Non-isolated two stage Boost PFC plus current regulated Buck LED driver
IRXLED09

Authors: Peter B. Green

About this document

Scope and purpose
The purpose of this document is to provide a comprehensive functional description and guide to using the IRXLED09 2 stage PFC Boost + Buck LED driver evaluation board based on the IRS2505L. The scope describes the operation and covers technical aspects essential to the design process, including calculation of external component values, MOSFET selection, PCB layout optimization as well as additional protection circuitry that may be added if needed. Test results and waveforms are also included.

Intended audience
Power supply design engineers, applications engineers, students.

Table of Contents
About this document .. 1
Table of Contents ... 1
1 Introduction ... 2
2 Evaluation board specifications ... 3
3 Schematic ... 4
4 High voltage start-up circuit ... 5
5 IRS2505L functional overview .. 7
6 Dimensioning ... 9
 6.1 PFC Boost stage .. 9
 6.2 Buck stage ... 11
7 Bill of materials ... 16
8 Inductor specification ... 18
 8.1 PFC inductor .. 18
 8.2 Buck inductor .. 19
9 PCB layout ... 20
 9.1 PCB layout guidelines for system optimization ... 20
10 Test results .. 22
 10.1 Operation under different line and load conditions ... 22
 10.2 Power factor and current harmonics (ITHD) .. 25
 10.3 Operating waveforms ... 29
 10.4 Thermal performance under normal operating conditions .. 37
 10.5 Conducted EMI ... 38
11 Conclusion .. 40
Revision History ... 40
The IRXLED09 reference design is a low cost two stage non-dimmable LED driver solution. The topology consists of a 90 W wide input range power factor correction Boost converter front end based on the IRS2505L controller IC, followed by a constant current regulated Buck LED driver also based on the IRS2505L. The IRS2505L is a critical conduction mode (CrCM) PFC controller IC primarily intended for frontend PFC pre-regulators and typically used in power supply and lighting applications up to 150 W. The IRS2505L based Boost PFC pre-converter is able to meet the requirements of EN61000-3-2, including class C limits for lighting applications. In some cases it is also appropriate to use this controller in other SMPS topologies such as Buck, Buck-Boost and Flyback. The back end Buck stage in this LED driver is configured for constant current (CC) regulation, also operating in critical conduction mode.

The design procedure for a PFC stage based on the IRS2505L differs slightly from the procedure used for industry standard 8 pin CrCM PFC control ICs and will be explained in detail here. In order for the circuit to produce optimum performance care must be taken to select the correct component values and ratings. The PCB must also be designed according to correct practices for SMPS design for which guidelines are provided to avoid ground loops and noise susceptibility. Design of the Buck stage is explained in detail.

In order to save design time simple Excel based design tools are available, which calculate all of the component values based on user inputs as well as providing a simple means for designing the inductors.
2 Evaluation board specifications

Input and output at normal operation:
- AC Input voltage 90 VAC up to 265 VAC (55 to 65 Hz)
- Output voltage range at 350 +/-25mA output 75 to 200 VDC
- Output voltage range at 700 +/-25mA output 40 to 105 VDC
- Maximum HF output current ripple as a percentage of DC average for LED load, 50%
- Maximum output continuous power 90 W
- PF >0.95 at maximum load, 90 to 265 VAC input voltage
- THD <20% at maximum load, 90 to 265 VAC input voltage
- Efficiency >90% at maximum load at 120 and 230 VAC input voltage.
- Startup time to reach the secondary nominal output voltage during full load condition and 120 and 230 VAC input voltage <300 ms
- Maximum flicker 20% (including ripple at 2 x line frequency)

Protection features
- Primary output over-voltage protection @ VOUT <= 250 VDC
- Cycle by cycle primary over-current protection

No load operation
- Burst mode during no load condition.
- Max power losses during no load condition <500mW @120 and 230VAC input voltage

Max component temperature
During worst case scenario (ambient temperature 60 °C) the max allowed component temperature is:
- Resistor < 105 °C
- Ceramic capacity, film capacity and electrolyte capacity <85 °C
- Flyback Transformer and chokes <105 °C
- MOSFET, transistor and diodes <105 °C
- IC <100 °C

Dimensions of evaluation board
- Max width 9.685” (246.0 mm), max length 1.25” (31.8 mm).

WARNING!
OUTPUT IS NOT ISOLATED! Risk of electric shock!
The board should be tested only by qualified engineers and technicians.

1 IRXLED09 can be operated down to a minimum LED output of 35V at 350mA without flicker. However EN61000-3-2 class C limits may not be met below the specified minimum voltage.
2 IRXLED09 can be operated down to a minimum LED output of 35V at 700mA without flicker. However EN61000-3-2 class C limits may not be met below the specified minimum voltage.
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Schematic

3 Schematic

Figure 3 IRXLED09 90 W Two stage Boost PFC Buck LED driver
4 High voltage startup circuit (optional)

To minimize start-up time the IRXLED09 evaluation board includes a high voltage start-up circuit based on the IRS25751L (IC1). This provides a regulated VCC supply current to the PFC Boost stage from the rectified AC line input to rapidly charge the VCC supply capacitor (CVCC2). When the voltage at VCC reaches a level set by the resistor divider formed with RVCC1 and RVCC2, IC1 then turns off and blocks the rectified line voltage while consuming ultra-low leakage current. The HV start-up IC includes an internal 480V NMOS (HVFET) that sources a regulated current (IREG) from the VIN pin to the VOUT pin (Figure 1). The IRS25751L also includes an internal window comparator for turning the current source on and off. The external voltage divider (RVCC1, RVCC2), together with the internal threshold at the VTH pin, determines the upper turn-off threshold for the VOUT pin. An internal voltage divider circuit then sets the fixed lower turn-on threshold for VOUT. The IRS25751L also includes an enable pin (ENN) that can be used to turn off the current source, which is not used in this design. Over-temperature shutdown protection with hysteresis is built-in to shut down and protect the IC in the event of the die temperature ever exceeding 155°C.

![Figure 4 IRS25751L connections and internal block diagram](image)

When AC line voltage is applied to the board, VCC rises as regulated current flows from the IRS25751L VOUT pin into CVCC2. The charge rate is determined by the value of CVCC2 and the IRS25751L output current (IREG). Since IC2 is operating in under voltage lockout it consumes no significant current. CVCC2 is sized to provide enough charge to supply VCC until the auxiliary supply derived from the PFC inductor auxiliary winding is able to over.

When the divided voltage at the VTH input reaches the VOUT+ threshold the current source turns off. The values of RVCC1 and RVCC2 are selected so that this voltage will be above the UVLO+ threshold of the IRS2505L. When the PFC Boost converter starts up the auxiliary supply should take over through the auxiliary supply circuit. If the auxiliary supply does not take over and supply current to VCC then the VOUT pin voltage will start to discharge and will eventually reach the fixed VOUT- lower threshold (4.2V). At this time the current source will turn on again and VOUT will charge back up to the programmed VOUT+ level. The cycle will repeat until the auxiliary supply takes over. In this design additional start-up resistors are also included so that VCC can begin to re-charge as soon as it drops below the UVLO- threshold of the IRS2505L.
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

High voltage startup circuit (optional)

![Diagram of VOUT, VBUS, IOUT, and waveforms](image)

Figure 5 IRS25751L voltage and current waveforms

The upper turn-off VOUT+ threshold is programmed using the following equation:

\[
V_{OUT^+} = \frac{RVCC1+RVCC2}{RVCC2} \cdot V_{TH^+} \quad [V] \quad [1]
\]

\[
\frac{1M+91k}{91k} \cdot 1.14 = 13.7V
\]

If RVCC1 is fixed (typically 1MΩ) and the desired VOUT+ threshold is known, then RVCC2 can be calculated using the following equation:

\[
RVCC2 = \frac{RVCC1 \cdot V_{TH^+}}{V_{OUT^+} - V_{TH^+}} \quad [\Omega] \quad [2]
\]

Should the IC junction temperature exceed 155°C then the IRS25751L will shut down so that the internal current source from VIN to VOUT turns off. When the junction temperature decreases again below 100°C (and VOUT is less than VOUT+) then the IC will become enabled again and the internal current source from VIN to VOUT will switch on again. The IC will continue to operate in and out of ON, OFF and over-temperature protection modes until the VCC auxiliary supply properly takes over or the system is shutdown.

In low cost designs the HV start-up can be replaced by two series start-up resistors. The IRXLED09 PCB includes locations for adding these resistors RS1 and RS2.
5 IRS2505L functional overview

The IRS2505L critical conduction mode (CrCM) Boost PFC controller IC may also be used as a current regulated Buck controller. All of the functionality for controlling the PFC pre-converter is integrated into the SOT23-5 package. This low pin count solution operates by using multi-functional VBUS and PFC pins so that the cycle by cycle current sense input is combined with the output voltage feedback at the VBUS pin and the zero-crossing (ZX) sensing function is combined with the gate drive at the PFC pin.

At the start of each switching cycle the PFC pin gate drive output pulls the PFC pin voltage high and the external MOSFET turns on, where the on-time duration is set by the CMP pin voltage. The internal PFC control loop regulates the CMP pin voltage, which determines the on-time such that if the DC bus voltage increases then the CMP pin voltage and on-time will decrease and vice versa. Decreasing the on time reduces the peak inductor current transferring less energy per switching cycle and causing the DC bus voltage to decrease. If the DC bus voltage decreases below the desired level the CMP pin voltage and on-time will increase to compensate. This negative feedback control loop regulates the DC bus to a constant voltage over AC line voltage or output load variations. The speed of regulation is determined by the internal OTA trans-conductance and compensation capacitor CCMP.

At the end of each on time period, the PFC pin gate drive circuit pulls the PFC pin to COM and the external PFC MOSFET turns off. After a short initial switch off delay (tPD), the IRS2505L internal gate drive pull-down turns off and the PFC pin is then weakly pulled up and clamped at approximately one diode forward voltage drop (VFPF) which is well below the gate threshold of the MOSFET (MPFC) ensuring that it is not able to switch on. During the off-time the PFC inductor current discharges through the boost diode into the DC output capacitor and load. When the inductor current falls to zero, the drain voltage falls from the level of the output voltage plus the output diode forward voltage and transitions negatively. During this transition current flows through the MOSFET parasitic gate to drain capacitance CGD overcoming the internal weak pull up and causing the gate voltage to drop below the threshold VPFZX. After remaining below this threshold for a period of tZXBLANK, the PFC gate drive is turned on again to begin the next switching cycle. To ensure ZX detection a minimum voltage headroom of 60-70V is needed between the peak line voltage at high line and the output voltage. This value depends on the MOSFET CGD and CGS values. To operate with smaller headroom, a 500V minimum rated capacitor of low value in the 10's of pF range may be added between drain and gate with a 100Ω series resistor to provide some additional –dv/dt coupling to the gate.

Since the loop speed is slow with respect to the line frequency the on-time is essentially constant over the entire half cycle of the line input voltage producing a peak inductor current that naturally follows the sinusoidal shape of the line input voltage. The filtered, averaged line input current is in phase with the line input voltage (neglecting a small displacement caused by the input filter X capacitors) to provide high power factor. However some harmonic distortion of the current is still present mostly due to cross-over distortion occurring near the zero-crossings of the line input voltage. To achieve very low harmonics within the limits of international standards and to meet general market requirements, on-time modulation is included in the IRS2505L, which dynamically increases the on-time as the line input voltage nears the zero-crossings. The peak LPFC current and therefore the smoothed line input current increase slightly higher near the zero-crossings of the line input voltage. This reduces the amount of cross-over distortion in the line input current and improves the shape of the current reducing the THD and harmonics to low levels.

The VBUS input includes output over-voltage protection (OVP). Should the average feedback voltage at the VBUS pin exceed the internal over-voltage protection threshold (VBUSOV+) then the PFC gate drive will turn off until the VBUS pin voltage again falls below the over-voltage restart threshold (VBUSOV-) to resume normal operation. As well as sensing the output voltage feedback, the VBUS input also includes a cycle-by-cycle, AC-coupled, over-current protection (OCP) function. An internal over-current protection circuit detects the difference between the peak and average of the composite signal such that if the triangular-shaped voltage peak at the VBUS input exceeds VBUSREG by a delta of VBUSOC+ the gate drive is immediately driven low. Capacitor CVBUS is included to the feedback network to make the current sense signal more triangular rather than a discontinuous ramp. This is so that the peak value will be close to half the average.
The composite voltage and current feedback signal appearing at the VBUS input is shown below:

![Signal Diagram](image)

Figure 6 VBUS input signal

The IRS2505L uses an SOT23-5 package as shown below:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CMP</td>
<td>High Voltage Start-up Input</td>
</tr>
<tr>
<td>2</td>
<td>COM</td>
<td>Feedback Input</td>
</tr>
<tr>
<td>3</td>
<td>VCC</td>
<td>Compensation and averaging capacitor input</td>
</tr>
<tr>
<td>4</td>
<td>PFC</td>
<td>Zero-Crossing & Over-Voltage Detection input</td>
</tr>
<tr>
<td>5</td>
<td>VBUS</td>
<td>Current Sensing Input</td>
</tr>
</tbody>
</table>

Figure 7 IRS2505L pin assignments
6 Dimensioning

6.1 Boost PFC stage

The Flyback converter is designed for power factor correction with low AC line current total harmonic distortion (iTHD). The MOSFET used is an IPP60R360P7 600 V rated CoolMOS device with 360 mΩ on resistance, 13 nC gate charge and very low parasitic capacitances in a TO-220 package.

The output diode MURS360T3G (SMC package) has typically 75 ns reverse recovery and a forward voltage drop less than 1.25 V at maximum rated current of 3 A at 25 °C temperature. The blocking voltage is 600 V, necessary to withstand the maximum output voltage. The parameters of the MOSFET and output diode contribute to the overall high efficiency of the converter.

The Boost inductor consists of two windings; the main energy transfer winding and the auxiliary, which supplies VCC and provides the required de-magnetization signal. In steady state operation the IRS2505L (IC2) VCC is supplied from a charge pump comprised of RCP, CCP, DCP1 and DCP2 through a series transistor QVCC, which clamps the voltage according to DZ to protect IC1 from damage due to excess voltage. PFC output voltage feedback is provided through the RB1, RB2, RVBUS divider network.

Switching cycle peak current limiting is set by shunt resistors RCS1 and RCS2, which are 0.82 Ω each, setting the peak current to 2.7 A according to the threshold VBUSOC+ of 0.56 V. This prevents PFC inductor saturation at low line and high load.

5.1.1. PFC inductor and primary current sense resistor

In this case the standard PFC inductor calculation is used. This optimizes the size of the PFC inductor.

\[
LPFC = \left(\frac{\sqrt{2} \cdot V_{BUS} - \sqrt{2} \cdot V_{AC_{MIN(RMS)}} \cdot V_{AC_{NOM(RMS)}} \cdot \eta}{2 \cdot f_{MIN} \cdot P_{OUT} \cdot V_{BUS}}\right) \quad [H] \quad [3]
\]

\[
\frac{(420 - \sqrt{2} \cdot 90) \cdot 90^2 \cdot 0.95}{2 \cdot 60 \cdot 10^3 \cdot 90 \cdot 420} = 500 \mu H
\]

The peak inductor current is calculated from:

\[
IPFC_{MAX} = \frac{2\sqrt{2} \cdot P_{OUT}}{V_{AC_{MIN}} \cdot \eta} \quad [A] \quad [4]
\]

\[
\frac{2\sqrt{2} \cdot 90}{90 \cdot 0.95} = 2.98 A
\]

The current sense resistor (RCS) is then calculated:

1 An alternative formula is used in AN_201508_PL16_012 and ANEVAL2015_11_PL16_012. This gives a higher inductance value that produces very low iTHD in the PFC converter however a larger core size is sometimes required. The standard formula meets iTHD requirements for the current design with a standard inductor size.
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Dimensioning

\[RCS = \frac{2 \cdot V_{BUSOC+}}{I_{PFC_{MAX}}} \ [\Omega] \ [5] \]

\[
2 \cdot 0.56 \\
2.98 = 0.38 \Omega
\]

In this case a parallel combination with a combined resistance of 0.41 \(\Omega \) has been used.

5.1.2 Voltage feedback and loop compensation

The DC output bus voltage is regulated using a resistor divider to provide feedback to the error amplifier through the \(V_{BUS} \) input. The cycle by cycle current sense signal is also superimposed onto this DC voltage however this can be ignored for the purposes of calculating the voltage divider. This is because the voltage feedback and current sense signals are separated within the IRS2505L. The internal reference for the error amplifier \(V_{BUSREG} \) is nominally 4.1 V. The resistor divider values are calculated as follows where two equal series resistors \(R_{B1} \) and \(R_{B2} \), are used for the upper branch of the divider:

\(R_{B1} \) and \(R_{B2} \) are selected as 1 M\(\Omega \) for minimal power dissipation:

\[
P_{RB1} = P_{RB2} \approx \frac{V_{BUS}^2}{2 \cdot (R_{B1} + R_{B2})} \ [W] \ [6]
\]

\[
\frac{420^2}{2 \cdot (1 \cdot 10^6 + 1 \cdot 10^6)} \approx 44 \text{ mW}
\]

Therefore:

\[
R_{VBUS} = \frac{V_{BUSREG} \cdot (R_{B1} + R_{B2})}{V_{BUS} - V_{BUSREG}} \ [\Omega] \ [7]
\]

\[
\frac{4.1 \cdot (1 \cdot 10^6 + 1 \cdot 10^6)}{420 - 4.1} = 19.7 \text{ k}\Omega
\]

In order for the converter to provide high power factor and low THD the loop response must be slow enough that the on time remains effectively constant (except for on time modulation) throughout each line frequency half cycle. Since the AC line frequency is 50-60 Hz the error amplifier gain has to roll off at a lower frequency. The recommended value for this cut off frequency (or bandwidth) is 20 Hz to give the acceptable loop response without degrading the power factor. The loop speed is determined by the compensation capacitor \(C_{CMP} \) whose value is calculated from the trans-conductance of the error amplifier \(g_m \) (approximately 100\(\mu \)\Omega^{-1}) as follows:
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Dimensioning

\[C_{\text{CMP}} = \frac{g_m}{2\pi f_c} = \frac{100}{2\pi \times 20} = 0.796 \quad \text{[µF]} \quad [8] \]

A CCMP value of 0.68 µF is used in the IRXLED09 evaluation board PFC combined with a 33 k series resistor (RCMP) and a 1 nF (CCF) capacitor parallel to both. The series resistor enables VCOMP to jump almost instantly to approximately 1V when VCC first crosses VCCUV+, which reduces the time required for CCMP to charge above VCOMPON to enable the gate drive. This reduces the time during which VCC is supplied through CVCC before the auxiliary winding can provide current. The compensation network discussed changes the frequency response of the error amplifier introducing a zero at 7.1 Hz and a pole at 4.8 kHz, while maintaining a gain of approximately 10 dB between these two frequencies. This has the effect of reducing settling time at start up or after a change in line or load.

5.1.3. Output capacitor calculation

The output bulk capacitor (CBUS) can be a single capacitor rated at 450 V for nominal output voltages up to 420 V. This ensures that under start up and transient conditions the output voltage will not exceed the maximum voltage rating. This value can be calculated according to:

\[C_{\text{BUS}} = \frac{P_{\text{OUT}}}{2\pi f_{\text{IN(MIN)}} \Delta_{\text{RIPPLE}} V_{\text{BUS}}^2} \quad \text{[F]} \quad [9] \]

Where \(f_{\text{IN(MIN)}} \) is the minimum line input frequency set at 50 Hz and \(\Delta_{\text{RIPPLE}} \) is the fraction of \(V_{\text{BUS}} \) acceptable as peak to peak ripple amplitude. This should not exceed 16 % to avoid false triggering of the over voltage protection. In this case a value of 0.071 is used corresponding to 30 Vpp.

\[\frac{90}{2 \cdot \pi \cdot 50 \cdot 0.071 \cdot 420^2} = 22 \mu F \]

6.2. Buck stage

Regulation of the output current in the Buck stage is performed by feeding back the source current of MBUCK to the VBUS input of IC3. Since the Buck stage also operates in critical conduction mode the current in LBUCK falls to zero at the end of each switching cycle, therefore the average inductor current is equal to half the peak. Much of the high frequency component of the output current passes through the output electrolytic capacitor COUT2, leaving a mostly DC current to drive the LED load. This output current is equal to the average inductor current. Regulation of the peak inductor current therefore provides sufficiently accurate control of the output current.

\[I_{\text{BUCK(PK)}} = 2 \cdot I_{\text{OUT}} \quad \text{[A]} \quad [10] \]

In practice the effects of output current ripple at the switching frequency cause the peak current to be a little higher than two times the average when driving an LED load.
In the PFC stage the VBUS input to the IRS2505L receives a combined signal containing the output voltage with the current feedback superimposed onto it, where each of these components of the signal varies independently of the other. However the current signal in the Buck regulator is not AC coupled onto a feedback voltage but instead applied directly and always referenced to 0V. This is because the Buck stage operates by current regulation without output voltage feedback. Over-voltage protection is implemented using a separate circuit connected to the CMP pin. This is necessary to allow optimum current regulation accuracy. In the Buck stage the CMP input is not used for regulation therefore a small capacitor CCFB connected, which charges above threshold VCOMPON very rapidly to enable switching operation. The current sense signal can be fed to the IRS2505L input through an RC filter as in the IRXLED09 evaluation board, comprising RC2 and CCS to remove any noise spikes. However since such a filter introduces a delay this creates a difference between the voltage before and after the filter, which is dependent on the signal dv/dt. This introduces a variation in the peak regulation of the inductor current. The propagation delay within the IRS2505L also means that the gate drive does not switch off until the VBUS voltage has ramped slightly above the internal threshold. Again the amount of overshoot increases for higher dv/dt values, which occur at shorter duty cycles. The combination of these factors limits accuracy of output current regulation accuracy for the Buck regulator over output voltage variations for different LED loads.

Within the IRS2505L the signal fed to the VBUS input is averaged, which would provide an internal voltage equal to the output voltage DC feedback component (in this case zero) plus the average of the current ramp signal. The cycle by cycle current threshold, which turns off the gate drive to MBUCK, is equal to the average voltage shown by the lower dotted line in the above figure, plus an offset of VBUSOC+ with a typical value of 0.53V.
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Dimensioning

To determine the required shunt resistors (RCS3-7) required at the source of MBUCK the effective threshold must be used which factors in the effect of the internal average.

For an ideal waveform with no filter and no propagation delay the following formula would apply:

\[V_{\text{BUS(TH)}} \approx \frac{2V_{\text{BUSOC}}}{2 - (V_{\text{OUT}}/V_{\text{BUS}})} \quad \text{[V]} \quad [11] \]

However for the reasons explained this gives a lower threshold voltage that is observed in reality. The following correction factors are added to give a more accurate result:

\[V_{\text{BUS(TH)}} \approx \frac{2V_{\text{BUSOC}}}{2 - (V_{\text{OUT}}/V_{\text{BUS}})} + 0.1 + \frac{1-D}{200} \quad \text{[V]} \quad [12] \]

The current sense resistor value for a desired average output current is therefore calculated from the maximum LED load voltage as follows:

\[R_{\text{CS(BUCK)}} = \frac{V_{\text{BUS(TH)}}}{2 \cdot I_{\text{OUT}}} \quad \text{[Ω]} \quad [13] \]

This can also be expressed as:

\[R_{\text{CS(BUCK)}} = \frac{V_{\text{BUSOC}}}{2 - (V_{\text{OUT}}/V_{\text{BUS}}) \cdot I_{\text{OUT}}} + \frac{0.1}{2 \cdot I_{\text{OUT}}} \quad \text{[Ω]} \quad [14] \]

The IRXLED09 board can be selected for 350mA or 700mA output. For 350mA the required resistor is:

\[
\frac{0.53}{2 - \left(\frac{120}{420}\right)} \cdot 0.7 + \frac{0.1}{2 \cdot 0.7} = 0.44 \Omega
\]

This is provided by the parallel combination of RCS4 and RCS5.

For 700mA, the required resistor is:

\[
\frac{0.53}{2 - \left(\frac{200}{420}\right)} \cdot 0.35 + \frac{0.1}{2 \cdot 0.35} = 1.14 \Omega
\]

This is given by the parallel combination of RCS4-7, which is selected by connecting a link between the terminals of P3 as shown in figure 2.

VCC to the Buck stage is supplied through the same charge pump connected to the auxiliary PFC inductor winding. However blocking diode DVCC allows the high voltage start-up regulator to supply the PFC stage only allowing the PFC section to start up and supply VCC to both stages from its auxiliary winding and charge pump.
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Dimensioning

The inductance required for the Buck inductor can be calculated from the following formula:

\[L_{BUCK} \approx \frac{V_{OUT}}{2 \cdot f_{SW} \cdot i_{OUT}} \cdot \frac{(V_{BUS} - V_{OUT})}{V_{BUS}} \]

\[\frac{200}{2 \cdot 120 \cdot 0.35} \cdot \frac{(420 - 200)}{420} = 1.25mH \]

The IRXLED09 evaluation board uses a 1mH inductor with a peak current rating of 1.5A. This is acceptable for the application, which also needs to support an output current of 700mA having a peak current of 1.4A. The switching frequency must be lower for a higher peak current so the calculation for a 700mA, 120V load is as follows:

\[\frac{120}{2 \cdot 50 \cdot 0.7} \cdot \frac{(420 - 120)}{420} = 1.22mH \]

The switching frequency relationship to the inductor value is only approximate in this calculation because losses and ripple are not factored in. Measurements show that the switching frequency tends to be lower than predicted.

6.21 MOSFET selection

The CoolMOS IPP60R360P7 and MURS360T3S are also used for the Buck converter stage. Since blocking voltages exist up to the DC bus voltage of 420V, 600V rated devices provide a comfortable safety margin. The CoolMOS™ P7 series is the latest CoolMOS™ product family and targets customers looking for high performance and at the same time being price sensitive. Though optimizing key parameters (\(C_{oss}, E_{oss}, Q_{g}, C_{iss}\) and \(V_{GS(th)}\) et al.); integrating Zener Diode for ESD protection and other measures, this product family fully addresses market concerns in performance, ease-of-use, and price/performance ratio, delivering best-in-class performance with exceptional ease-of-use, while still no compromise in price/performance ratio. The 700V and 800V CoolMOS™ P7 series have been designed for flyback and could also be used in PFC topology; they are not recommended for soft switching topologies where hard commutation could happen due to its body diode ruggedness. However, the 600V CoolMOS™ P7 could be used in both soft and hard switching topologies including PFC, flyback, LLC, and TTF.

![Figure 10 Switching MOSFET parasitics](image-url)
6.23 Over voltage protection

The output terminal DC voltage is limited to 250V by the over voltage protection circuit. This allows 250V rated output capacitors COUT1 and COUT2 to be used, however the outputs are not isolated therefore a high voltage potential to ground and associated electric shock risk exists from either output terminal. If no LED load is connected to clamp the differential output voltage between P2 terminals 1 and 2, this voltage will rise until conduction occurs through RE, the emitter-base junction of PNP transistor QOV1 and DZ2 in series with DZ3. When this occurs QOV1 turns on supplying current through ROV1 and ROV2 to increase the voltage at the cathode of DZ4 until it reaches a high enough voltage to conduct through the base emitter junction of QOV2 to discharge CCFB at the CMP input of IC3 shutting off the gate drive. When the output voltage drops again QOV2 switches off to enable the gate drive again so that the Buck stage may operate. In this way the Buck stage enters hiccup mode during an open load condition as the voltage at the CMP input rises and falls above VCM Pon to limit the output to no more than 250V.
Bill of materials

<table>
<thead>
<tr>
<th>Designator</th>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Quantity</th>
<th>Value/Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR1</td>
<td>Vishay</td>
<td>GBU4J-E3/51</td>
<td>1</td>
<td>600V/4A</td>
</tr>
<tr>
<td>BUCK, PFC</td>
<td>Keystone</td>
<td>5002</td>
<td>2</td>
<td>0.04" dia white</td>
</tr>
<tr>
<td>CBUS1</td>
<td>Rubycon, Wurth</td>
<td>450BXF22M12.5X20, 860241478004</td>
<td>1</td>
<td>22μF/450V/20%</td>
</tr>
<tr>
<td>CBUS2, CDC</td>
<td>Panasonic</td>
<td>ECQ-E6334JF</td>
<td>2</td>
<td>0.33μF/630V/5%</td>
</tr>
<tr>
<td>CBUS3</td>
<td>TDK</td>
<td>C1210C104KCRCTU</td>
<td>1</td>
<td>0.1μF/500V/1210/10%</td>
</tr>
<tr>
<td>CC, CCS, CZX</td>
<td>TDK</td>
<td>CGA4C2C0G2A221J060AA</td>
<td>3</td>
<td>220pF/100V/0805/5%</td>
</tr>
<tr>
<td>CC1, CVCC1, CVCC3</td>
<td>Wurth</td>
<td>885012207098</td>
<td>3</td>
<td>0.1μF/50V/0805/10%</td>
</tr>
<tr>
<td>CCF, CCFB, COV</td>
<td>TDK, Wurth</td>
<td>C2012X7R2E102K085AA, 885342207008</td>
<td>3</td>
<td>1nF/250V/0805/10%</td>
</tr>
<tr>
<td>CCP</td>
<td>TDK, Wurth</td>
<td>C2012X7R1E105K125AB, 885012207078</td>
<td>1</td>
<td>1μF/25V/0805/10%</td>
</tr>
<tr>
<td>CGD</td>
<td>Wurth</td>
<td>885342008008</td>
<td>1</td>
<td>22pF/1kV/1206</td>
</tr>
<tr>
<td>COM1, COM2, COM3</td>
<td>Keystone</td>
<td>5001</td>
<td>3</td>
<td>0.04" dia black</td>
</tr>
<tr>
<td>COMP, VBUSBK, ZX</td>
<td>Keystone</td>
<td>5004</td>
<td>3</td>
<td>0.04" dia yellow</td>
</tr>
<tr>
<td>COUT1</td>
<td>Panasonic</td>
<td>ECQ-E2105KB</td>
<td>1</td>
<td>1μF/250V/10%</td>
</tr>
<tr>
<td>COUT2</td>
<td>Rubycon</td>
<td>250-BXF56M12.5X20</td>
<td>1</td>
<td>56μF/250V/20%</td>
</tr>
<tr>
<td>CVB</td>
<td>Panasonic</td>
<td>EEU-EB1H220S</td>
<td>1</td>
<td>22μF/50V</td>
</tr>
<tr>
<td>CVBUS</td>
<td>TDK, Wurth</td>
<td>C2012X7R2E472K085AA, 885342207009</td>
<td>1</td>
<td>4.7nF/250V/0805/10%</td>
</tr>
<tr>
<td>CVCC2</td>
<td>Wurth</td>
<td>860160472006</td>
<td>1</td>
<td>39μF/25V</td>
</tr>
<tr>
<td>CX1, CX2</td>
<td>Epcos, Wurth</td>
<td>B32922C3474M, 890324025039</td>
<td>2</td>
<td>0.47μF/305VAC/X2</td>
</tr>
<tr>
<td>CY1, CY2</td>
<td>Vishay</td>
<td>VY2222M31Y5VS63V7</td>
<td>2</td>
<td>2.2nF/300VAC/Y</td>
</tr>
<tr>
<td>DBP</td>
<td>Diodes Inc</td>
<td>RS3JB-13-F</td>
<td>1</td>
<td>600V/3A/SMB</td>
</tr>
<tr>
<td>DBUCK, DPPC</td>
<td>ON Semi</td>
<td>MURS360T3G</td>
<td>2</td>
<td>600V/3A Fast Recovery Diode</td>
</tr>
<tr>
<td>DCP1, DCP2, DVCC</td>
<td>Diodes Inc</td>
<td>LL4148-13</td>
<td>3</td>
<td>75V/0.15A/MiniMELF</td>
</tr>
<tr>
<td>DG</td>
<td>Vishay</td>
<td>BAS85-GS08</td>
<td>1</td>
<td>Schottky/30V/200mA/SOD80</td>
</tr>
<tr>
<td>DZ1</td>
<td>Micro Commercial Co</td>
<td>BZV55C18-TP</td>
<td>1</td>
<td>18V/0.5W/MiniMELF</td>
</tr>
<tr>
<td>DZ2</td>
<td>On Semi</td>
<td>MMSZ5272BT3G</td>
<td>1</td>
<td>110V/0.5W/SOD123</td>
</tr>
<tr>
<td>DZ3</td>
<td>On Semi</td>
<td>UDZLYTE-17100</td>
<td>1</td>
<td>100V/0.2W/SOD323</td>
</tr>
<tr>
<td>DZ4</td>
<td>Micro Commercial Co</td>
<td>BZV55C5V6-TP</td>
<td>1</td>
<td>5.6V/0.5W/MiniMELF</td>
</tr>
<tr>
<td>F1</td>
<td>Bel Power</td>
<td>RST 3.15</td>
<td>1</td>
<td>250V/3.15A</td>
</tr>
<tr>
<td>IC1</td>
<td>Infineon</td>
<td>IRS25751L</td>
<td>1</td>
<td>HV Start-up IC</td>
</tr>
<tr>
<td>IC2, IC3</td>
<td>Infineon</td>
<td>IRS2505L</td>
<td>2</td>
<td>PFC Control IC</td>
</tr>
<tr>
<td>L1</td>
<td>Epcos</td>
<td>B82721A2122N20</td>
<td>1</td>
<td>6.8mH/1.2A/Horiz</td>
</tr>
</tbody>
</table>
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Bill of materials

<table>
<thead>
<tr>
<th>Part</th>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>Bourns</td>
<td>2124-V-RC</td>
<td>1</td>
<td>1mH/1.3A</td>
</tr>
<tr>
<td>LBUCK</td>
<td>Precision Inc/Premo</td>
<td>019-8883-00R/ P2456-02</td>
<td>1</td>
<td>1mH/1.6A</td>
</tr>
<tr>
<td>LPFC</td>
<td>Precision Inc</td>
<td>PFC-13500-01</td>
<td>1</td>
<td>500µH/CrCM PFC 100W</td>
</tr>
<tr>
<td>MBUCK, MPFC</td>
<td>Infineon</td>
<td>IPP60R360P7</td>
<td>2</td>
<td>600V/9A/TO-220</td>
</tr>
<tr>
<td>P1</td>
<td>Wurth</td>
<td>69141212003B</td>
<td>1</td>
<td>3 Position 3.5mm Green</td>
</tr>
<tr>
<td>P2</td>
<td>Wurth</td>
<td>691412120002B</td>
<td>1</td>
<td>2 Position 3.5mm Green</td>
</tr>
<tr>
<td>P3</td>
<td>Wurth</td>
<td>691412120002B</td>
<td>1</td>
<td>2 Position 3.5mm Green</td>
</tr>
<tr>
<td>QOV1</td>
<td>Diodes Inc</td>
<td>FMMT560TA</td>
<td>1</td>
<td>500V/0.15A/PNP/SOT-23</td>
</tr>
<tr>
<td>QOV2, QVCC</td>
<td>Micro Commercial Co</td>
<td>BC846B</td>
<td>2</td>
<td>65V/0.1A/NPN/SOT-23</td>
</tr>
<tr>
<td>RB1, RB2, RVCC1</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ105V</td>
<td>3</td>
<td>1M/0.25W/1206/5%</td>
</tr>
<tr>
<td>RBIAS, RZX</td>
<td>Panasonic</td>
<td>ERJ-6GEYJ103V</td>
<td>2</td>
<td>10k/0.125W/0805/5%</td>
</tr>
<tr>
<td>RC1, RC2</td>
<td>Panasonic</td>
<td>ERJ-6GEYJ102V</td>
<td>2</td>
<td>1k/0.125W/0805/5%</td>
</tr>
<tr>
<td>RCMPP</td>
<td>Panasonic</td>
<td>ERJ-6GEYJ333V</td>
<td>1</td>
<td>33k/0.125W/0805/5%</td>
</tr>
<tr>
<td>RCP</td>
<td>Panasonic</td>
<td>ERJ-14Y100U</td>
<td>1</td>
<td>10/0.5W/1210/5%</td>
</tr>
<tr>
<td>RCS1, RCS2, RCS3</td>
<td>Panasonic</td>
<td>ERJ-8BQJ1R0V</td>
<td>3</td>
<td>1.0/0.5W/1206</td>
</tr>
<tr>
<td>RCS4, RCS5</td>
<td>Yageo</td>
<td>AC1206FR-072R2L</td>
<td>2</td>
<td>2.2/0.25W/1206/1%</td>
</tr>
<tr>
<td>RCS6, RCS7</td>
<td>Yageo</td>
<td>AC1206FR-071R6L</td>
<td>2</td>
<td>1.6/0.25W/1206/1%</td>
</tr>
<tr>
<td>RE</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ154V</td>
<td>1</td>
<td>150k/0.25W/1206/5%</td>
</tr>
<tr>
<td>RS1, RS2</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ154V</td>
<td>0</td>
<td>150k/0.25W/1206/5%</td>
</tr>
<tr>
<td>RG1, RG2</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ220V</td>
<td>2</td>
<td>22/0.25W/1206/5%</td>
</tr>
<tr>
<td>RGD</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ101V</td>
<td>1</td>
<td>100/0.25W/1206/5%</td>
</tr>
<tr>
<td>RIN1, RIN2</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ752V</td>
<td>2</td>
<td>7.5k/0.25W/1206/5%</td>
</tr>
<tr>
<td>RLB</td>
<td>Panasonic</td>
<td>ERJ-8BQJR00V</td>
<td>1</td>
<td>0/0.25W/1206</td>
</tr>
<tr>
<td>RO1, RO2</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ274V</td>
<td>2</td>
<td>270k/0.25W/1206/5%</td>
</tr>
<tr>
<td>ROV</td>
<td>Panasonic</td>
<td>ERJ-6GEYJ104V</td>
<td>1</td>
<td>100k/0.125W/0805/5%</td>
</tr>
<tr>
<td>ROV1, ROV2</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ124V</td>
<td>2</td>
<td>120k/0.25W/1206/5%</td>
</tr>
<tr>
<td>ROV3</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ2163V</td>
<td>1</td>
<td>16k/0.25W/1206/5%</td>
</tr>
<tr>
<td>RVBUS</td>
<td>Panasonic</td>
<td>ERJ-8ENF-1962V</td>
<td>1</td>
<td>19.6k/0.25W/1206/1%</td>
</tr>
<tr>
<td>RVCC2</td>
<td>Panasonic</td>
<td>ERJ-8GEYJ913V</td>
<td>1</td>
<td>91k/0.25W/1206/5%</td>
</tr>
<tr>
<td>VBUS</td>
<td>Keystone</td>
<td>5003</td>
<td>1</td>
<td>0.04" dia orange</td>
</tr>
<tr>
<td>VBUS (HV), VCC, VDC (HV)</td>
<td>Keystone</td>
<td>5000</td>
<td>3</td>
<td>0.04" dia red</td>
</tr>
<tr>
<td>VR1</td>
<td>Wurth</td>
<td>820443211E</td>
<td>1</td>
<td>320VAC/418VDC/6kA/14mm</td>
</tr>
</tbody>
</table>

1 RS1 and RS2 are fitted only if IC1 is omitted for low cost start-up circuit.
8 Inductor specifications

8.1 PFC Inductor

PFC-13500-01

Features:
- 100W QcM PFC Inductor
- Input Voltage: 90-265VAC
- Output Voltage: 400VDC
- RoHS Compliant

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance (µH) @ 20°C</td>
<td>468-572</td>
<td>5-9 @ 0.1V, 100kHz</td>
</tr>
<tr>
<td>DC Resistance (Ω) @ 20°C</td>
<td>0.28 Max</td>
<td>5-9</td>
</tr>
<tr>
<td>DC Resistance (Ω) @ 20°C</td>
<td>0.11 Max</td>
<td>1-3</td>
</tr>
<tr>
<td>DcResistance (W m)</td>
<td>800</td>
<td>8-core, 1mm, 60Hz, 1s</td>
</tr>
<tr>
<td>DcResistance (W m)</td>
<td>1600</td>
<td>3-5, 1mm, 60Hz, 1s</td>
</tr>
<tr>
<td>Turns Ratio</td>
<td>10.45</td>
<td>5-9 : 1-3</td>
</tr>
</tbody>
</table>

Figure 11 Boost PFC inductor specification
8.2 Buck Inductor

019-8883-00R

- 1 mH Buck Inductor
- Boundary Conduction Mode
- 1.5 A peak Inductor Current

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Specification</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance (mH)</td>
<td>1.8 – 1.9 mH ± 5%</td>
<td>@ 100kHz, 0.1V</td>
</tr>
<tr>
<td>DC Resistance (Ω)</td>
<td>1.8 – 0.525 Ω max</td>
<td>25°C</td>
</tr>
<tr>
<td>Dielectric (Vdc)</td>
<td>Pin 1 to core</td>
<td>@ 500VAC, 1mA, 1s</td>
</tr>
</tbody>
</table>

Mechanical

Physical Dimension

![Physical dimension diagram]

BOTTOM VIEW

![Bottom view diagram]

Figure 12 Buck inductor specification
9 PCB Layout

The primary loop on the left side of the board originates from CDC connecting first to the PFC inductor (LPFC). The other side of the main winding is connected to the drain of the MOSFET (MPFC). To minimize EMI this trace is kept as short as possible and the loop is minimized. The current sense resistors RCS1-3 are located such that the connection to the high frequency 0V bus return of CDC is as short as possible within the constraints of the PCB form factor. The other end of RCS1-3 is connected to the source of MPFC through a very short trace. The second PFC high frequency current loop also originates from LPFC and the drain of MPFC connecting through a short trace to DPFC, which then connects through another very short trace to CBUS1. The negative side of CBUS1 returns directly back to CDC through the shortest possible trace, providing the tightest HF current loop that the form factor allows. The layout techniques described minimize EMI emitted by the PFC pre-converter stage as far as possible.

9.1 PCB layout guidelines for system optimization
IRXLED09

Non-isolated two stage Boost PFC plus current regulated Buck LED driver

PCB Layout

The high frequency source capacitor is CBUS2 for the second stage inverted Buck converter. Here the same rules apply keeping the high frequency switching loop as short as possible. For this reason MBUCK is located close to LBUCK and CBUS2 so that the source can be connected to CBUS3 through current sense resistors RCS4-7 with very short traces. The drain of MBUCK connects to LBUCK and the anode of DBUCK through short traces. The other side of LBUCK connects to COUT1 and COUT2 through short traces with the shortest trace possible returning to the cathode of DBUCK and the DC bus at CBUS2. Again the PCB form factor restricts layout optimization however since the Buck stage is operating in critical conduction mode with ZVS, it is possible to meet conducted emission standards within these constraints.

Aside from EMI considerations, it is also essential to design the PCB so that each IRS2505S controller is able to operate correctly without suffering from potential interference caused by noise or incorrect grounding. It is also essential that decoupling capacitors CVCC2 and CVCC3 be located right next to IC2 and IC3 with direct connections to the VCC and COM/0V pins.

As in all switching power supplies, the signal and power grounds must be kept separate and join together only at the star points, which are at the negative side of the high frequency capacitor CDC for the PFC section and COUT1 for the Buck section. Components connected to sensitive inputs to IC2 and IC3 such as VBUS and COMP need to be located close to the ICs with short traces back to the signal grounds at the COM/0V pins.

Signal and power grounds are always kept separated, joining only at a point as close as possible to the negative side of the current sense resistors.

Noise sensitive components at the CMP inputs of IC2 and IC3 need to be located close to the ICs with short connections to the signal grounds.
Test results

10 Test results

10.1 Operation under different line and load conditions

Table 1 Input 115 VAC, load 700mA

<table>
<thead>
<tr>
<th>Load(V)</th>
<th>Pout</th>
<th>Vout</th>
<th>Iout</th>
<th>Pin</th>
<th>η</th>
<th>PF</th>
<th>THD</th>
<th>Ioutrp</th>
<th>Ioutrp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[W]</td>
<td>[V]</td>
<td>[A]</td>
<td>[W]</td>
<td></td>
<td></td>
<td></td>
<td>[Irms]</td>
<td>[Ipp]</td>
</tr>
<tr>
<td>35</td>
<td>24.27</td>
<td>34.60</td>
<td>0.701</td>
<td>27.56</td>
<td>88.07%</td>
<td>0.969</td>
<td>14.00%</td>
<td>0.044</td>
<td>0.12</td>
</tr>
<tr>
<td>70</td>
<td>46.90</td>
<td>69.07</td>
<td>0.679</td>
<td>51.30</td>
<td>91.41%</td>
<td>0.992</td>
<td>6.10%</td>
<td>0.022</td>
<td>0.06</td>
</tr>
<tr>
<td>104</td>
<td>72.25</td>
<td>103.90</td>
<td>0.695</td>
<td>78.18</td>
<td>92.41%</td>
<td>0.997</td>
<td>3.91%</td>
<td>0.017</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 2 Input 230 VAC, load 700mA

<table>
<thead>
<tr>
<th>Load(V)</th>
<th>Pout</th>
<th>Vout</th>
<th>Iout</th>
<th>Pin</th>
<th>η</th>
<th>PF</th>
<th>THD</th>
<th>Ioutrp</th>
<th>Ioutrp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[W]</td>
<td>[V]</td>
<td>[A]</td>
<td>[W]</td>
<td></td>
<td></td>
<td></td>
<td>[Irms]</td>
<td>[Ipp]</td>
</tr>
<tr>
<td>35</td>
<td>24.19</td>
<td>34.55</td>
<td>0.700</td>
<td>27.98</td>
<td>86.44%</td>
<td>0.777</td>
<td>13.94%</td>
<td>0.044</td>
<td>0.12</td>
</tr>
<tr>
<td>70</td>
<td>47.10</td>
<td>68.93</td>
<td>0.683</td>
<td>51.38</td>
<td>91.67%</td>
<td>0.897</td>
<td>12.90%</td>
<td>0.022</td>
<td>0.06</td>
</tr>
<tr>
<td>104</td>
<td>72.08</td>
<td>103.64</td>
<td>0.696</td>
<td>76.94</td>
<td>93.69%</td>
<td>0.944</td>
<td>9.76%</td>
<td>0.017</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 3 Input 115 VAC, load 350mA

<table>
<thead>
<tr>
<th>Load(V)</th>
<th>Pout</th>
<th>Vout</th>
<th>Iout</th>
<th>Pin</th>
<th>η</th>
<th>PF</th>
<th>THD</th>
<th>Ioutrp</th>
<th>Ioutrp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[W]</td>
<td>[V]</td>
<td>[A]</td>
<td>[W]</td>
<td></td>
<td></td>
<td></td>
<td>[Irms]</td>
<td>[Ipp]</td>
</tr>
<tr>
<td>35</td>
<td>12.88</td>
<td>33.89</td>
<td>0.380</td>
<td>15.58</td>
<td>82.66%</td>
<td>0.920</td>
<td>21.00%</td>
<td>0.019</td>
<td>0.05</td>
</tr>
<tr>
<td>70</td>
<td>24.68</td>
<td>67.50</td>
<td>0.366</td>
<td>28.00</td>
<td>88.15%</td>
<td>0.971</td>
<td>13.59%</td>
<td>0.009</td>
<td>0.03</td>
</tr>
<tr>
<td>104</td>
<td>36.15</td>
<td>101.17</td>
<td>0.357</td>
<td>39.92</td>
<td>90.55%</td>
<td>0.986</td>
<td>8.99%</td>
<td>0.006</td>
<td>0.02</td>
</tr>
<tr>
<td>135</td>
<td>47.17</td>
<td>134.78</td>
<td>0.350</td>
<td>51.37</td>
<td>91.84%</td>
<td>0.992</td>
<td>6.00%</td>
<td>0.005</td>
<td>0.02</td>
</tr>
<tr>
<td>170</td>
<td>57.92</td>
<td>168.36</td>
<td>0.344</td>
<td>62.53</td>
<td>92.62%</td>
<td>0.995</td>
<td>4.22%</td>
<td>0.005</td>
<td>0.01</td>
</tr>
<tr>
<td>200</td>
<td>68.08</td>
<td>202.02</td>
<td>0.337</td>
<td>73.11</td>
<td>93.12%</td>
<td>0.996</td>
<td>3.86%</td>
<td>0.004</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 4 Input 230 VAC, load 350mA

<table>
<thead>
<tr>
<th>Load(V)</th>
<th>Pout</th>
<th>Vout</th>
<th>Iout</th>
<th>Pin</th>
<th>η</th>
<th>PF</th>
<th>THD</th>
<th>Ioutrp</th>
<th>Ioutrp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[W]</td>
<td>[V]</td>
<td>[A]</td>
<td>[W]</td>
<td></td>
<td></td>
<td></td>
<td>[Irms]</td>
<td>[Ipp]</td>
</tr>
<tr>
<td>35</td>
<td>12.90</td>
<td>33.86</td>
<td>0.381</td>
<td>15.60</td>
<td>82.70%</td>
<td>0.600</td>
<td>50.58%</td>
<td>0.019</td>
<td>0.05</td>
</tr>
<tr>
<td>70</td>
<td>24.68</td>
<td>67.43</td>
<td>0.366</td>
<td>28.44</td>
<td>86.76%</td>
<td>0.781</td>
<td>13.82%</td>
<td>0.009</td>
<td>0.03</td>
</tr>
<tr>
<td>104</td>
<td>36.12</td>
<td>101.05</td>
<td>0.358</td>
<td>40.10</td>
<td>90.09%</td>
<td>0.854</td>
<td>14.23%</td>
<td>0.006</td>
<td>0.02</td>
</tr>
<tr>
<td>135</td>
<td>47.13</td>
<td>134.65</td>
<td>0.350</td>
<td>51.23</td>
<td>92.00%</td>
<td>0.896</td>
<td>12.89%</td>
<td>0.005</td>
<td>0.02</td>
</tr>
<tr>
<td>170</td>
<td>57.79</td>
<td>168.18</td>
<td>0.344</td>
<td>61.87</td>
<td>93.41%</td>
<td>0.922</td>
<td>11.43%</td>
<td>0.005</td>
<td>0.01</td>
</tr>
<tr>
<td>200</td>
<td>68.00</td>
<td>201.80</td>
<td>0.337</td>
<td>72.23</td>
<td>94.15%</td>
<td>0.938</td>
<td>10.20%</td>
<td>0.004</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Load Regulation for 700mA Load

- DC Output Current vs. Load Voltage (V)
- 115VAC: Blue line
- 230VAC: Red line

Load Voltage (V): 35V, 70V, 104V
DC Output Current: 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8

Figure 2 Load regulation at 700mA output

Load Regulation for 350mA Load

- DC Output Current vs. Load Voltage (V)
- 115VAC: Blue line
- 230VAC: Red line

Load Voltage (V): 35V, 70V, 104V, 135V, 170V, 200V
DC Output Current: 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5

Figure 3 Load regulation at 350mA output
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 4 Efficiency at 700mA output

Figure 5 Efficiency at 350mA output
10.2 Power factor and current harmonics (iTHD)

![Power Factor for 700mA Load](image)

Figure 20 Power factor vs output voltage at 700mA load

![iTHD for 700mA Load](image)

iTHD for 700mA Load
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 21 THDi vs output voltage at 700mA load

Figure 22 Power factor vs output voltage at 350mA load

Figure 23 THDi vs output voltage at 350mA load
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Table 6 EN61000-3-2 Class C limits for system power >25 W

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Harmonics Limits Class C according EN 61000-3-2 for System Power >25W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonics order (n)</td>
<td>Maximum value expressed as a percentage of the fundamental input current</td>
</tr>
<tr>
<td>2</td>
<td><2%</td>
</tr>
<tr>
<td>3</td>
<td><30 (\lambda) %</td>
</tr>
<tr>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>7</td>
<td><7%</td>
</tr>
<tr>
<td>9</td>
<td><5%</td>
</tr>
</tbody>
</table>
| \(11 \leq n \leq 39 \) | <3%
\(\lambda = \text{power factor} \)

Figure 24 Harmonic test results at 120 VAC and 700mA, 104V load

Figure 25 Harmonic test results at 120 VAC and 350mA, 202V load
Class C limits are met at 100% load.
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 28 Harmonic test results at 120 VAC and 700mA, 40V load

Figure 29 Harmonic test results at 120 VAC and 350mA, 75V load
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 30 Harmonic test results at 230 VAC and 700mA, 40V load

Figure 31 Harmonic test results at 230 VAC and 350mA, 75V load

Class C limits are met at minimum load.
10.3 Operating waveforms

Figure 32 Start up with IRS25751 at 350mA, 202V LED load, 120Vac input
PFC input bus (yellow), VCC (green), Output voltage (purple), Output current (blue)

Figure 33 Start up with IRS25751 at 350mA, 202V LED load, 230Vac input
PFC input bus (yellow), VCC (green), Output voltage (purple), Output current (blue)
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 34 Start up without IRS25751 at 350mA, 202V LED load, 120Vac input
PFC input bus (green), VCC (yellow), Output voltage (blue), Output current (purple)

Figure 35 Start up without IRS25751 at 350mA, 202V LED load, 230Vac input
PFC input bus (green), VCC (yellow), Output voltage (blue), Output current (purple)
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 36 Steady state operation at 700mA, 104V LED load
Buck Vds (green), Buck Vgs (yellow), Buck inductor current (blue), Output current (purple)

Figure 37 Steady state operation at 350mA, 202V LED load
Buck Vds (green), Buck Vgs (yellow), Buck inductor current (blue), Output current (purple)
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 38 Steady state operation at 700mA, 33V load
Buck Vds (green), Buck Vgs (yellow), Buck inductor current (blue), Output current (purple)

Figure 39 Steady state operation at 350mA, 33V load
Buck Vds (green), Buck Vgs (yellow), Buck inductor current (blue), Output current (purple)
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 40 Short-circuit operation for 700mA output
Buck Vds (green), Buck gate (purple), Buck inductor current (blue), Output voltage (yellow)

Figure 41 Short-circuit operation for 700mA output (zoom out)
Buck Vds (green), Buck gate (purple), Buck inductor current (blue), Output voltage (yellow)
IRXLED09
Non-isolated two stage Boost PFC plus current regulated Buck LED driver

Test results

Figure 42 Open-circuit protection
IC3 COMP (green), Buck gate (purple), Output voltage (blue)
10.4 Thermal Performance under normal operating conditions

Thermal images captured under worst case conditions: 120Vac input, 120V/700mA load:

Figure 43 Top side thermal image

Figure 44 Bottom side thermal image
10.5 Conducted EMI

Figure 45 Conducted emissions at 120 VAC and 100% load

Figure 46 Conducted emissions at 230 VAC and 100% load
Test results

The limit lines in the above figures represent EN55022 class B limits for the quasi-peak in red and average in yellow. Frequency sweep measurements are shown in red for quasi-peak and pink for average respectively. The results provided here are from pre-compliance tests only. These were not carried out at a certified test lab. For compliance with the standard the traces must remain below their respective limit lines for both quasi-peak and average measurements as shown in the table below.

Tests were carried out using a 200V LED load attached to a grounded heat sink.

EMI emissions are very dependent on the board layout, please refer to section 9.1.

Table 7 EN55022 Class B limits for conducted EMI

<table>
<thead>
<tr>
<th>Frequency of emission (MHz)</th>
<th>Quasi-peak</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 - 0.50</td>
<td>66 to 56*</td>
<td>56 to 46*</td>
</tr>
<tr>
<td>0.50 - 5.00</td>
<td>56</td>
<td>46</td>
</tr>
<tr>
<td>5.00 - 30.0</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

FCC part 15 class B conducted EMI limit

<table>
<thead>
<tr>
<th>Frequency of emission (MHz)</th>
<th>Quasi-peak</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15 - 0.50</td>
<td>66 to 56*</td>
<td>56 to 46*</td>
</tr>
<tr>
<td>0.50 - 5.00</td>
<td>56</td>
<td>46</td>
</tr>
<tr>
<td>5.00 - 30.0</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

*Cdecreases with the logarithm of the frequency

Note

Infineon Technologies does not guarantee compliance with any EMI standard.
Conclusion

11 Conclusion

The IRXLED09 evaluation board demonstrates a low cost two stage PFC plus CC Buck LED driver with both stages controlled by the low cost IRS2505L. It is shown that the IRS2505L may be configured for peak current regulation in a Buck converter operating in critical conduction mode. Accuracy of regulation over output voltage remains within +/-5% of the nominal output over a three to one voltage range.

Rapid start over the full range of AC line input with no power loss during steady state operation is demonstrated by means of the IRS25751 high voltage start-up IC, which may be replaced by resistors as a low cost alternative. The start-up time with the IRS25751 is approximately 250ms irrespective of input voltage, compared with approximately 500ms and 1s when resistors are used in place of it.

It is seen that current increases at reduced output voltage due to shorter duty cycle and the greater effect of propagation delay combined with higher ripple. The useful operating range for the converter has a 2.5 to 1 ratio of maximum to minimum voltage/power. This covers sufficient load range below which it would not make economic sense to use this LED driver.

Test results show that the design specifications are met.

References

[5] AN-1209 Using the IRS25751 high voltage start-up IC, T. Ribarich, Infineon Technologies (formerly International Rectifier)

Attention:

Revision History

Major changes since the last revision

<table>
<thead>
<tr>
<th>Page or Reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Release</td>
</tr>
<tr>
<td>Rev 1.1</td>
<td>Minor corrections</td>
</tr>
<tr>
<td>Rev 1.2</td>
<td>Output capacitor COUT2 changed to 56uF/250V. CY1 and CY2 were increased to 2.2nF. Schematic, test results and waveforms updated.</td>
</tr>
</tbody>
</table>