- ASIC
- Battery management ICs
- Clocks and timing solutions
- ESD and surge protection devices
- Evaluation Boards
- High reliability
- Isolation
- Memories
- Microcontroller
- Power
- RF
- Security and smart card solutions
- Sensor technology
- Small signal transistors and diodes
- Transceivers
- Universal Serial Bus (USB)
- Wireless connectivity
- Search Tools
- Technology
- Packages
- Product Information
- Where to Buy
- Overview
- Defense
- High-reliability custom services
- New space
- Space
- Overview
- Embedded flash IP solutions
- Flash+RAM MCP solutions
- F-RAM (Ferroelectric RAM)
- NOR flash
- nvSRAM (non-volatile SRAM)
- PSRAM (Pseudostatic RAM)
- Radiation hardened and high-reliability memories
- RRAM Resistive Ram
- SRAM (static RAM)
- Wafer and die memory solutions
- Overview
- 32-bit FM Arm® Cortex® Microcontroller
- 32-bit AURIX™ TriCore™ microcontroller
- 32-bit PSOC™ Arm® Cortex® microcontroller
- 32-bit TRAVEO™ T2G Arm® Cortex® microcontroller
- 32-bit XMC™ industrial microcontroller Arm® Cortex®-M
- Legacy microcontroller
- MOTIX™ MCU | 32-bit motor control SoC based on Arm® Cortex®-M
- Sensing controllers
- Overview
- AC-DC power conversion
- Automotive conventional powertrain ICs
- Class D audio amplifier ICs
- Contactless power and sensing ICs
- DC-DC converters
- Diodes and thyristors (Si/SiC)
- Gallium nitride (GaN)
- Gate driver ICs
- IGBTs – Insulated gate bipolar transistors
- Intelligent power modules (IPM)
- LED driver ICs
- Motor control ICs
- Power MOSFETs
- Power supply ICs
- Smart power switches
- Solid state relay
- Wireless charging ICs
- Overview
- Antenna cross switches
- Antenna tuners
- Bias and control
- Coupler
- Driver amplifiers
- High Reliability Discrete
- Low noise amplifiers (LNAs)
- RF diode
- RF switches
- RF transistors
- Wireless control receiver
- Overview
- Calypso® products
- CIPURSE™ products
- Contactless memories
- OPTIGA™ embedded security solutions
- SECORA™ security solutions
- Security controllers
- Smart card modules
- Smart solutions for government ID
- Overview
- 3D ToF image sensors
- Current sensors
- Gas sensors
- Inductive position sensing
- Magnetic sensors
- MEMS microphones
- Pressure sensors
- Radar sensors
- Overview
- Bipolar transistors
- Diodes
- Small signal/small power MOSFET
- Overview
- Automotive transceivers
- Control communication
- Powerline communications
- Overview
- USB 2.0 peripheral controllers
- USB 3.2 peripheral controllers
- USB hub controllers
- USB PD high-voltage microcontrollers
- USB-C AC-DC and DC-DC charging solutions
- USB-C charging port controllers
- USB-C Power Delivery controllers
- Overview
- AIROC™ Automotive wireless
- AIROC™ Bluetooth® and multiprotocol
- AIROC™ connected MCU
- AIROC™ Wi-Fi + Bluetooth® combos
- Overview
- Commercial off-the-shelf (COTs) memory portfolio
- Defense memory portfolio
- High-reliability power conversion and management
- Overview
- NewSpace memory portfolio
- Rad hard microwave and RF
- Radiation hardened power
- Space memory portfolio
- Overview
- Parallel NOR flash
- SEMPER™ NOR flash family
- SEMPER™ X1 LPDDR flash
- Serial NOR flash
- Overview
- FM0+ 32-bit Arm® Cortex®-M0+ microcontroller (MCU) families
-
FM3 32-bit Arm® Cortex®-M3 microcontroller (MCU) families
- Overview
- FM3 CY9AFx1xK series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx1xL/M/N series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx2xK/L series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx3xK/L series ultra-low leak Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx4xL/M/N series low power Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFx5xM/N/R series low power Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9AFxAxL/M/N series ultra-low leak Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx1xN/R high-performance series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx1xS/T high-performance series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx2xJ series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx2xK/L/M series Arm® Cortex®-M3 microcontroller (MCU)
- FM3 CY9BFx2xS/T series Arm® Cortex®-M3 microcontroller (MCU)
-
FM4 32-bit Arm® Cortex®-M4 microcontroller (MCU) families
- Overview
- FM4 CY9BFx6xK/L high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- FM4 CY9BFx6xM/N/R high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- FM4 S6E2C high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- FM4 S6E2G series connectivity Arm® Cortex®-M4F microcontroller (MCU)
- FM4 S6E2H high-performance series Arm® Cortex®-M4F microcontroller (MCU)
- Overview
-
32-bit TriCore™ AURIX™ – TC2xx
- Overview
- AURIX™ family – TC21xL
- AURIX™ family – TC21xSC (wireless charging)
- AURIX™ family – TC22xL
- AURIX™ family – TC23xL
- AURIX™ family – TC23xLA (ADAS)
- AURIX™ family – TC23xLX
- AURIX™ family – TC264DA (ADAS)
- AURIX™ family – TC26xD
- AURIX™ family – TC27xT
- AURIX™ family – TC297TA (ADAS)
- AURIX™ family – TC29xT
- AURIX™ family – TC29xTT (ADAS)
- AURIX™ family – TC29xTX
- AURIX™ TC2x emulation devices
-
32-bit TriCore™ AURIX™ – TC3xx
- Overview
- AURIX™ family - TC32xLP
- AURIX™ family – TC33xDA
- AURIX™ family - TC33xLP
- AURIX™ family – TC35xTA (ADAS)
- AURIX™ family – TC36xDP
- AURIX™ family – TC37xTP
- AURIX™ family – TC37xTX
- AURIX™ family – TC38xQP
- AURIX™ family – TC39xTM
- AURIX™ family – TC39xXA (ADAS)
- AURIX™ family – TC39xXM (ADAS)
- AURIX™ family – TC39xXX
- AURIX™ family – TC3Ex
- AURIX™ TC37xTE (emulation devices)
- AURIX™ TC39xXE (emulation devices)
- 32-bit TriCore™ AURIX™ – TC4x
- Overview
- 32-bit PSOC™ 4 Arm® Cortex®-M0/M0+
- 32-bit PSOC™ 4 HV Arm® Cortex®-M0+
- 32-bit PSOC™ 5 LP Arm® Cortex®-M3
- 32-bit PSOC™ 6 Arm® Cortex®-M4/M0+
- 32-bit PSOC™ automotive multitouch Arm® Cortex®-M0
- 32-bit PSOC™ Control Arm® Cortex®-M33 MCU
- 32-bit PSOC™ fingerprint Arm® Cortex®-M0+
- Automotive PSOC™ 4: 32-bit Arm® Cortex®-M0/M0+ MCU
- PSOC™ Edge Arm® Cortex® Multicore
- Overview
- 32-bit TRAVEO™ T2G Arm® Cortex® for body
- 32-bit TRAVEO™ T2G Arm® Cortex® for cluster
- Overview
- Legacy 32-bit MCU
- Legacy 8-bit/16-bit microcontroller
- Other legacy MCUs
- Overview
- AC-DC integrated power stage - CoolSET™
- AC-DC PWM-PFC controller
- Overview
- Bridge rectifiers & AC switches
- CoolSiC™ Schottky diodes
- Diode bare dies
- Silicon diodes
- Thyristor / Diode Power Modules
- Thyristor soft starter modules
- Thyristor/diode discs
- Overview
- Automotive gate driver ICs
- Isolated Gate Driver ICs
- Level-Shift Gate Driver ICs
- Low-Side Drivers
- Transformer Driver ICs
- Overview
- AC-DC LED driver ICs
- Ballast IC
- DC-DC LED driver IC
- LED dimming interface IC
- Linear LED driver IC
- LITIX™ - Automotive LED Driver IC
- NFC wireless configuration IC with PWM output
- VCSEL driver
- Overview
- 32-bit PSOC™ Control Arm® Cortex®-M33 MCU
- iMOTION™ Integrated motor control solutions
- MOTIX™ MCU | 32-bit motor control SoC based on Arm® Cortex®-M
- MOTIX™ motor control ICs for BLDC motors
- MOTIX™ motor control ICs for brushed DC motors
- MOTIX™ multi half-bridge ICs for servo and stepper motors
- Overview
- Automotive MOSFET
- Dual MOSFETs
- MOSFET (Si & SiC) Modules
- N-channel depletion mode MOSFET
- N-channel power MOSFETs
- P-channel power MOSFETs
- Silicon carbide CoolSiC™ MOSFETs
- Small signal/small power MOSFET
- Overview
- Automotive transceivers
- OPTIREG™ linear voltage regulators (LDO)
- OPTIREG™ PMIC
- OPTIREG™ switcher
- OPTIREG™ System Basis Chips (SBC)
- Overview
-
High-side switches
- Overview
- Classic PROFET™ 12V | Automotive smart high-side switch
- Classic PROFET™ 24V | Automotive smart high-side switch
- Power PROFET™ + 12/24/48V | Automotive smart high-side switch
- PROFET™ + 12V | Automotive smart high-side switch
- PROFET™ + 24V | Automotive smart high-side switch
- PROFET™ +2 12V | Automotive smart high-side switch
- PROFET™ Industrial | Smart high-side switch
- PROFET™ Load Guard 12V | Automotive smart high-side switch
- PROFET™ Wire Guard 12V | Automotive smart high-side switch
- Low-side switches
- Multichannel SPI Switches & Controller
- Overview
- Magnetic position sensors
- Magnetic speed sensors
- Overview
- Radar sensors for automotive
- Radar sensors for IoT
- Overview
- EZ-USB™ CX3 MIPI CSI2 to USB 3.0 camera controller
- EZ-USB™ FX10 & FX5N USB 10Gbps peripheral controller
- EZ-USB™ FX20 USB 20 Gbps peripheral controller
- EZ-USB™ FX3 USB 5 Gbps peripheral controller
- EZ-USB™ FX3S USB 5 Gbps peripheral controller with storage interface
- EZ-USB™ FX5 USB 5 Gbps peripheral controller
- EZ-USB™ SD3 USB 5 Gbps storage controller
- EZ-USB™ SX3 FIFO to USB 5 Gbps peripheral controller
- Overview
- EZ-PD™ CCG3 USB type-C port controller PD
- EZ-PD™ CCG3PA USB-C and PD
- EZ-PD™ CCG3PA-NFET USB-C PD controller
- EZ-PD™ CCG7x consumer USB-C Power Delivery & DC-DC controller
- EZ-PD™ PAG1: power adapter generation 1
- EZ-PD™ PAG2: Power Adapter Generation 2
- EZ-PD™ PAG2-PD USB-C PD Controller
- Overview
- EZ-PD™ ACG1F one-port USB-C controller
- EZ-PD™ CCG2 USB Type-C port controller
- EZ-PD™ CCG3PA Automotive USB-C and Power Delivery controller
- EZ-PD™ CCG4 two-port USB-C and PD
- EZ-PD™ CCG5 dual-port and CCG5C single-port USB-C PD controllers
- EZ-PD™ CCG6 one-port USB-C & PD controller
- EZ-PD™ CCG6_CFP and EZ-PD™ CCG8_CFP Dual-Single-Port USB-C PD
- EZ-PD™ CCG6DF dual-port and CCG6SF single-port USB-C PD controllers
- EZ-PD™ CCG7D Automotive dual-port USB-C PD + DC-DC controller
- EZ-PD™ CCG7S Automotive single-port USB-C PD solution with a DC-DC controller
- EZ-PD™ CCG7SAF Automotive Single-port USB-C PD + DC-DC Controller + FETs
- EZ-PD™ CCG8 dual-single-port USB-C PD
- EZ-PD™ CMG1 USB-C EMCA controller
- EZ-PD™ CMG2 USB-C EMCA controller with EPR
- LATEST IN
- Aerospace and defense
- Automotive
- Consumer electronics
- Healthcare and lifestyle
- Home appliances
- Industrial
- Information and Communication Technology
- Renewables
- Robotics
- Security solutions
- Smart home and building
- Solutions
- Overview
- Defense applications
- Space applications
- Overview
- 48 V systems for EVs & mild hybrids
- ADAS & autonomous driving
- Automotive body electronics & power distribution
- Automotive LED lighting systems
- Chassis control & safety
- Electric vehicle drivetrain system
- EV thermal management system
- Internal combustion drivetrain systems
- In-vehicle infotainment & HMI
- Light electric vehicle solutions
- Overview
- Adapters and chargers
- Complete system solutions for smart TVs
- Mobile device and smartphone solutions
- Multicopters and drones
- Power tools
- Semiconductor solutions for home entertainment applications
- Smart conference systems
- Overview
- Healthcare
- Wearable Devices
- Overview
- Air purifiers - smart and efficient air quality improvement
- Ceiling fan - motor control and drive solutions
- Coffee machine – inverter and sensors
- Cordless vacuum cleaners
- Domestic robots
- Hood fans
- Induction cooking
- Induction rice cooker
- Microwave ovens
- Mixer - variable speed DC and SRM motors
- Refrigerators and freezers
- Washing and drying
- Overview
- Adapters and chargers
- Asset Tracking
- Battery formation and testing
- Energy storage systems
- EV charging
- High-voltage solid-state power distribution
- Industrial automation
- Industrial motor drives and controls
- Industrial robots system solutions for Industry 4.0
- LED lighting system design
- Light electric vehicle solutions
- Photovoltaic
- Power tools
- Power transmission and distribution
- Traction
- Uninterruptible power supplies (UPS)
- Overview
- Data center and AI data center solutions
- Edge computing
- Telecommunications infrastructure
- Overview
- Battery formation and testing
- EV charging
- Hydrogen
- Photovoltaic
- Power converters and inverters for wind turbines
- Solid-state circuit breaker
- Overview
- Device authentication and brand protection
- Embedded security for the Internet of Things (IoT)
- eSIM applications
- Government identification
- Mobile security
- Payment solutions
- Ticketing solutions
- Overview
- Domestic robots
- Heating ventilation and air conditioning (HVAC)
- Home and building automation
- PC accessories
- Semiconductor solutions for home entertainment applications
- Overview
- Battery management systems (BMS)
- Connectivity
- Human Machine Interface
- Machine Learning Edge AI
- Motor control
- Power conversion
- Security
- Sensor solutions
- System diagnostics and analytics
- Overview
- Automotive radar systems
- Domain controller for ADAS & autonomous driving
- In-cabin monitoring system (ICMS)
- Multi-purpose camera
- Overview
- Automotive auxiliary systems
- Automotive gateway
- Automotive power distribution
- Body control modules (BCM)
- Comfort & convenience electronics
- Zonal DC-DC converter 48 V-12 V
- Zone control unit
- Overview
- Automotive animated LED lighting system
- Automotive LED front single light functions
- Automotive LED rear single light functions
- Full LED headlight system - multi-channel LED driver
- LED drivers (electric two- & three-wheelers)
- LED pixel light controller - supply & communication
- Static interior ambient LED light
- Overview
- Active suspension control
- Airbag system
- Automotive braking solutions
- Automotive steering solutions
- Chassis domain control
- Reversible seatbelt pretensioner
- Overview
-
Automotive BMS
- Overview
- Automotive battery cell monitoring & balancing
- Automotive battery control unit (BCU)
- Automotive battery isolated communication
- Automotive battery management system (BMS) - 12 V to 24 V
- Automotive battery management system (BMS) - 48 V
- Automotive battery management system (BMS) - high-voltage
- Automotive battery pack monitoring
- Automotive battery passport & event logging
- Automotive battery protection & disconnection
- Automotive current sensing & coulomb counting
- BMS (electric two- & three-wheelers)
- EV charging
- EV inverters
- EV power conversion & OBC
- FCEV powertrain system
- Overview
- Automatic transmission hydraulic system
- Belt starter generator 48 V – inverter ISG
- Diesel direct injection
- Double-clutch transmission electrical control
- Double-clutch transmission hydraulic control
- Gasoline direct injection
- Multi-port fuel injection
- Small 1-cylinder combustion engine solution
- Small engine starter kit
- Transfer case brushed DC
- Transfer case brushless DC (BLDC)
- Overview
- Automotive head unit
- Automotive USB-C power & data solution
- Automotive instrument cluster
- Automotive telematics control unit (TCU)
- Center information display (CID)
- High-performance cockpit controller
- In-cabin wireless charging
- Smart instrument cluster (electric two- & three-wheelers)
- Overview
- E-bike solutions
- Two- & three-wheeler solutions
- Overview
- Audio amplifier solutions
- Complete system solutions for smart TVs
- Distribution audio amplifier unit solutions
- Home theater installation speaker system solutions
- Party speaker solutions
- PoE audio amplifier unit solutions
- Portable speaker solutions
- Powered active speaker systems
- Remote control
- Smart speaker designs
- Soundbar solutions
- Overview
- Data center and AI data center solutions
- Digital input/output (I/O) modules
- DIN rail power supply solutions
- Home and building automation
- Industrial HMI Monitors and Panels
- Industrial motor drives and controls
- Industrial PC
- Industrial robots system solutions for Industry 4.0
- Industrial sensors
- Machine vision
- Mobile robots (AGV, AMR)
- Programmable logic controller (PLC)
- Solid-state circuit breaker
- Uninterruptible power supplies (UPS)
- Overview
- 48 V intermediate bus converter (IBC)
- AI accelerator cards
- AMD server CPUs
- Ampere CPUs
- FPGAs in datacenter applications
- Intel server CPUs
- Networking and switch platforms
- Power path protection
- Power system reliability modeling
- RAID storage
- Server battery backup units (BBU)
- Server power supply
- SmartNIC cards
- Overview
- AC-DC power conversion for telecommunications infrastructure
- DC-DC power conversion for telecommunications infrastructure
- FPGA in wired and wireless telecommunications applications
- Satellite communications
- Power system reliability modeling
- RF front end components for telecommunications infrastructure
- Overview
-
AC-DC power conversion
- Overview
- AC-DC auxiliary power supplies
- AC-DC power conversion for telecommunications infrastructure
- Adapters and chargers
- Automotive LED lighting systems
- Complete system solutions for smart TVs
- Desktop power supplies
- EV charging
- Industrial power supplies
- PoE power sourcing equipment (PSE)
- Server power supply units (PSU)
- Uninterruptible power supplies (UPS)
- DC-DC power conversion
- Overview
- Power supply health monitoring
- LATEST IN
- Digital documentation
- Evaluation boards
- Finder & selection tools
- Partner products
- PCB design data
- Platforms
- Services
- Simulation & Modeling
- Software
- Tools
- Partners
- Infineon for Makers
- University Alliance Program
- Overview
- Bipolar Discs Finder
- Bipolar Module Finder
- Connected Secure Systems Finder
- Diode Rectifier Finder
- ESD Protection Finder
- Evaluation Board Finder
- Gate Driver Finder
- IGBT Discrete Finder
- IGBT Module Finder
- IPM Finder
- Microcontroller Finder
- MOSFET Finder
- PMIC Finder
- Product Finder
- PSOC™ and FMx MCU Board & Kit Finder
- Radar Finder
- Reference Design Finder
- Simulation Model Finder
- Smart Power Switch Finder
- Transceiver Finder
- Voltage Regulator Finder
- Wireless Connectivity Board & Kit Finder
- Overview
- AIROC™ software & tools
- AURIX™ software & tools
- Drive Core for automotive software development
- iMOTION™ software & tools
- Infineon Smart Power Switches & Gate Driver Tool Suite
- MOTIX™ software & tools
- OPTIGA™ software & tools
- PSOC™ software & tools
- TRAVEO™ software & tools
- XENSIV™ software & tools
- XMC™ software & tools
- Overview
- CIPOS™ IPM Simulation Tool (PLECS)
- CoolGaN™ Simulation Tool (PLECS)
- HiRel Fit Rate Tool
- IGBT Simulation Tools
- Infineon Designer
- Infineon Online Power Simulation Platform
- InfineonSpice Offline Simulation Tool
- OPTIREG™ automotive power supply ICs Simulation Tool (PLECS)
- PowerEsim Switch Mode Power Supply Design Tool
- Solution Finder
- XENSIV™ Magnetic Sensor Simulation Tool
- Overview
- AURIX™ certifications
- AURIX™ development tools
- AURIX™ Embedded Software
- AURIX™ Microcontroller Kits
- Overview
- PSoC™ Development Tools
- PSoC™ Embedded Software
- Overview
- TRAVEO™ Development Tools
- TRAVEO™ Embedded Software
- Overview
- XENSIV™ Development Tools
- XENSIV™ Embedded Software
- XENSIV™ evaluation boards
- Overview
- CAPSENSE™ Controllers Code Examples
- Memories for Embedded Systems Code Examples
- PSOC™ 1 Code Examples for PSOC™ Designer
- PSOC™ 3 Code Examples for PSOC™ Creator
- PSOC™ 3/4/5 Code Examples
- PSOC™ 4 Code Examples for PSOC™ Creator
- PSOC™ 6 Code Examples for PSOC™ Creator
- PSOC™ 63 Code Examples
- USB Controllers Code Examples
- Overview
- AIROC™ Wi-Fi & Bluetooth EZ-Serial Module Firmware Platform
- AIROC™ Wi-Fi & Bluetooth Linux and Android Drivers
- emWin Graphics Library and GUI for PSOC™
- Infineon Complex Device Driver for Battery Management Systems
- Memory Solutions Hub
- PSOC™ 6 Peripheral Driver Library (PDL) for PSOC™ Creator
- USB Controllers EZ-USB™ GX3 Software and Drivers
- Overview
- CAPSENSE™ Controllers Configuration Tools EZ-Click
- DC-DC Integrated POL Voltage Regulators Configuration Tool – PowIRCenter
- EZ-USB™ SX3 Configuration Utility
- FM+ Configuration Tools
- FMx Configuration Tools
- Tranceiver IC Configuration Tool
- USB EZ-PD™ Configuration Utility
- USB EZ-PD™ Dock Configuration Utility
- USB EZ-USB™ HX3C Blaster Plus Configuration Utility
- USB UART Config Utility
- XENSIV™ Tire Pressure Sensor Programming
- Overview
- AURIX™ Development Studio
- EZ-PD™ CCGx Dock Software Development Kit
-
FMx Softune IDE
- Overview
- RealOS™ Real-Time Operating System
- Softune IDE Language tools
- Softune Workbench
- Tool Lineup for F2MC-16 Family SOFTUNE V3
- Tool Lineup for F2MC-8FX Family SOFTUNE V3
- Tool Lineup for FR Family SOFTUNE V6
- Virtual Starter Kit
- Windows 10 operation of released SOFTUNE product
- Windows 7 operation of released SOFTUNE product
- Windows 8 operation of released SOFTUNE product
- ModusToolbox™ Software
- PSOC™ Creator Software
- Radar Development Kit
- RUST
- USB Controllers SDK
- Wireless Connectivity Bluetooth Mesh Helper Applications
- XMC™ DAVE™ Software
- Overview
- Cypress™ Programmer Archive
- EZ-PD™ CCGx Power Software Development Kit Archive
- ModusToolbox™ Software Archive
- PSOC™ Creator Archive
- PSOC™ Designer Archive
- PSOC™ Programmer Archive
- USB EZ-PD™ Configuration Utility Archives
- USB EZ-PD™ Host SDK Archives
- USB EZ-USB™ FX3 Archive
- USB EZ-USB™ HX3PD Configuration Utility Archive
- WICED™ Smart SDK Archive
- WICED™ Studio Archive
- Overview
- Infineon Developer Center Launcher
- Infineon Register Viewer
- Pin and Code Wizard
- Timing Solutions
- Wireless Connectivity
- LATEST IN
- Support
- Training
- Developer Community
- News
Business & Financial Press
Jul 16, 2025
Business & Financial Press
Jul 07, 2025
Business & Financial Press
Jul 02, 2025
Business & Financial Press
Jun 30, 2025
- Company
- Our stories
- Events
- Press
- Investor
- Careers
- Quality
- Latest news
Business & Financial Press
Jul 16, 2025
Business & Financial Press
Jul 07, 2025
Business & Financial Press
Jul 02, 2025
Business & Financial Press
Jun 30, 2025
Overview
Infineon’s XENSIV™ PAS CO2 sensor provides accurate measurements of the indoor air quality and enables the implementation of energy-efficient strategies for a healthy indoor environment. The PAS sensor technology is enabled by the exceptional sensitivity of the acoustic detector which reduces the size required by more than 75 percent compared to contemporary NDIR CO2 sensors.
Key Features
- Exceptional small form factor
- High accuracy CO2 level readings
- Fulfillment of IAQ standards
- Self-calibration algorithms
- SMD package in tape and reel
- UART, I²C, PWM interfaces
- Easy PCB assembly
- ISO 20653:2013-02 compliant design
Applications
Products
About
CO2 sensors are used to monitor the indoor environments for improved health, well-being, and energy efficiency. Poor ventilation in heavily insulated buildings can result in lower oxygen levels and higher concentrations of carbon dioxide (CO2). Even moderate levels of CO2 can have a negative impact on health and productivity.
Infineon, a global leader in sensor technology, offers the XENSIV™ PAS CO2 as a smart sensor solution that measures the real CO2 concentration levels and provides reliable real-time data. Infineon’s XENSIV™ PAS CO2 sensor leverages photoacoustic spectroscopy (PAS) technology to provide an exceptionally small, real CO2 sensor that is both highly accurate and cost-effective. It integrates a photoacoustic transducer, including an acoustic detector, infrared source, and optical filter; a microcontroller for signal processing and a MOSFET chip to drive the infrared source. The exceptional sensitivity of the acoustic detector coupled with the integrated PCB design reduces space requirements by more than 75 percent compared to conventional NDIR CO2 sensors.
Integrate XENSIV™ PAS CO2 easily into your indoor solutions to meet the green building certification standards.
Green buildings have become a top priority for organizations seeking to promote occupants' well-being, boost productivity, reduce energy costs, and meet environmental, social, and governance (ESG) goals.
Infineon’s XENSIV™ PAS CO2 gas sensors play a crucial role in supporting five key WELL™ features, enabling buildings to earn a maximum of 6 WELL™ points. These features include:
- Enhancing occupant wellbeing, comfort, and productivity
- Improving operating efficiency and reducing energy costs through Demand Control Ventilation
- Reducing CO2 emissions and conserving energy
- Minimizing the risk of human exposure to hazardous substances like mercury and lead
A recent assessment by GREENMAP, a leading provider of WELL™ performance testing and LEED™ verification, has confirmed that the XENSIV™ PASCO2V01 sensor meets the rigorous performance requirements of the international WELL™ green building certification system, as well as the international LEED™ green building certification system, contributing to 6 LEED™ credits and enabling buildings to earn a maximum of 28 LEED™ points.
Infineon’s XENSIV™ PAS CO2 gas sensors are designed to meet the most recent indoor air quality regulatory requirements, including California's Title 24 and ASHRAE 62.1 standards.
There are three CO2 sensor types in the market today.
- Photoacoustic spectroscopy (PAS): Measures CO2 levels by using sound waves
- Non-dispersive infrared (NDIR): Measures CO2 levels by detecting the absorption of infrared light by CO2 molecules
- Electrochemical (EC): Measures CO2 levels by detecting the electric current generated by a reaction between CO2 and a chemical diode
XENSIV™ PAS CO2 sensor is compliant with all major indoor air quality (IAQ) regulations and standards including WELL, LEED, Title 24, and ASHRAE 62.1. Infineon’s CO2 sensor is four times smaller and three times lighter than conventional NDIR CO2 sensors and its robust and efficient design outperforms the accuracy of EC CO2 sensors while being cost efficient. The implementation of MEMS technology sets the XENSIV™ PAS CO2 sensor apart from its counterparts in its precision and consistency.
The XENSIV™ PAS CO2 sensor enables smart CO2 measurements which makes it the ideal solution for smart home and building automation applications.
XENSIV™ PAS CO2 sensor’s PCB is integrated with:
- The PAS transducer (including a detector, infrared source, and optical filter)
- A microcontroller (for signal processing and algorithms)
- A MOSFET chip (to drive the infrared source)
The microcontroller runs ppm calculations as well as advanced compensation and configuration algorithms resulting in plug-and-play functionality making the system integration easier for you.
The exceptional sensitivity of this acoustic detector provides unmatched precision, while its small size reduces space requirements by more than 75% compared to other commercially available real CO2 sensors making it the right fit for various applications.
Deliver superior quality products using Infineon’s XENSIV™ PAS CO2 sensors.
When pulses of light from an infrared source pass through an optical filter tuned specifically to the CO2 absorption wavelength (λ= 4.2 µm), the CO2 molecules inside the measurement chamber absorb this filtered light. As a result, the CO2 molecules vibrate and generate a pressure wave with each pulse (photoacoustic effect).
Infineon’s highly sensitive MEMS acoustic detector detects the pressure change generated by the CO2 molecules within the sensor cavity, and the microcontroller converts the output into a CO2 concentration reading. To achieve a ppm reading as accurate as possible, the acoustic detector is optimized for low-frequency operation, and the absorption chamber is acoustically isolated from external noise.
The XENSIV™ PAS CO2 sensor achieves an accurate ppm reading when it is optimized for low-frequency operation and provides robustness against external acoustic noise.
In this section, you will find informative and engaging online trainings and webinars about gas sensors.
From the fundamental of gas sensors to their practical implementation in real-world, our online resources cover a wide range of topics to help you stay up to date with the latest advancements in this rapidly evolving field.
Check out our curated online content and stay ahead in the world of gas sensors.
CO2 sensors are used to monitor the indoor environments for improved health, well-being, and energy efficiency. Poor ventilation in heavily insulated buildings can result in lower oxygen levels and higher concentrations of carbon dioxide (CO2). Even moderate levels of CO2 can have a negative impact on health and productivity.
Infineon, a global leader in sensor technology, offers the XENSIV™ PAS CO2 as a smart sensor solution that measures the real CO2 concentration levels and provides reliable real-time data. Infineon’s XENSIV™ PAS CO2 sensor leverages photoacoustic spectroscopy (PAS) technology to provide an exceptionally small, real CO2 sensor that is both highly accurate and cost-effective. It integrates a photoacoustic transducer, including an acoustic detector, infrared source, and optical filter; a microcontroller for signal processing and a MOSFET chip to drive the infrared source. The exceptional sensitivity of the acoustic detector coupled with the integrated PCB design reduces space requirements by more than 75 percent compared to conventional NDIR CO2 sensors.
Integrate XENSIV™ PAS CO2 easily into your indoor solutions to meet the green building certification standards.
Green buildings have become a top priority for organizations seeking to promote occupants' well-being, boost productivity, reduce energy costs, and meet environmental, social, and governance (ESG) goals.
Infineon’s XENSIV™ PAS CO2 gas sensors play a crucial role in supporting five key WELL™ features, enabling buildings to earn a maximum of 6 WELL™ points. These features include:
- Enhancing occupant wellbeing, comfort, and productivity
- Improving operating efficiency and reducing energy costs through Demand Control Ventilation
- Reducing CO2 emissions and conserving energy
- Minimizing the risk of human exposure to hazardous substances like mercury and lead
A recent assessment by GREENMAP, a leading provider of WELL™ performance testing and LEED™ verification, has confirmed that the XENSIV™ PASCO2V01 sensor meets the rigorous performance requirements of the international WELL™ green building certification system, as well as the international LEED™ green building certification system, contributing to 6 LEED™ credits and enabling buildings to earn a maximum of 28 LEED™ points.
Infineon’s XENSIV™ PAS CO2 gas sensors are designed to meet the most recent indoor air quality regulatory requirements, including California's Title 24 and ASHRAE 62.1 standards.
There are three CO2 sensor types in the market today.
- Photoacoustic spectroscopy (PAS): Measures CO2 levels by using sound waves
- Non-dispersive infrared (NDIR): Measures CO2 levels by detecting the absorption of infrared light by CO2 molecules
- Electrochemical (EC): Measures CO2 levels by detecting the electric current generated by a reaction between CO2 and a chemical diode
XENSIV™ PAS CO2 sensor is compliant with all major indoor air quality (IAQ) regulations and standards including WELL, LEED, Title 24, and ASHRAE 62.1. Infineon’s CO2 sensor is four times smaller and three times lighter than conventional NDIR CO2 sensors and its robust and efficient design outperforms the accuracy of EC CO2 sensors while being cost efficient. The implementation of MEMS technology sets the XENSIV™ PAS CO2 sensor apart from its counterparts in its precision and consistency.
The XENSIV™ PAS CO2 sensor enables smart CO2 measurements which makes it the ideal solution for smart home and building automation applications.
XENSIV™ PAS CO2 sensor’s PCB is integrated with:
- The PAS transducer (including a detector, infrared source, and optical filter)
- A microcontroller (for signal processing and algorithms)
- A MOSFET chip (to drive the infrared source)
The microcontroller runs ppm calculations as well as advanced compensation and configuration algorithms resulting in plug-and-play functionality making the system integration easier for you.
The exceptional sensitivity of this acoustic detector provides unmatched precision, while its small size reduces space requirements by more than 75% compared to other commercially available real CO2 sensors making it the right fit for various applications.
Deliver superior quality products using Infineon’s XENSIV™ PAS CO2 sensors.
When pulses of light from an infrared source pass through an optical filter tuned specifically to the CO2 absorption wavelength (λ= 4.2 µm), the CO2 molecules inside the measurement chamber absorb this filtered light. As a result, the CO2 molecules vibrate and generate a pressure wave with each pulse (photoacoustic effect).
Infineon’s highly sensitive MEMS acoustic detector detects the pressure change generated by the CO2 molecules within the sensor cavity, and the microcontroller converts the output into a CO2 concentration reading. To achieve a ppm reading as accurate as possible, the acoustic detector is optimized for low-frequency operation, and the absorption chamber is acoustically isolated from external noise.
The XENSIV™ PAS CO2 sensor achieves an accurate ppm reading when it is optimized for low-frequency operation and provides robustness against external acoustic noise.
In this section, you will find informative and engaging online trainings and webinars about gas sensors.
From the fundamental of gas sensors to their practical implementation in real-world, our online resources cover a wide range of topics to help you stay up to date with the latest advancements in this rapidly evolving field.
Check out our curated online content and stay ahead in the world of gas sensors.