management
- Overview
- NewSpace memory portfolio
- Rad hard microwave and RF
- Radiation hardened power
- Space memory portfolio
- Overview
- Parallel NOR flash
- SEMPER™ NOR flash family
- SEMPER™ X1 LPDDR flash
- Serial NOR flash
- Overview
- FM0+ 32-bit Arm® Cortex®-M0+ microcontroller (MCU) families
-
FM3 32-bit Arm® Cortex®-M3 microcontroller (MCU) families
- Overview
- FM3 CY9AFx1xK series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx1xL/M/N series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx2xK/L series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx3xK/L series ultra-low leak Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx4xL/M/N series low power Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx5xM/N/R series low power Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFxAxL/M/N series ultra-low leak Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx1xN/R high-performance series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx1xS/T high-performance series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx2xJ series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx2xK/L/M series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx2xS/T series Arm® Cortex®-M3 microcontroller (MCU)
-
FM4 32-bit Arm® Cortex®-M4 microcontroller (MCU) families
- Overview
- FM4 CY9BFx6xK/L high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- FM4 CY9BFx6xM/N/R high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- FM4 S6E2C high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- FM4 S6E2G series connectivity Arm® Cortex®-M4F microcontroller (MCU)
- FM4 S6E2H high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- Overview
-
32-bit TriCore™ AURIX™ – TC2xx
- Overview
- AURIX™ family – TC21xL
- AURIX™ family – TC21xSC (wireless charging)
- AURIX™ family – TC22xL
- AURIX™ family – TC23xL
- AURIX™ family – TC23xLA (ADAS)
- AURIX™ family – TC23xLX
- AURIX™ family – TC264DA (ADAS)
- AURIX™ family – TC26xD
- AURIX™ family – TC27xT
- AURIX™ family – TC297TA (ADAS)
- AURIX™ family – TC29xT
- AURIX™ family – TC29xTT (ADAS)
- AURIX™ family – TC29xTX
- AURIX™ TC2x emulation devices
-
32-bit TriCore™ AURIX™ – TC3xx
- Overview
- AURIX™ family - TC32xLP
- AURIX™ family – TC33xDA
- AURIX™ family - TC33xLP
- AURIX™ family – TC35xTA (ADAS)
- AURIX™ family – TC36xDP
- AURIX™ family – TC37xTP
- AURIX™ family – TC37xTX
- AURIX™ family – TC38xQP
- AURIX™ family – TC39xTM
- AURIX™ family – TC39xXA (ADAS)
- AURIX™ family – TC39xXM (ADAS)
- AURIX™ family – TC39xXX
- AURIX™ family – TC3Ex
- AURIX™ TC37xTE (emulation devices)
- AURIX™ TC39xXE (emulation devices)
- 32-bit TriCore™ AURIX™ – TC4x
- Overview
- 32-bit PSOC™ 4 Arm® Cortex®-M0/M0+
- 32-bit PSOC™ 4 HV Arm® Cortex®-M0+
- 32-bit PSOC™ 5 LP Arm® Cortex®-M3
- 32-bit PSOC™ 6 Arm® Cortex®-M4/M0+
- 32-bit PSOC™ automotive multitouch Arm® Cortex®-M0
- 32-bit PSOC™ Control Arm® Cortex®-M33 MCU
- 32-bit PSOC™ fingerprint Arm® Cortex®-M0+
- Automotive PSOC™ 4: 32-bit Arm® Cortex®-M0/M0+ MCU
- PSOC™ Edge Arm® Cortex® Multicore
- Overview
- 32-bit TRAVEO™ T2G Arm® Cortex® for body
- 32-bit TRAVEO™ T2G Arm® Cortex® for cluster
- Overview
- Legacy 32-bit MCU
- Legacy 8-bit/16-bit microcontroller
- Other legacy MCUs
- Overview
- AC-DC integrated power stage - CoolSET™
- AC-DC PWM-PFC controller
- Overview
- Bridge rectifiers & AC switches
- CoolSiC™ Schottky diodes
- Diode bare dies
- Silicon diodes
- Thyristor / Diode Power Modules
- Thyristor soft starter modules
- Thyristor/diode discs
- Overview
- Automotive gate driver ICs
- Isolated Gate Driver ICs
- Level-Shift Gate Driver ICs
- Low-Side Drivers
- Transformer Driver ICs
- Overview
- AC-DC LED driver ICs
- Ballast IC
- DC-DC LED driver IC
- LED dimming interface IC
- Linear LED driver IC
- LITIX™ - Automotive LED Driver IC
- NFC wireless configuration IC with PWM output
- VCSEL driver
- Overview
- 32-bit PSOC™ Control Arm® Cortex®-M33 MCU
- iMOTION™ Integrated motor control solutions
- MOTIX™ MCU | 32-bit motor control SoC based on Arm® Cortex®-M
- MOTIX™ motor control ICs for BLDC motors
- MOTIX™ motor control ICs for brushed DC motors
- MOTIX™ multi half-bridge ICs for servo and stepper motors
- Overview
- Automotive MOSFET
- Dual MOSFETs
- MOSFET (Si & SiC) Modules
- N-channel depletion mode MOSFET
- N-channel power MOSFETs
- P-channel power MOSFETs
- Silicon carbide CoolSiC™ MOSFETs
- Small signal/small power MOSFET
- Overview
- Automotive transceivers
- OPTIREG™ linear voltage regulators (LDO)
- OPTIREG™ PMIC
- OPTIREG™ switcher
- OPTIREG™ System Basis Chips (SBC)
- Overview
-
High-side switches
- Overview
- Classic PROFET™ 12V | Automotive smart high-side switch
- Classic PROFET™ 24V | Automotive smart high-side switch
- Power PROFET™ + 12/24/48V | Automotive smart high-side switch
- PROFET™ + 12V | Automotive smart high-side switch
- PROFET™ + 24V | Automotive smart high-side switch
- PROFET™ +2 12V | Automotive smart high-side switch
- PROFET™ Industrial | Smart high-side switch
- PROFET™ Load Guard 12V | Automotive smart high-side switch
- PROFET™ Wire Guard 12V | Automotive smart high-side switch
- Low-side switches
- Multichannel SPI Switches & Controller
- Overview
- Magnetic position sensors
- Magnetic speed sensors
- Overview
- Radar sensors for automotive
- Radar sensors for IoT
- Overview
- EZ-USB™ CX3 MIPI CSI2 to USB 3.0 camera controller
- EZ-USB™ FX10 & FX5N USB 10Gbps peripheral controller
- EZ-USB™ FX20 USB 20 Gbps peripheral controller
- EZ-USB™ FX3 USB 5 Gbps peripheral controller
- EZ-USB™ FX3S USB 5 Gbps peripheral controller with storage interface
- EZ-USB™ FX5 USB 5 Gbps peripheral controller
- EZ-USB™ SD3 USB 5 Gbps storage controller
- EZ-USB™ SX3 FIFO to USB 5 Gbps peripheral controller
- Overview
- EZ-PD™ CCG3 USB type-C port controller PD
- EZ-PD™ CCG3PA USB-C and PD
- EZ-PD™ CCG3PA-NFET USB-C PD controller
- EZ-PD™ CCG7x consumer USB-C Power Delivery & DC-DC controller
- EZ-PD™ PAG1: power adapter generation 1
- EZ-PD™ PAG2: Power Adapter Generation 2
- EZ-PD™ PAG2-PD USB-C PD Controller
- Overview
- EZ-PD™ ACG1F one-port USB-C controller
- EZ-PD™ CCG2 USB Type-C port controller
- EZ-PD™ CCG3PA Automotive USB-C and Power Delivery controller
- EZ-PD™ CCG4 two-port USB-C and PD
- EZ-PD™ CCG5 dual-port and CCG5C single-port USB-C PD controllers
- EZ-PD™ CCG6 one-port USB-C & PD controller
- EZ-PD™ CCG6_CFP and EZ-PD™ CCG8_CFP Dual-Single-Port USB-C PD
- EZ-PD™ CCG6DF dual-port and CCG6SF single-port USB-C PD controllers
- EZ-PD™ CCG7D Automotive dual-port USB-C PD + DC-DC controller
- EZ-PD™ CCG7S Automotive single-port USB-C PD solution with a DC-DC controller
- EZ-PD™ CCG7SAF Automotive Single-port USB-C PD + DC-DC Controller + FETs
- EZ-PD™ CCG8 dual-single-port USB-C PD
- EZ-PD™ CMG1 USB-C EMCA controller
- EZ-PD™ CMG2 USB-C EMCA controller with EPR
- LATEST IN
- Aerospace and defense
- Automotive
- Consumer electronics
- Healthcare and lifestyle
- Home appliances
- Industrial
- Information and Communication Technology
- Renewables
- Robotics
- Security solutions
- Smart home and building
- Solutions
- Overview
- Defense applications
- Space applications
- Overview
- 48 V systems for EVs & mild hybrids
- ADAS & autonomous driving
- Automotive body electronics & power distribution
- Automotive LED lighting systems
- Chassis control & safety
- Electric vehicle drivetrain system
- EV thermal management system
- Internal combustion drivetrain systems
- In-vehicle infotainment & HMI
- Light electric vehicle solutions
- Overview
- Adapters and chargers
- Complete system solutions for smart TVs
- Mobile device and smartphone solutions
- Multicopters and drones
- Power tools
- Semiconductor solutions for home entertainment applications
- Smart conference systems
- Overview
- Healthcare
- Wearable Devices
- Overview
- Air purifiers - smart and efficient air quality improvement
- Ceiling fan - motor control and drive solutions
- Coffee machine – inverter and sensors
- Cordless vacuum cleaners
- Domestic robots
- Hood fans
- Induction cooking
- Induction rice cooker
- Microwave ovens
- Mixer - variable speed DC and SRM motors
- Refrigerators and freezers
- Washing and drying
- Overview
- Adapters and chargers
- Asset Tracking
- Battery formation and testing
- Energy storage systems
- EV charging
- High-voltage solid-state power distribution
- Industrial automation
- Industrial motor drives and controls
- Industrial robots system solutions for Industry 4.0
- LED lighting system design
- Light electric vehicle solutions
- Photovoltaic
- Power tools
- Power transmission and distribution
- Traction
- Uninterruptible power supplies (UPS)
- Overview
- Data center and AI data center solutions
- Edge computing
- Telecommunications infrastructure
- Overview
- Battery formation and testing
- EV charging
- Hydrogen
- Photovoltaic
- Power converters and inverters for wind turbines
- Solid-state circuit breaker
- Overview
- Device authentication and brand protection
- Embedded security for the Internet of Things (IoT)
- eSIM applications
- Government identification
- Mobile security
- Payment solutions
- Access control and ticketing
- Overview
- Domestic robots
- Heating ventilation and air conditioning (HVAC)
- Home and building automation
- PC accessories
- Semiconductor solutions for home entertainment applications
- Overview
- Battery management systems (BMS)
- Connectivity
- Human Machine Interface
- Machine Learning Edge AI
- Motor control
- Power conversion
- Security
- Sensor solutions
- System diagnostics and analytics
- Overview
- Automotive radar systems
- Domain controller for ADAS & autonomous driving
- In-cabin monitoring system (ICMS)
- Multi-purpose camera
- Overview
- Automotive auxiliary systems
- Automotive gateway
- Automotive power distribution
- Body control modules (BCM)
- Comfort & convenience electronics
- Zonal DC-DC converter 48 V-12 V
- Zone control unit
- Overview
- Automotive animated LED lighting system
- Automotive LED front single light functions
- Automotive LED rear single light functions
- Full LED headlight system - multi-channel LED driver
- LED drivers (electric two- & three-wheelers)
- LED pixel light controller - supply & communication
- Static interior ambient LED light
- Overview
- Active suspension control
- Airbag system
- Automotive braking solutions
- Automotive steering solutions
- Chassis domain control
- Reversible seatbelt pretensioner
- Overview
-
Automotive BMS
- Overview
- Automotive battery cell monitoring & balancing
- Automotive battery control unit (BCU)
- Automotive battery isolated communication
- Automotive battery management system (BMS) - 12 V to 24 V
- Automotive battery management system (BMS) - 48 V
- Automotive battery management system (BMS) - high-voltage
- Automotive battery pack monitoring
- Automotive battery passport & event logging
- Automotive battery protection & disconnection
- Automotive current sensing & coulomb counting
- BMS (electric two- & three-wheelers)
- EV charging
- EV inverters
- EV power conversion & OBC
- FCEV powertrain system
- Overview
- Automatic transmission hydraulic system
- Belt starter generator 48 V – inverter ISG
- Diesel direct injection
- Double-clutch transmission electrical control
- Double-clutch transmission hydraulic control
- Gasoline direct injection
- Multi-port fuel injection
- Small 1-cylinder combustion engine solution
- Small engine starter kit
- Transfer case brushed DC
- Transfer case brushless DC (BLDC)
- Overview
- Automotive head unit
- Automotive USB-C power & data solution
- Automotive instrument cluster
- Automotive telematics control unit (TCU)
- Center information display (CID)
- High-performance cockpit controller
- In-cabin wireless charging
- Smart instrument cluster (electric two- & three-wheelers)
- Overview
- E-bike solutions
- Two- & three-wheeler solutions
- Overview
- Audio amplifier solutions
- Complete system solutions for smart TVs
- Distribution audio amplifier unit solutions
- Home theater installation speaker system solutions
- Party speaker solutions
- PoE audio amplifier unit solutions
- Portable speaker solutions
- Powered active speaker systems
- Remote control
- Smart speaker designs
- Soundbar solutions
- Overview
- Data center and AI data center solutions
- Digital input/output (I/O) modules
- DIN rail power supply solutions
- Home and building automation
- Industrial HMI Monitors and Panels
- Industrial motor drives and controls
- Industrial PC
- Industrial robots system solutions for Industry 4.0
- Industrial sensors
- Machine vision
- Mobile robots (AGV, AMR)
- Programmable logic controller (PLC)
- Solid-state circuit breaker
- Uninterruptible power supplies (UPS)
- Overview
- 48 V intermediate bus converter (IBC)
- AI accelerator cards
- AMD server CPUs
- Ampere CPUs
- FPGAs in datacenter applications
- Intel server CPUs
- Networking and switch platforms
- Power path protection
- Power system reliability modeling
- RAID storage
- Server battery backup units (BBU)
- Server power supply
- SmartNIC cards
- Overview
- AC-DC power conversion for telecommunications infrastructure
- DC-DC power conversion for telecommunications infrastructure
- FPGA in wired and wireless telecommunications applications
- Satellite communications
- Power system reliability modeling
- RF front end components for telecommunications infrastructure
- Overview
-
AC-DC power conversion
- Overview
- AC-DC auxiliary power supplies
- AC-DC power conversion for telecommunications infrastructure
- Adapters and chargers
- Automotive LED lighting systems
- Complete system solutions for smart TVs
- Desktop power supplies
- EV charging
- Industrial power supplies
- PoE power sourcing equipment (PSE)
- Server power supply units (PSU)
- Uninterruptible power supplies (UPS)
- DC-DC power conversion
- Overview
- Power supply health monitoring
- LATEST IN
- Digital documentation
- Evaluation boards
- Finder & selection tools
- Partner products
- PCB design data
- Platforms
- Services
- Simulation & Modeling
- Software
- Tools
- Partners
- Infineon for Makers
- University Alliance Program
- Overview
- Bipolar Discs Finder
- Bipolar Module Finder
- Connected Secure Systems Finder
- Diode Rectifier Finder
- ESD Protection Finder
- Evaluation Board Finder
- Gate Driver Finder
- IGBT Discrete Finder
- IGBT Module Finder
- IPM Finder
- Microcontroller Finder
- MOSFET Finder
- PMIC Finder
- Product Finder
- PSOC™ and FMx MCU Board & Kit Finder
- Radar Finder
- Reference Design Finder
- Simulation Model Finder
- Smart Power Switch Finder
- Transceiver Finder
- Voltage Regulator Finder
- Wireless Connectivity Board & Kit Finder
- Overview
- AIROC™ software & tools
- AURIX™ software & tools
- Drive Core for automotive software development
- iMOTION™ software & tools
- Infineon Smart Power Switches & Gate Driver Tool Suite
- MOTIX™ software & tools
- OPTIGA™ software & tools
- PSOC™ software & tools
- TRAVEO™ software & tools
- XENSIV™ software & tools
- XMC™ software & tools
- Overview
- CIPOS™ IPM Simulation Tool (PLECS)
- CoolGaN™ Simulation Tool (PLECS)
- HiRel Fit Rate Tool
- IGBT Simulation Tools
- Infineon Designer
- Infineon Online Power Simulation Platform
- InfineonSpice Offline Simulation Tool
- OPTIREG™ automotive power supply ICs Simulation Tool (PLECS)
- PowerEsim Switch Mode Power Supply Design Tool
- Solution Finder
- XENSIV™ Magnetic Sensor Simulation Tool
- Overview
- AURIX™ certifications
- AURIX™ development tools
- AURIX™ Embedded Software
- AURIX™ Microcontroller Kits
- Overview
- PSoC™ Development Tools
- PSoC™ Embedded Software
- Overview
- TRAVEO™ Development Tools
- TRAVEO™ Embedded Software
- Overview
- XENSIV™ Development Tools
- XENSIV™ Embedded Software
- XENSIV™ evaluation boards
- Overview
- CAPSENSE™ Controllers Code Examples
- Memories for Embedded Systems Code Examples
- PSOC™ 1 Code Examples for PSOC™ Designer
- PSOC™ 3 Code Examples for PSOC™ Creator
- PSOC™ 3/4/5 Code Examples
- PSOC™ 4 Code Examples for PSOC™ Creator
- PSOC™ 6 Code Examples for PSOC™ Creator
- PSOC™ 63 Code Examples
- USB Controllers Code Examples
- Overview
- AIROC™ Wi-Fi & Bluetooth EZ-Serial Module Firmware Platform
- AIROC™ Wi-Fi & Bluetooth Linux and Android Drivers
- emWin Graphics Library and GUI for PSOC™
- Infineon Complex Device Driver for Battery Management Systems
- Memory Solutions Hub
- PSOC™ 6 Peripheral Driver Library (PDL) for PSOC™ Creator
- USB Controllers EZ-USB™ GX3 Software and Drivers
- Overview
- CAPSENSE™ Controllers Configuration Tools EZ-Click
- DC-DC Integrated POL Voltage Regulators Configuration Tool – PowIRCenter
- EZ-USB™ SX3 Configuration Utility
- FM+ Configuration Tools
- FMx Configuration Tools
- Tranceiver IC Configuration Tool
- USB EZ-PD™ Configuration Utility
- USB EZ-PD™ Dock Configuration Utility
- USB EZ-USB™ HX3C Blaster Plus Configuration Utility
- USB UART Config Utility
- XENSIV™ Tire Pressure Sensor Programming
- Overview
- AURIX™ Development Studio
- EZ-PD™ CCGx Dock Software Development Kit
-
FMx Softune IDE
- Overview
- RealOS™ Real-Time Operating System
- Softune IDE Language tools
- Softune Workbench
- Tool Lineup for F2MC-16 Family SOFTUNE V3
- Tool Lineup for F2MC-8FX Family SOFTUNE V3
- Tool Lineup for FR Family SOFTUNE V6
- Virtual Starter Kit
- Windows 10 operation of released SOFTUNE product
- Windows 7 operation of released SOFTUNE product
- Windows 8 operation of released SOFTUNE product
- ModusToolbox™ Software
- PSOC™ Creator Software
- Radar Development Kit
- RUST
- USB Controllers SDK
- Wireless Connectivity Bluetooth Mesh Helper Applications
- XMC™ DAVE™ Software
- Overview
- Cypress™ Programmer Archive
- EZ-PD™ CCGx Power Software Development Kit Archive
- ModusToolbox™ Software Archive
- PSOC™ Creator Archive
- PSOC™ Designer Archive
- PSOC™ Programmer Archive
- USB EZ-PD™ Configuration Utility Archives
- USB EZ-PD™ Host SDK Archives
- USB EZ-USB™ FX3 Archive
- USB EZ-USB™ HX3PD Configuration Utility Archive
- WICED™ Smart SDK Archive
- WICED™ Studio Archive
- Overview
- Infineon Developer Center Launcher
- Infineon Register Viewer
- Pin and Code Wizard
- Timing Solutions
- Wireless Connectivity
- LATEST IN
- Support
- Training
- Developer Community
- News
Business & Financial Press
Jul 16, 2025
Business & Financial Press
Jul 07, 2025
Business & Financial Press
Jul 02, 2025
Business & Financial Press
Jun 30, 2025
- Company
- Our stories
- Events
- Press
- Investor
- Careers
- Quality
- Latest news
Business & Financial Press
Jul 16, 2025
Business & Financial Press
Jul 07, 2025
Business & Financial Press
Jul 02, 2025
Business & Financial Press
Jun 30, 2025
Wide Bandgap Semiconductors (SiC/GaN)

Wide bandgap, (WBG), semiconductors differ significantly from conventional semiconductors since they have a larger bandgap. A bandgap refers to the energy difference in semiconductors between the top of the valence band and the bottom of the conduction band. The larger distance allows wide bandgap semiconductor power devices to operate at higher voltages, temperatures, and frequencies.
Wide band gap semiconductor materials such as gallium nitride (GaN) and silicon carbide (SiC) are the ideal choice when looking for next generation of efficient power converter switches. However, each material offers certain advantages over the other. For instance, silicon carbide power semiconductors offer excellent voltage blocking for applications starting at 650V and provides even more benefits the higher the voltage.
The key for the next essential step towards an energy-efficient world lies in the use of these new WBG power electronics materials that allow for greater power efficiency, smaller size, lighter weight, lower overall cost – or all of these together.
Infineon offers the broadest product and technology portfolio including silicon, silicon carbide and gallium-nitride-based devices. As the leading power supplier with more than two decades of heritage in silicon carbide (SiC) and gallium nitride (GaN) technology development, Infineon Technologies caters to the need for smarter, more efficient energy generation, transmission, and consumption. Their experts understand what is needed to reduce system complexity, leading to decreased system cost and size in low- to mid- and high-power systems.
There is a long list of wide bandgap semiconductor advantages. For example, higher efficiency, thanks to wide bandgap semiconductor-based electronics, leads to increased power density as well as reduced size and weight and consequently lowering overall system costs.
Using wide bandgap semiconductor devices for power electronics also helps realize higher operating switching frequencies. This is especially important when ultimate power density is the target. GaN WBG semiconductors have a low total gate charge and a low voltage threshold of approximately 1.5 V, even at high frequencies, and gate-drive power is limited to milliwatts.
Infineon’s high efficiency wide bandgap semiconductor devices for power electronics product solutions are revolutionary. Our innovative and revolutionary technology implements high-performance wide band gap semiconductor materials and includes Infineon’s CoolSiC™. Moreover, our CoolGaN™ solutions in both discrete and integrated power stages.
CoolSiC™ - revolution to rely on in high voltage segments
Silicon carbide (SiC) has a wide bandgap of 3 electronvolt (eV) and a much higher thermal conductivity compared to silicon. SiC based MOSFETs are best suited for high breakdown, high power applications that operate at high frequency. Compared to silicon, silicon carbide power semiconductors device parameters such as the RDS(on) increase less over temperature. This allows designers to work within tighter margins or at higher temperatures in their wide bandgap power electronics designs, enabling extra performance. Based on proven, high-quality volume manufacturing, Infineon’s CoolSiC™ solutions combine revolutionary technology with benchmark reliability – for our customers’ success today and tomorrow. Learn more
CoolGaN™ - bringing Gallium Nitride (GaN) technology to the next level
GaN has an even higher bandgap (3.4 electronvolt) and substantially higher electron mobility than SiC. Compared to silicon (Si), the breakdown field is ten times higher and the electron mobility is doubled. Both the output charge and gate charge are ten times lower than with Si, and the reverse recovery charge is almost zero, which is key for high frequency operations. GaN wide bandgap semiconductor power devices are the technology of choice in modern resonant topologies and are enabling new approaches, including new topologies and current modulation.
Infineon’s GaN solution is based on the most robust and performing concept in the market – the enhancement mode (e-mode) concept, offering fast turn-on and turn-off speed. CoolGaN™ gallium nitride products focus on high performance and robustness while adding significant value to a broad variety of systems across many wide bandgap semiconductor applications such as server, telecom, wireless charging, adapter and charger, and audio. CoolGaN™ switches are easy to use and easy to design-in with a broad portfolio of single- and dual channel, isolated and non-isolated EiceDRIVER™ gate driver ICs from Infineon. Learn more
EiceDRIVER™ - Gate driver ICs with perfect fit to CoolSiC™ MOSFET
EiceDRIVER™ SiC MOSFET gate driver ICs are well-suited to drive SiC MOSFETs, especially our ultra-fast switching CoolSiC™ SiC MOSFETs. These gate drivers incorporate most important key features and parameters for SiC driving such as tight propagation delay matching, precise input filters, wide output-side supply range, negative gate voltage capability, active Miller clamp, DESAT protection, and extended CMTI capability. Learn more
Wide Bandgap Semiconductor Applications



Wide bandgap semiconductor devices bring significant power efficiency to a variety of applications. Infineon’s innovative portfolio of wide bandgap semiconductors is addressing state-of-the art electronics used in chargers and adapters for consumer applications, EV charging, telecom, SMPS, solar, and battery formation for industrial applications, as well as in onboard charging and high-voltage to low voltage DC-DC converters for automotive applications.
GaN vs. SiC in Power Electronics
With its high-quality and highly efficient products, Infineon is a global leader in developing and bringing powerful and innovative semiconductor technology to the market. Our extremely compact and efficient designs are available in the broadest product and technology portfolio of silicon (Si), silicon carbide (SiC), and gallium-nitride (GaN)-based devices to provide our customers with the best solutions for their unique application requirements.
There are a number of differences between GaN vs SiC vs Si semiconductors. First, GaN semiconductors target voltages today ranging from 80V to 650V and offer medium power at the highest switching frequencies. With very high efficiency at maximum power density, both GaN and SiC semiconductors have lower switching losses than Si-based semiconductors.
When it comes to the differences between GaN vs. SiC power electronics semiconductors, SiC power semiconductors offer superior gate-oxide reliability, excellent ease of use, and are extremely robust and employ vertical transistor concepts compared to GaN, which is a lateral transistor.
GaN and SiC bring different strengths into the application solution space. However, their benefits depend on their application. For example, Silicon Carbide is superior when it comes to high-temperature and high-voltage applications, such as high-power string inverters. For high-temperature capability, a lower temperature co-efficient and high blocking voltage capabilities satisfy the application demands best.
GaN is superior when it comes to ultimate power density. This is especially the case in applications where construction volume is very limited, such as switched-mode power suppliers in datacenters since power levels increase in a given space. In this case, efficiency and high switching frequencies are combined to push the application to the next level which are impossible to reach by other technologies.
By watching this eLearning you will:
- Understand package inductance
- Know why wide bandgap transistors are more susceptible to package inductance, and
- Identify which Infineon package types have lower inductance
Watch our webinar to discover more about technological positioning of silicon versus SiC and GaN power devices for both high and low power applications.
Infineon offers trusted expertise in all 3 main power semiconductor technologies. Check out how to position them in ACDC applications.
Understand why to use WBG switches for bi-directional converters, the topologies used and how they function.
To lead the transformation towards sustainable energy generation and consumption, you know that silicon carbide technology is at the strategic core to address key market trends in this direction. To do so, here are five reasons why you should choose Infineon’s SiC devices.
Get an insight on a virtual event covering the options for the right fit SMPS application. Our expert will guide you through the selection of power conversion topologies combined with the right power semiconductor technology. Highlighting the structural differences on Si, SiC and GaN technologies and showcase efficiency comparison of a power supply unit (PSU).
Si, SiC, GaN power semiconductors come with very unique characteristics offering different benefits. Watch this video and see various possibilities to use these technologies in your application and why Infineon can help you with your choice.