IEDM 2004: Infineon präsentiert neue Tunnel-Feldeffekt-Transistoren für skalierbare und stromsparende Prozesse in Standard-Silizium-Technologie
München und San Francisco, 15. Dezember 2004 - Auf dem IEEE International Electron Devices Meeting (IEDM) 2004 in San Francisco (13. bis 15. Dezember 2004) präsentierte Infineon Technologies AG mehrere technische Vorträge mit vielversprechenden Forschungsergebnissen. So wurde u.a. in Zusammenarbeit mit der Technischen Universität in München ein neues skalierbares Transistorkonzept für stromsparende digitale und analoge Schaltungen vorgestellt. Erstmals konnten Tunnel-Feldeffekt-Transistoren (TFETs) in einem Standard-Silizium-Prozess mit ausgezeichneten statischen und dynamischen Design-Parametern gefertigt werden.
Das ist ein entscheidender Durchbruch auf dem Weg, die Forschungsergebnisse bei TFETs für industrielle Applikationen umzusetzen, sagte Doris Schmitt-Landsiedel, Professorin an der Technischen Universität in München. Auf Basis der neuen Transistoren wurde eine Familie an Low-Power-Logikschaltungen entwickelt, um die Kompatibilität mit der Standard-CMOS-Technologie bzw. -Schaltungs-Design und die extrem geringe Leistungsaufnahme zu demonstrieren. Der quantenmechanische Tunneleffekt, der bisher oft als parasitärer Effekt angesehen wurde, liegt hier dem Betrieb des neuen Bauelements zugrunde, sagte Thomas Nirschl, Entwicklungsingenieur bei Infineon und derzeit mit dem TFET-Forschungsprojekt an der Technischen Universität in München betraut.
Die Fortschritte in der Mikroelektronik, wie sie in Moore`s Law definiert sind, basieren auf ständig weiter optimierten, kosteneffektiven Materialien, Prozessen und Technologien. Führende Halbleiterhersteller wie Infineon unternehmen dabei große Anstrengungen, um die Prozessgeometrien ständig weiter zu reduzieren. Allerdings steht die weitere Skalierung von herkömmlichen Bulk-CMOS-Transistoren auf dem Weg zur 45-nm-Technologie großen Herausforderungen gegenüber, wie sie auch in dem Fahrplan der ITRS (International Technology Roadmap for Semiconductors) beschrieben werden. Die ITRS erwartet die Einführung der 45-nm-Technologie bis 2010.
Standard-MOSFETs weisen bei der weitergehenden Miniaturisierung Short-Channel-Effekte auf. Diese entstehen durch die immer kleineren Abmessungen der Diffusionsschichten bei der Source- und Drain-Implementierung, wobei die Gatelänge der Transistoren in den Bereich der Breite von Source und Drain kommt. Dieser Effekt kann zwar durch eine höhere Dotierung im Transistorkanal unterdrückt werden, allerdings auf Kosten einer reduzierten Ladungsbeweglichkeit, geringeren Geschwindigkeit und einem höheren Risiko für Avalanche-Durchbrüche. Um auch bei sehr kurzen MOSFET-Kanälen die Steuerfunktion des Gate zu gewährleisten, muss die Schichtdicke des Gate-Dielektrikum verringert werden. Aufgrund der Tunnel-Verluste bei konventionellem Siliziumdioxid sind hier neue Materalien erforderlich. Die Integration der entsprechenden High-k-Dielektrika in Standard-CMOS-Prozesse stellt allerdings eine große Herausforderung dar. In Analogschaltungen wird durch die Short-Channel-Effekte außerdem die erreichbare Verstärkung beeinflusst. Aus diesem Grund wurde in die letzte Ausgabe der ITRS ein Kapitel über analoge Applikationen aufgenommen, in dem definiert wird, dass der Verstärkungsfaktor g m/g DS größer als 100 sein muss.
Eine potenzielle Lösung für die beschriebenen Probleme sind quantenmechanische Tunnel-Feldeffekt-Transistoren (TFET). Durch das unterschiedliche Funktionsprinzip im Vergleich zu Standard-MOSFETs lassen sich TFETs besser für kleinere Geometrien skalieren und mit reduzierten Versorgungsspannungen betreiben. Die von Infineon und der TU München präsentierte TFET-Struktur arbeitet mit einer Tunnelschicht auf der Source-Seite des Transistorkanals. Im nichtleitenden Zustand besteht eine relativ große pn-Dioden-Sperrschicht zwischen Source und Drain. Damit werden sehr kleine Leckströme erreicht. Wenn durch Anlegen einer Durchlassspannung am Gate ein leitender MOS-Kanal ausgebildet wird, dann entsteht ein Zener-Tunnelstrom mit einer steilen Anschalt-Charakteristik. Den Forschern ist es erstmals gelungen, einen TFET auf Basis eines Standard-CMOS-Prozesses ohne Modifikationen herzustellen. Für die Fertigung wurden zwei verschiedene Prozesstechnologien (130 nm und 90 nm) genutzt, um die Skalierbarkeit der TFET-Funktionalität zu zeigen. Eine, an der TU München entwickelte TCMOS (TFET-CMOS) Low-Power-Logikfamilie kann Standard-CMOS-Funktionen direkt ersetzen. Es wurden verschiedene Schaltungen gefertigt, die die Silizium-Kompatibilität in Bezug auf den Prozess und die Funktionalität des TFET zu Standard-MOSFETs demonstrieren. Die TCMOS-Schaltungen zeigten eine um den Faktor 100 geringere statische Leistungsaufnahme, abhängig von den Eingangsvektoren.
Durch ihre exponentielle Schaltcharakteristik sind TFETs auch prädestiniert für analoge Schaltungen. Darüber hinaus verbessert die Reduzierung der Short-Channel-Effekte das analoge Verhalten der Bauelemente. Infineon konnte für die TFETs bei einer Spannung von V DS = V GS = 0,6 V einen Verstärkungsfaktor von 110 messen. Damit sind die TFETs ideal für analoge Low-Voltage-Schaltungen.
Das TFET-Funktionsprinzip kann auch auf andere MOS-Bausteine angewandt werden. Durch ihren integrierten Substrat/Well-Kontakt sind die TFETs prädestiniert für Technologien mit partieller Ladungsentleerung wie PDSOI (Partially Depleted Silicon On Isolator), da hier der von Standard-PDSOI-MOSFETs bekannte Floating-Body-Effekt verhindert wird. Prozess- und Bauelemente-Simulationen haben gezeigt, dass die von Infineon entwickelten TFETs ohne Short-Channel-Effekte auf Strukturen bis zu 20 nm skaliert werden können,. Damit können dickere Gate-Oxid-Schichten verwendet und der Einsatz von High-k-Dielektrika hinausgezögert werden.
In weiteren Vorträgen auf der IEDM präsentierte Infineon u.a. folgende Themen:
Das ist ein entscheidender Durchbruch auf dem Weg, die Forschungsergebnisse bei TFETs für industrielle Applikationen umzusetzen, sagte Doris Schmitt-Landsiedel, Professorin an der Technischen Universität in München. Auf Basis der neuen Transistoren wurde eine Familie an Low-Power-Logikschaltungen entwickelt, um die Kompatibilität mit der Standard-CMOS-Technologie bzw. -Schaltungs-Design und die extrem geringe Leistungsaufnahme zu demonstrieren. Der quantenmechanische Tunneleffekt, der bisher oft als parasitärer Effekt angesehen wurde, liegt hier dem Betrieb des neuen Bauelements zugrunde, sagte Thomas Nirschl, Entwicklungsingenieur bei Infineon und derzeit mit dem TFET-Forschungsprojekt an der Technischen Universität in München betraut.
Die Fortschritte in der Mikroelektronik, wie sie in Moore`s Law definiert sind, basieren auf ständig weiter optimierten, kosteneffektiven Materialien, Prozessen und Technologien. Führende Halbleiterhersteller wie Infineon unternehmen dabei große Anstrengungen, um die Prozessgeometrien ständig weiter zu reduzieren. Allerdings steht die weitere Skalierung von herkömmlichen Bulk-CMOS-Transistoren auf dem Weg zur 45-nm-Technologie großen Herausforderungen gegenüber, wie sie auch in dem Fahrplan der ITRS (International Technology Roadmap for Semiconductors) beschrieben werden. Die ITRS erwartet die Einführung der 45-nm-Technologie bis 2010.
Standard-MOSFETs weisen bei der weitergehenden Miniaturisierung Short-Channel-Effekte auf. Diese entstehen durch die immer kleineren Abmessungen der Diffusionsschichten bei der Source- und Drain-Implementierung, wobei die Gatelänge der Transistoren in den Bereich der Breite von Source und Drain kommt. Dieser Effekt kann zwar durch eine höhere Dotierung im Transistorkanal unterdrückt werden, allerdings auf Kosten einer reduzierten Ladungsbeweglichkeit, geringeren Geschwindigkeit und einem höheren Risiko für Avalanche-Durchbrüche. Um auch bei sehr kurzen MOSFET-Kanälen die Steuerfunktion des Gate zu gewährleisten, muss die Schichtdicke des Gate-Dielektrikum verringert werden. Aufgrund der Tunnel-Verluste bei konventionellem Siliziumdioxid sind hier neue Materalien erforderlich. Die Integration der entsprechenden High-k-Dielektrika in Standard-CMOS-Prozesse stellt allerdings eine große Herausforderung dar. In Analogschaltungen wird durch die Short-Channel-Effekte außerdem die erreichbare Verstärkung beeinflusst. Aus diesem Grund wurde in die letzte Ausgabe der ITRS ein Kapitel über analoge Applikationen aufgenommen, in dem definiert wird, dass der Verstärkungsfaktor g m/g DS größer als 100 sein muss.
Eine potenzielle Lösung für die beschriebenen Probleme sind quantenmechanische Tunnel-Feldeffekt-Transistoren (TFET). Durch das unterschiedliche Funktionsprinzip im Vergleich zu Standard-MOSFETs lassen sich TFETs besser für kleinere Geometrien skalieren und mit reduzierten Versorgungsspannungen betreiben. Die von Infineon und der TU München präsentierte TFET-Struktur arbeitet mit einer Tunnelschicht auf der Source-Seite des Transistorkanals. Im nichtleitenden Zustand besteht eine relativ große pn-Dioden-Sperrschicht zwischen Source und Drain. Damit werden sehr kleine Leckströme erreicht. Wenn durch Anlegen einer Durchlassspannung am Gate ein leitender MOS-Kanal ausgebildet wird, dann entsteht ein Zener-Tunnelstrom mit einer steilen Anschalt-Charakteristik. Den Forschern ist es erstmals gelungen, einen TFET auf Basis eines Standard-CMOS-Prozesses ohne Modifikationen herzustellen. Für die Fertigung wurden zwei verschiedene Prozesstechnologien (130 nm und 90 nm) genutzt, um die Skalierbarkeit der TFET-Funktionalität zu zeigen. Eine, an der TU München entwickelte TCMOS (TFET-CMOS) Low-Power-Logikfamilie kann Standard-CMOS-Funktionen direkt ersetzen. Es wurden verschiedene Schaltungen gefertigt, die die Silizium-Kompatibilität in Bezug auf den Prozess und die Funktionalität des TFET zu Standard-MOSFETs demonstrieren. Die TCMOS-Schaltungen zeigten eine um den Faktor 100 geringere statische Leistungsaufnahme, abhängig von den Eingangsvektoren.
Durch ihre exponentielle Schaltcharakteristik sind TFETs auch prädestiniert für analoge Schaltungen. Darüber hinaus verbessert die Reduzierung der Short-Channel-Effekte das analoge Verhalten der Bauelemente. Infineon konnte für die TFETs bei einer Spannung von V DS = V GS = 0,6 V einen Verstärkungsfaktor von 110 messen. Damit sind die TFETs ideal für analoge Low-Voltage-Schaltungen.
Das TFET-Funktionsprinzip kann auch auf andere MOS-Bausteine angewandt werden. Durch ihren integrierten Substrat/Well-Kontakt sind die TFETs prädestiniert für Technologien mit partieller Ladungsentleerung wie PDSOI (Partially Depleted Silicon On Isolator), da hier der von Standard-PDSOI-MOSFETs bekannte Floating-Body-Effekt verhindert wird. Prozess- und Bauelemente-Simulationen haben gezeigt, dass die von Infineon entwickelten TFETs ohne Short-Channel-Effekte auf Strukturen bis zu 20 nm skaliert werden können,. Damit können dickere Gate-Oxid-Schichten verwendet und der Einsatz von High-k-Dielektrika hinausgezögert werden.
In weiteren Vorträgen auf der IEDM präsentierte Infineon u.a. folgende Themen:
- Auf unter 50 nm skalierbare vertikale Double-Gate-DRAM-Zellen
- Neue, für die skalierbare Fertigung optimierte Trench-basierte DRAM-Zellen
- 3,3 ps schnelle SiGe-Bipolar-Technologie
- Flexible organische Low-Voltage-Schaltungen mit molekularen Gate-Dielektrika
- Status und Ausblick bei neuen nichtflüchtigen Speichertechnologien
- Carbon-Nanotubes für Applikationen in der Verbindungstechnik
Über Infineon
Infineon Technologies AG, München, bietet Halbleiter- und Systemlösungen für die Automobil- und Industrieelektronik, für Anwendungen in der drahtgebundenen Kommunikation, sichere mobile Lösungen sowie Speicherbauelemente. Infineon ist weltweit tätig und steuert seine Aktivitäten in den USA aus San Jose, Kalifornien, im asiatisch-pazifischen Raum aus Singapur und in Japan aus Tokio. Mit weltweit rund 35.600 Mitarbeitern erzielte Infineon im Geschäftsjahr 2004 (Ende September) einen Umsatz von 7,19 Milliarden Euro. Das DAX-Unternehmen ist in Frankfurt und New York (NYSE) unter dem Symbol IFX notiert. Weitere Informationen unter www.infineon.com.
Informationsnummer
INFCPR200412.025