Rise and fall time regulation with current source MOSFET gate drivers

About this document

Scope and purpose

This application note proposes an algorithm to control MOSFET’s rise and fall times with current source MOSFET gate driver ICs in PWM operation. It explains the settings of the MOSFET driver which affect the rise and fall times and it analyzes the behavior of the proposed algorithm under different scenarios with the help of some measurements with the Motor System IC TLE9562.

The described closed loop control of the MOSFET’s rise and fall times has been designed to compensate the parameter variation of the MOSFET types, the spread of the MOSFETs and of the gate driver. It is suitable for embedded systems since it minimizes the required memory and processing resources by using fixed-point arithmetic and an adaptive decision tree which bases on the EMA (Exponential Moving Average) of the measured rise times.

Intended audience

This document is intended for users who develop the embedded software to control the MOSFET’s rise and fall times with devices integrating current source MOSFET gate drivers with on-chip switching time measurement such as the Motor System ICs (TLE956x), the Multi MOSFET driver ICs (TLE9210x), and Embedded Power ICs (TLE985x).

Table of contents

About this document .. 1
Table of contents .. 1
1 Glossary .. 3
2 Introduction .. 6
3 Considered circuit .. 8
4 Influence of configuration parameters in TRISEX .. 9
 4.1 Phases when switching on .. 9
 4.2 Measurements with static pre-charge and charge currents ... 11
 4.3 Measurements with a changing pre-charge current ... 12
 4.4 Measurements with a changing charge current .. 13
 4.4.1 Switching behavior ... 13
 4.4.2 Conducted electromagnetic emissions .. 14
5 EMA-based hysteresis algorithm to regulate TRISEX ... 16
 5.1 Requirements on the algorithm ... 16
 5.2 Implementation.. 17
 5.2.1 Initialization phase ... 18
 5.2.2 EMA calculation phase .. 18
 5.2.3 Adaptive hysteresis decision tree phase ... 19
 5.3 Measurements .. 20
 5.3.1 Varying INITIAL_IHGx .. 20
1 Glossary

This section explains the meaning of the terms used in this application note.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active MOSFET</td>
<td>MOSFET that is switched on with the rising edge of the PWM signal. In the tests presented in this document, the Active MOSFET is always the high-side MOSFET</td>
</tr>
<tr>
<td>Adaptive Gate Control</td>
<td>MOSFET driver's control scheme in which the pre-charge current is automatically adjusted to regulate the turn-on and turn-off delay</td>
</tr>
<tr>
<td>αx</td>
<td>Algorithm’s alpha constant that weights the samples for the EMA calculation</td>
</tr>
<tr>
<td>Crss</td>
<td>MOSFET’s reverse transfer capacitance, which corresponds to the gate-drain capacitance</td>
</tr>
<tr>
<td>di/dt</td>
<td>Switching phase at the MOSFET characterized by a large variation of the drain-source current when the gate-source voltage is between the threshold and the Miller plateau voltage</td>
</tr>
<tr>
<td>dv/dt</td>
<td>Switching phase at the MOSFET characterized by a large variation of the drain-source voltage while the gate-source voltage is at the Miller plateau voltage</td>
</tr>
<tr>
<td>ECU</td>
<td>Electronic control unit</td>
</tr>
<tr>
<td>EMA</td>
<td>Algorithm’s exponential moving average</td>
</tr>
<tr>
<td>EOS</td>
<td>Algorithm’s end of scale constant of the used variable type</td>
</tr>
<tr>
<td>fc1_x</td>
<td>First cut off frequency of the amplitude of the harmonics of the VSHx’s trapezoidal waveform approximation. fc1_x is determined by the frequency of the waveform</td>
</tr>
<tr>
<td>fc2_x</td>
<td>Second cut off frequency of the amplitude of the harmonics of the VSHx’s trapezoidal waveform approximation. fc2_x is determined by the frequency of the waveform</td>
</tr>
<tr>
<td>FPA</td>
<td>Fixed-Point Arithmetic</td>
</tr>
<tr>
<td>fSWx</td>
<td>Frequency of the trapezoidal waveform to which VSHx is approximated</td>
</tr>
<tr>
<td>Generator Mode Detection</td>
<td>MOSFET driver’s control scheme that automatically detects in which direction the drain current is flowing. Basing on this information, it applies the Active MOSFET gate current patterns either to the high-side or the low-side MOSFET</td>
</tr>
<tr>
<td>HBx</td>
<td>Half-bridge x</td>
</tr>
<tr>
<td>HSx</td>
<td>High-side MOSFET at HBx. MOSFET in the half-bridge whose drain is connected to Vs</td>
</tr>
<tr>
<td>ICHGFWx</td>
<td>MOSFET driver’s current sunk to turn off the freewheeling MOSFET of half-bridge x, configured by SPI</td>
</tr>
<tr>
<td>ICHGx</td>
<td>MOSFET driver’s current sourced to the Active MOSFET of the half-bridge x, configured by SPI</td>
</tr>
<tr>
<td>ICHGMAXx</td>
<td>MOSFET driver’s max. pre-charge current. IPRECHGx is limited to ICHGMAXx, configured by SPI</td>
</tr>
<tr>
<td>Id</td>
<td>Drain-source current flowing through MOSFET</td>
</tr>
<tr>
<td>IDS_HSx</td>
<td>Drain-source current flowing through the high-side MOSFET of HBx</td>
</tr>
<tr>
<td>IG_activex</td>
<td>MOSFET driver’s current to the gate of the Active MOSFET of half-bridge x. It is positive when the current flows into the MOSFET’s gate. In the tests presented in this document, the Active MOSFET is always the high-side MOSFET</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IG_HSx</td>
<td>MOSFET driver’s current to the gate of high-side MOSFET of half-bridge x. It is positive when the current flows into the MOSFET’s gate</td>
</tr>
<tr>
<td>IG_LSx</td>
<td>MOSFET driver’s current to the gate of low-side MOSFET of half-bridge x. It is positive when the current flows into the MOSFET’s gate</td>
</tr>
<tr>
<td>IHOLD</td>
<td>MOSFET driver’s hold current sourced or sunk to keep the MOSFET in the desired state, configured by SPI</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite Impulse Response filter</td>
</tr>
<tr>
<td>INIT_ICHGx</td>
<td>Algorithm’s initialization value constant of ICHGx</td>
</tr>
<tr>
<td>IPCHGINITx</td>
<td>MOSFET driver’s pre-charge current sourced by the gate driver to the Active MOSFET of the half-bridge x during tPCHGx, configured by SPI</td>
</tr>
<tr>
<td>LSx</td>
<td>Low-side MOSFET at HBx. MOSFET in the half-bridge whose source is connected to ground</td>
</tr>
<tr>
<td>MAX_ICHGx</td>
<td>Algorithm’s maximum value constant to which the ICHGx will be regulated</td>
</tr>
<tr>
<td>MIN_ICHGx</td>
<td>Algorithm’s minimum value constant to which the ICHGx will be regulated</td>
</tr>
<tr>
<td>m_ichgx</td>
<td>Algorithm’s variable that stores the current ICHGx</td>
</tr>
<tr>
<td>m_trisex_ema[]</td>
<td>Algorithm’s array in which the calculated EMAs for the different configured ICHGx are stored</td>
</tr>
<tr>
<td>PWMz</td>
<td>External PWM (Pulse Width Modulation) signal applied to the input pin PWMz</td>
</tr>
<tr>
<td>Qgd</td>
<td>MOSFET’s gate-drain charge, measured with Vdd = 32V</td>
</tr>
<tr>
<td>Qg_mi_app_active</td>
<td>Active MOSFET’s gate charge while the MOSFET is at the Miller plateau, measured with a Vdd equal to the Vs of the application. In the tests presented in this document, the Active MOSFET is always the high-side MOSFET</td>
</tr>
<tr>
<td>Qg_mi_app_hsx</td>
<td>High-side x’s gate charge, measured with a Vdd equal to the Vs of the application</td>
</tr>
<tr>
<td>SBC</td>
<td>System basis chip</td>
</tr>
<tr>
<td>tDONx</td>
<td>MOSFET driver’s measurement of turn-on delay of the Active MOSFET of half-bridge x</td>
</tr>
<tr>
<td>tDOFFx</td>
<td>MOSFET driver’s measurement of turn-off delay of the Active MOSFET of half-bridge x</td>
</tr>
<tr>
<td>tFALLx</td>
<td>MOSFET driver’s measurement of the fall time when the Active MOSFET switches off, measured at VSHx from VSHH to VSHL</td>
</tr>
<tr>
<td>tFALLx_100</td>
<td>Fall time of VSHx measured from Vs to 0</td>
</tr>
<tr>
<td>tfVDS</td>
<td>MOSFET driver’s drain source overvoltage filter time</td>
</tr>
<tr>
<td>tHBxBLANKActive</td>
<td>MOSFET driver's active drain source overvoltage blank time of half bridge-x, configured by SPI</td>
</tr>
<tr>
<td>tHBxCCP_FW</td>
<td>MOSFET driver’s freewheeling cross current protection time of half bridge-x, configured by SPI</td>
</tr>
<tr>
<td>Tj</td>
<td>Junction temperature of the MOSFET</td>
</tr>
<tr>
<td>tOFFx</td>
<td>Time during which VSHx is low, 0V</td>
</tr>
<tr>
<td>tONx</td>
<td>Time during which VSHx is high, Vs</td>
</tr>
<tr>
<td>tPCHGx</td>
<td>MOSFET driver’s duration of the pre-charge phase of half-bridge x, configured by SPI</td>
</tr>
<tr>
<td>tRISEx</td>
<td>MOSFET driver’s measurement of the rise time when the MOSFET switches on, measured at VSHx from VSHL to VSHH. For the TLE956x, the value of tRISEx in ns is obtained by multiplying the value of tRISEx in the register by 53.3 ns.</td>
</tr>
<tr>
<td>tRISEx_100</td>
<td>Rise time of VSHx measured from 0 to Vs</td>
</tr>
</tbody>
</table>
Rise and fall time regulation with current source MOSFET gate drivers

Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRISEx_L</td>
<td>Linearized rising edge of VSHx</td>
</tr>
<tr>
<td>tRISEx_TG</td>
<td>Algorithm’s target rise time constant of VSHx from VSHL to VSHH</td>
</tr>
<tr>
<td>tSWx</td>
<td>Period of the trapezoidal waveform to which VSHx is approximated</td>
</tr>
<tr>
<td>uC</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>Vdd</td>
<td>MOSFET’s drain source voltage</td>
</tr>
<tr>
<td>Vds</td>
<td>MOSFET’s drain-source voltage</td>
</tr>
<tr>
<td>Vgd</td>
<td>MOSFET’s gate-drain voltage</td>
</tr>
<tr>
<td>Vgs</td>
<td>MOSFET’s gate-source voltage</td>
</tr>
<tr>
<td>VGS_HSx</td>
<td>Gate-source voltage of the high-side at the half-bridge x</td>
</tr>
<tr>
<td>VGSMI_active x</td>
<td>Miller plateau gate-source voltage of the Active MOSFET at the half-bridge x. In the tests presented in this document, the Active MOSFET is always the high-side MOSFET</td>
</tr>
<tr>
<td>VGSMI_HSx</td>
<td>Miller plateau gate-source voltage of the high-side at the half-bridge x</td>
</tr>
<tr>
<td>VGSTH_HSx</td>
<td>Threshold gate-source voltage of the high-side at the half-bridge x</td>
</tr>
<tr>
<td>Vs</td>
<td>Supply voltage of the IC and DC link voltage of the half-bridges, protected against reverse polarity</td>
</tr>
<tr>
<td>VSHx</td>
<td>Voltage at the phase of half-bridge x</td>
</tr>
<tr>
<td>VSHH</td>
<td>MOSFET driver’s high threshold at SHx, typically Vs - 2.25 V</td>
</tr>
<tr>
<td>VSHL</td>
<td>MOSFET driver’s low threshold at SHx, typically 2.25 V</td>
</tr>
<tr>
<td>x</td>
<td>Related to half-bridge x</td>
</tr>
<tr>
<td>z</td>
<td>Related to the PWM input signal z</td>
</tr>
</tbody>
</table>
Rise and fall time regulation with current source MOSFET gate drivers

Introduction

The Infineon’s Motor System ICs (TLE956x) and Multi MOSFET driver ICs (TLE9210x) include a MOSFET driver with multi-stage current source gate control which is configured over SPI. Over this interface, a set of gate currents, that are sequentially sourced to or sunk from the gate of the MOSFET during certain time intervals, can be configured in order to control following switching times:

- Turn-on (tDONx) and turn-off (tDOFFx) delays: the Adaptive functionality of the MOSFET driver automatically regulates the pre-charge and pre-discharge currents to achieve the target tDONx and tDOFFx configured by the user. The application note [1] and the data sheets of the mentioned devices contain detailed information on how to configure this functionality.

- Rise (tRISEx) and fall (tFALLx) times: the MOSFET driver enables the user to implement a software algorithm to regulate the (dis)charge current (I(D)CHGx and achieve the target rise (tRISEx_TG) and fall (tFALLx_TG) times by providing the currently measured tRISEx and tFALLx in its status registers.

Controlling the tRISEx and tFALLx in PWM operation is of big interest for the user, since these timings have a direct influence on the power losses and on the electromagnetic emissions. As a matter of fact, it has been demonstrated in [2] that too short tRISEx and tFALLx lead to high electromagnetic emissions, while too large tRISEx and tFALLx increase the power losses.

In order to achieve an accurate tRISEx and tFALLx, it is not sufficient to configure I(D)CHGx in open loop due to following reasons:

- The MOSFET’s Qgd has a deviation between the typical and maximum value, as shown in Figure 1.
- The I(D)CHGx sourced by the gate driver has some tolerances.
- The MOSFETs Miller plateau depends on operating conditions such as junction temperature Tj, load current Id and drain voltage Vdd as depicted in Figure 1, which can change during runtime.
- Aging leads to changes in the V-I characteristics of the MOSFETs as analyzed in [3].

![Figure 1](Qgd deviations, transfer characteristics and typical gate charge of the IPZ40N04S5-3R1)
Rise and fall time regulation with current source MOSFET gate drivers

Introduction

In order to face these challenges, this application note proposes an algorithm that reconfigures the charge current ICHGx in closed loop to achieve the targeted rise \((t_{RISEx_TG})\) time, which is based on the \(t_{RISEx}\) measurements provided by the gate driver. This document is structured as follows: first, the configuration parameters of the MOSFET driver that influence the \(t_{RISEx}\) and \(t_{FALLx}\) are presented, supported with measurements. Next, the requirements on the algorithm are derived from the previous measurements and from the application assumptions, followed by a detailed explanation of the algorithm and by a set of measurements performed with it. Then, conclusions are drawn and the future work is discussed. Two appendixes conclude this application note with the calculations needed to boost the convergence of the algorithm and with the source code of the algorithm.
Rise and fall time regulation with current source MOSFET gate drivers

Considered circuit

3 Considered circuit

The circuit considered and tested in this application note, unless explicitly indicated otherwise, is as depicted in Figure 2.

Following components make up the circuit:

- **MOSFET driver IC**: Motor System IC TLE9562 (on Evaluation Board TLE9562). The Adaptive Gate Control and the Generator Mode Detection are off throughout all the tests in this document. For this document, the external signal PWM3 was assigned to HB3 (bit PWM3MAP = 0 in register GENCTRL).

- **SBC / Vreg**: Motor System IC TLE9562 (on Evaluation Board TLE9562).

- **MOSFETs**: IPZ40N04S5-3R1 (on Evaluation Board TLE9562).

- **uC**: Aurix 2G TC275 (on Triboard). The microcontroller generates a PWM signal of 20 kHz and 50% duty cycle which is connected to the PWM3 input of the TLE9562. The microcontroller also configures the MOSFET driver over SPI1, runs the algorithm explained in Chapter 5 and reads TRISE3 over SPI1 from the MOSFET driver. In addition, it sends TRISE3, together with some variables of the algorithm, over SPI2 for logging purposes. This logging is analyzed with an oscilloscope.

- **DC Motor**: 36W DC Motor Ref 321-3186, without starting capacitors and without load.

All the tests presented in this document have been executed with a Vbat of 13 V and at room temperature.
4 Influence of configuration parameters in TRISEx

This chapter first explains the phases and parameters that can be configured in the MOSFET driver to shape the switching-on of a MOSFET. In the following subsections of this chapter, the measurements conducted with different values of the configuration parameters that influence tRISEx are shown. Finally, the influence of different tRISEx on conducted electromagnetic emissions is discussed on basis of measurements with a spectrum analyzer.

4.1 Phases when switching on

The MOSFET driver is a gate driver with current timing control and current level control, which splits the switching-on of the Active MOSFET into four phases. This allows shaping the in-transition slope as shown in [4], which allows reducing the power losses [2] and the electromagnetic emissions [5] with respect to voltage gate drivers or gate drivers with constant current. In each phase, the configured amount of current is sourced or sunk to/from the gate as shown in Figure 3.

Each phase starts right away when the previous phase ends:

1) **Cross-current protection**: starts at the rising edge of the synchronized PWMz signal that was assigned to HBx, and ends when tHBxCCP_FW elapses. In this phase, LSx is switched off and HSx is kept off with -IHOLD.

2) **Pre-charge**: it lasts for the tPCHGx configured in the corresponding register. It is recommended to configure tPCHGx in such a way that the pre-charge phase ends when VGSTH_HSx is reached, i.e. before the di/dt transition starts at the MOSFET. Otherwise, a very large di/dt transition would cause a large voltage difference at the parasitics of the commutation path, leading to voltage overshoots that would increase the electromagnetic conducted emissions, as demonstrated in [5]. During the pre-charge phase, the current level IPCHGINITx configured in the register is sourced to the gate of HSx (note that it is considered that the Adaptive functionality is off).

3) **Charge**: it starts right after the pre-charge phase and it ends when VSHx reaches VSHH, which is automatically detected by a fast comparator inside the MOSFET driver. At the charge phase, the current level ICHGx configured in the corresponding register is sourced to the gate of HSx. During this phase, the di/dt transition (VGS_HSx raises from VGSTH_HSx to VGSMI_HSx) and dv/dt transition (VGS_HSx is at the Miller plateau: VGSMI_HSx) should take place at the MOSFET. tRISEx can be controlled with ICHGx, which will actually be the goal of the algorithm proposed in Chapter 5.

4) **Post-charge**: it starts when VSHx reaches VSHH and it ends when tFVDS elapses. During this phase, the current sourced to the gate of HSx is successively increased until ICHGMAXx is reached (this can be disabled in a control register). Afterwards, HSx is kept on with IHOLD.
Rise and fall time regulation with current source MOSFET gate drivers

Influence of configuration parameters in TRISEx

Figure 3 Switching on phases for the Active MOSFET
Rise and fall time regulation with current source MOSFET gate drivers

Influence of configuration parameters in TRISEx

4.2 Measurements with static pre-charge and charge currents

In this subsection, the MOSFET driver is configured with a certain tPCHGx, IPCHGINITx and ICHGx to analyze the stability of IG_HSx and consequently, the stability of the rise time of VSHx measured with the scope and the tRISEx measured by the MOSFET driver.

The values of tPCHG3 and IPCHGINIT3 are selected in such a way that the pre-charge phase ends when VGSTH_HS3 is reached, typically 2.8V for the selected MOSFET. ICHG3 is selected so that a mean tRISE3 of 586 ns is achieved. In Table 2, the configured values are shown.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value in register</th>
<th>Value according to datasheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPCHG3</td>
<td>2</td>
<td>214 ns</td>
</tr>
<tr>
<td>IPCHGINIT3</td>
<td>25</td>
<td>20.8 mA</td>
</tr>
<tr>
<td>ICHG3</td>
<td>9</td>
<td>3.7 mA</td>
</tr>
</tbody>
</table>

The oscilloscope is in persistence mode to superimpose 5000 samples. In Figure 4, it can be observed that IG_HS3 is very stable, which leads to a very small standard deviation of 4.7 ns in the rise time measurements of VSH3.

In the meantime, the tRISE3 values measured by the MOSFET driver have been read through SPI and decoded with the oscilloscope as shown in Figure 5. It can be observed that tRISE3 has a mean value of 11.5 (612 ns), which is very close to the rise time measured by the oscilloscope (546 ns, shown in Figure 4).

Due to the resolution of the tRISE3 measurement of the MOSFET driver, which is 53.3 ns in the TLE956x and corresponds to its clock cycle, tRISE3 changes between two values: 11 and 12, which correspond to 586 ns (11 · 53.3 ns) and 639 ns (12 · 53.3 ns) respectively.
Rise and fall time regulation with current source MOSFET gate drivers

Influence of configuration parameters in TRIXEx

Please note that throughout this application note there will be some small mismatches between the TRIXEx measured by the MOSFET driver and the rise time measured by the scope. This is because VSHH and VSHL of the MOSFET driver do not exactly match the thresholds of the oscilloscope.

Figure 5 | TRIX3 measurements of MOSFET driver

4.3 Measurements with a changing pre-charge current

In this subsection, tPCHGx and ICHGx are not changed and IPCHGINITx is set to three different values to show that IPCHGINIT does not have any influence on the rise time if these three parameters are configured properly. Both tPCHG3 and IPCHGINIT3 are configured in a way that the rise time is only controlled by ICHG3, i.e. the pre-charge phase ends before the di/dt and dv/dt phases start. In Table 3, the configured values are shown.

Table 3 | MOSFET driver configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value in register</th>
<th>Value according to datasheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPCHG3</td>
<td>2</td>
<td>214 ns</td>
</tr>
<tr>
<td>IPCHGINIT3</td>
<td>25, 26, 27</td>
<td>20.8, 22.4, 24.1 mA</td>
</tr>
<tr>
<td>ICHG3</td>
<td>9</td>
<td>3.7 mA</td>
</tr>
</tbody>
</table>

While IPCHGINIT3 is being changed between the three values, the oscilloscope is in persistence mode to superimpose the three samples. In Figure 6, it can be observed that changing IPCHGINIT3 does not have an impact on the rise time (VSH3 rising edges are parallel) but only on the delay-on time. This is a good indicator that both tPCHG3 and IPCHGINIT3 are properly configured in a way that the pre-charge phase ends before the di/dt of the MOSFET starts, i.e. when VGSTH_HS3 is reached.
Rise and fall time regulation with current source MOSFET gate drivers

Influence of configuration parameters in TRISEx

In Figure 6, the persistence of IG_HS3, VSH3, and VGS_HS3 while IPCHGINIT3 is increased is shown.

4.4 Measurements with a changing charge current

In this subsection, it is investigated how different values of ICHGx affect the switching-on behavior and the electromagnetic emissions.

4.4.1 Switching behavior

The MOSFET driver is configured with a fixed tPCHGx and IPCHGINITx. ICHGx is changed between three values to analyze how they influence the delay-on time and the rise time. In Table 4, the configured values are shown.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value in register</th>
<th>Value according to datasheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPCHG3</td>
<td>2</td>
<td>214 ns</td>
</tr>
<tr>
<td>IPCHGINIT3</td>
<td>25</td>
<td>20.8 mA</td>
</tr>
<tr>
<td>ICHG3</td>
<td>9, 10, 11</td>
<td>3.7, 4.3, 5.0 mA</td>
</tr>
</tbody>
</table>

While ICHG3 is being changed between the three values, the oscilloscope is in persistence mode to superimpose the three samples. In Figure 7, it can be observed that changing ICHG3 has an impact on both the delay-on time and on the rise time (VSH3 rising edges are not parallel). Note that during the charge phase, we are controlling both the di/dt transition (VGS_HS3 from VGSTH_HS3 to VGSMI_HS3) and the dv/dt transition (VGS_HS3 at the Miller plateau, VGSMI_HS3) of the MOSFET. In addition, it can be observed that an increase of ICHG3 by just one value causes a large change in the rise time of around 200 ns. Since the values that can be configured for ICHG3 are discrete, the achievable TRISE3 will be discrete too.
Rise and fall time regulation with current source MOSFET gate drivers

Influence of configuration parameters in TRISEx

4.4.2 Conducted electromagnetic emissions

The influence on the conducted electromagnetic emissions of two different ICHGx, and consequently of two different TRISEx, has been also investigated. The voltage at the phase VSHx of a switching half bridge can be approximated to be a trapezoidal waveform with frequency fSWx and certain tRISEx_100 and tFALLx_100, as shown in Figure 8.

As shown in [6], the amplitude of the harmonics of a trapezoidal waveform with 50% duty cycle and symmetric tRISEx_100 and tFALLx_100, i.e. tRISEx_100 = tFALLx_100, presents two cut-off frequencies fc1_x and fc2_x. Whereas fc1_x only depends on the frequency of the waveform, fc2_x depends on tRISEx_100.
Rise and fall time regulation with current source MOSFET gate drivers

Influence of configuration parameters in TRISEx

\[
\begin{align*}
fc_{1,x} &= \frac{2}{\pi \cdot t_{SWx}} \\
fc_{2,x} &= \frac{1}{\pi \cdot t_{RISEx} _100}
\end{align*}
\]

In Figure 9, the dashed lines illustrate the boundaries of the harmonics’ amplitude of two ideal trapezoidal waveforms corresponding to two VSHx with the same fSWx and different tRISEx_100. It can be observed that the boundaries decrease with a ratio of:

- -20 dB / decade: for frequencies between fc1_x and fc2_x
- -40 dB / decade: for frequencies higher than fc2_x.

Consequently, a large tRISEx leads to a lower fc2_x, which in turn causes lower electromagnetic emissions at lower frequencies. If we extrapolate this to a switching VSHx, a lower ICHGx would lead to lower electromagnetic emissions. This has been tested with the TLE956x for two different ICHGx switching with an fSWx of 20 kHz, a duty cycle of 50% and with symmetrical tRISEx_100 and tFALLx_100. Table 5 shows the tested ICHGx, the tRISEx_100 measured with the oscilloscope and the calculated cut-off frequencies.

<table>
<thead>
<tr>
<th>ICHGx</th>
<th>tRISEx_100 measured with scope</th>
<th>Calculated fc1_x</th>
<th>Calculated fc2_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mA</td>
<td>566 ns</td>
<td>12 kHz</td>
<td>562 kHz</td>
</tr>
<tr>
<td>10 mA</td>
<td>118 ns</td>
<td>12 kHz</td>
<td>2.6 MHz</td>
</tr>
</tbody>
</table>

The measured electromagnetic emissions shown in Figure 9 revealed that for frequencies higher than fc2_x = 2.6 MHz, the amplitude of the harmonics for a VSHx that switches with a tRISEx_100 of 566 ns is 10 dB lower than for a VSHx that switches with 118 ns.
5 EMA-based hysteresis algorithm to regulate tRISE\textsubscript{x}

In this chapter, an algorithm that regulates ICHG\textsubscript{x} in closed loop to achieve a tRISE\textsubscript{x}_TG is proposed. This algorithm is meant to be executed by a microcontroller during run time, i.e. while the half-bridges are switching, and reconfigures ICHG\textsubscript{x} according to the tRISE\textsubscript{x} provided by the MOSFET driver, as shown in Figure 10.

![Figure 10 - Closed control loop of the algorithm](image)

5.1 Requirements on the algorithm

The EMA-based (Exponential Moving Average) hysteresis algorithm has been designed to fulfill the following requirements:

- **React to variations in tRISE\textsubscript{x} during operation**: ICHG\textsubscript{x} is regulated every time the microcontroller executes the algorithm. If tRISE\textsubscript{x} changes due to, for instance, variations of Vs, load, temperature or due to MOSFETs aging, the algorithm will reconfigure the ICHG\textsubscript{x} so that the measured tRISE\textsubscript{x} matches tRISE\textsubscript{x}_TG.

- **Do not base on MOSFET or MOSFET driver electrical parameters**: the algorithm does not need the electrical parameters of the MOSFET or of the MOSFET driver. In this manner, the same software can be used with different MOSFETs without having to parametrize or modify the software of the microcontroller. Therefore, the often large tolerances of the electrical parameters will not affect the performance of the algorithm.

- **Avoid toggling between consecutive ICHGs**: it has been shown in Section 4.4.2 that the conducted electromagnetic emissions increase with an increasing ICHG\textsubscript{x} and consequently with a decreasing tRISE\textsubscript{x}. In addition, it has been discussed in Section 4.4.1 that the tRISE\textsubscript{x} achieved with the MOSFET driver are discrete. This implies that if the algorithm continuously toggled between two consecutive ICHG\textsubscript{x}, the electromagnetic emissions would increase, since they would be dominated by the shortest tRISE\textsubscript{x}. Therefore, if the exact tRISE\textsubscript{x}_TG cannot be achieved, the algorithm will not toggle between two consecutive ICHG\textsubscript{x}.

- **Suitable for execution in embedded systems**: the algorithm is meant to be executed in embedded systems with a small RAM and limited processing resources. It bases on the EMA IIR filter, which allows storing only the previously calculated average instead of having to buffer all the sampled tRISE\textsubscript{x}. The EMA is implemented in Fixed-Point Arithmetic (FPA) to avoid storing the EMA of the tRISE\textsubscript{x} as floating-point variables and consequently to avoid also complex calculations in floating-point arithmetic that would increase the processing time.

In addition, the algorithm does not need to be executed on a strictly periodical manner, it suffices to execute it whenever the microcontroller is idle.
5.2 Implementation

In this section, the implementation of the algorithm is presented. For the sake of simplicity, the rescaling for the FPA has not been included. For the exact implementation with FPA, please refer to the code in Section 8. The algorithm needs following constants:

- α: alpha can take a value between 0 and 1. This constant weights the samples for the EMA calculation. With an $\alpha > 0.5$, the contribution of the last measured tRISEx will be larger than the contribution of the previously calculated EMA.
- EOS: end of scale of the variable type of m_trisex_ema[]. For example, 65535 if it is declared as a 16 bits unsigned integer.
- INIT_ICHGx: initialization value of ICHGx. This is the first ICHGx with which the MOSFET driver is configured.
- MAX_ICHGx: maximum value for ICHGx. The algorithm will not configure the MOSFET driver with an ICHGx higher than this value. This constant is also a safety mechanism that will prevent the MOSFET driver from switching too fast. The minimum value for this constant is $\text{MIN}_\text{ICHGx} + 1$, and the maximum is 63 in the case of the TLE956x.
- MIN_ICHGx: minimum value for ICHGx. The algorithm will not configure the MOSFET driver with an ICHGx lower than this value. This constant can be understood as a safety mechanism that will prevent the MOSFET driver from switching too slow. The minimum value for this constant is 0, and the maximum is $\text{MAX}_\text{ICHGx} - 1$.
- tRISEx_TG: tRISEx target from VSHL to VSHH. The goal of the algorithm is that the tRISEx measured by the MOSFET driver is equal to tRISEx_TG.

The algorithm also declares following variables:

- m_ichgx: current ICHGx with which the MOSFET driver is configured.
- m_trisex_ema[]: array of the calculated tRISEx EMAs for the different configured ICHGx. Although ICHGx can be configured to 64 different values in the TLE956x, the number of different ICHGx that the algorithm will configure is limited by MAX_ICHGx and MIN_ICHGx. Hence, the number of elements of the array is declared to $(\text{MAX}_\text{ICHGx} - \text{MIN}_\text{ICHGx} + 1)$ in order to minimize the required RAM. For example, if $\text{MAX}_\text{ICHGx} = 63$ and $\text{MIN}_\text{ICHGx} = 0$, m_trisex_ema[63] contains the tRISEx EMA calculated for $\text{ICHGx} = 63$, which corresponds to 100 mA in the TLE956x.

The algorithm consists of three main phases: initialization, EMA calculation and adaptive hysteresis decision tree, as shown in Figure 11.

Figure 11 Algorithm phases
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate t_{RISEx}

5.2.1 Initialization phase

This phase is executed only once before the algorithm runs for the first time. In this phase, the ICHGx of the MOSFET driver and the variable m_{ichgx} are initialized with the defined INIT_ICHGx. The user should define a value for INIT_ICHGx which is large enough to completely switch on the MOSFET before $t_{HBxBLANK}$ Active expires, as shown in Figure 3. In Chapter 7, it will be discussed how the user can select INIT_ICHGx to accelerate the convergence of the algorithm, i.e. achieve t_{RISEx_TG} faster. As depicted in Figure 12, the array m_{trisex_ema} is initialized as well. The elements with an index lower than INIT_ICHGx-MIN_ICHGx are initialized with 0 and the rest of the elements with EOS. This will ensure a proper start-up of the algorithm in the adaptive decision tree, as will be shown in Section 5.2.3 and with an example in Section 5.3.1.

![Diagram](image12.png)

Figure 12 Initialization phase

5.2.2 EMA calculation phase

The EMA is an IIR filter that differently weights the last sample (with α) and the previous samples (with 1- α), where α is a constant between 0 and 1, as presented in [7]. The calculation of the EMA for t_{RISEx} can be easily performed in an embedded system, since there it is no need of storing all sampled t_{RISEx}. Instead, the previous samples are indirectly pondered by weighting the EMA that was calculated the last time the algorithm ran.

If m_{ichgx} still has the initialization value, i.e. it is the first time the algorithm configures the MOSFET driver with the current ICHGx, t_{RISEx} is neither averaged nor weighted. In this case, t_{RISEx} is directly stored in the element of m_{trisex_ema} corresponding to the current ICHGx, as shown in Figure 13.

![Diagram](image13.png)

Figure 13 Initialization phase
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate \(t_{\text{RISEx}} \)

In this manner, if the user sets \(\alpha_x \) to a value close to 1, the contribution of the last measured \(t_{\text{RISEx}} \) to the EMA will be large and the algorithm will react fast to changes. On the contrary, if \(\alpha_x \) is set to a value close to 0, the last calculated \(t_{\text{RISEx}} \) will have a big influence on the currently calculated EMA, thus giving more importance to the history of the measured \(t_{\text{RISEx}} \) than to the last \(t_{\text{RISEx}} \). If we draw an analogy with a conventional PI controller, increasing \(\alpha_x \) would be equivalent to increasing the proportional and decreasing the integral gain.

This is shown in the example of Table 6, where the \(t_{\text{RISEx}} \) EMA has been calculated for \(\alpha_x = 0.8 \) and 0.2. It can be observed that when a \(t_{\text{RISEx}} \) of 13 is obtained at the 4th measurement, which is larger than all the previous \(t_{\text{RISEx}} \), the calculated EMA is very different depending on the configured \(\alpha_x \).

For an \(\alpha_x = 0.8 \), the last measurement has a large weight and the EMA increases to 12.632. On the contrary, for an \(\alpha_x = 0.2 \), the EMA considers more importance to the history of measured \(t_{\text{RISEx}} \) and it only increases to 11.528. Notice that the result is stored in the 9th element of the array since it is considered that all these \(t_{\text{RISEx}} \) are measured when an \(\text{ICHG}_x = 9 \) is applied.

<table>
<thead>
<tr>
<th>Measurement number</th>
<th>(t_{\text{RISEx}})</th>
<th>(m_{\text{trisex}_ema}[9]) for (\alpha_x = 0.8)</th>
<th>(m_{\text{trisex}_ema}[9]) for (\alpha_x = 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>11.8</td>
<td>11.2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>11.16</td>
<td>11.16</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>12.632</td>
<td>11.528</td>
</tr>
</tbody>
</table>

5.2.3 Adaptive hysteresis decision tree phase

The algorithm decides in this phase whether \(\text{ICHG}_x \) will be increased or decreased by 1 or if it will not change. This is done by comparing the \(t_{\text{RISEx}_TG} \) with the \(t_{\text{RISEx}} \) EMA calculated for the current \(\text{ICHG}_x \) and for the immediately lower and larger \(\text{ICHG}_x \), as depicted in Figure 14.

Following conditions must be met to decrease \(\text{ICHG}_x \):

1. The EMA calculated for the current \(\text{ICHG}_x \) is lower than \(t_{\text{RISEx}_TG} \). This means that the MOSFET is switching too fast, which implies that \(\text{ICHG}_x \) is susceptible to be decreased.
2. The EMA that was calculated when the \(\text{ICHG}_x \) was set to the immediately lower value is also lower than or equal to \(t_{\text{RISEx}_TG} \). This second condition makes up the hysteresis, which will prevent the algorithm from toggling between two adjacent \(\text{ICHG}_x \). Notice that if the algorithm never configured the MOSFET driver with \(\text{ICHG}_x – 1 \) before, \(m_{\text{trisex}_ema}[m_{\text{ichgx}} – \text{MIN}_ICHGx - 1] \) will still contain the initialization value, which is 0. In this case, the condition “\(m_{\text{trisex}_ema}[m_{\text{ichgx}} – \text{MIN}_ICHGx - 1] \leq t_{\text{RISEx}_TG} \)” is also met.
3. The minimum \(\text{ICHG}_x \) has still not been reached.

Similarly, the algorithm will increase \(\text{ICHG}_x \) if these three conditions are met:

1. The EMA calculated for the current \(\text{ICHG}_x \) is higher than \(t_{\text{RISEx}_TG} \). This means that the MOSFET is switching too slow, which implies that \(\text{ICHG}_x \) may qualify to be increased.
2. The EMA that was calculated when the \(\text{ICHG}_x \) was set to the immediately higher value of the current one is also higher than or equal to \(t_{\text{RISEx}_TG} \). Notice that if the algorithm never configured the MOSFET driver with \(\text{ICHG}_x + 1 \) before, \(m_{\text{trisex}_ema}[m_{\text{ichgx}} – \text{MIN}_ICHGx + 1] \) will still contain the initialization value, which is EOS. In this case, the condition “\(m_{\text{trisex}_ema}[m_{\text{ichgx}} – \text{MIN}_ICHGx + 1] \geq t_{\text{RISEx}_TG} \)” is also met.
3. The maximum \(\text{ICHG}_x \) has still not been reached.
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate tRISEx

![Adaptive hysteresis decision tree phase](image)

Figure 14 Adaptive hysteresis decision tree phase

5.3 Measurements

Several tests have been conducted to check the robustness of the algorithm in different scenarios. The calculations have been implemented in FPA with a rescaling factor of 255. As explained in Chapter 3, the variables of the algorithm were logged over SPI and are analyzed with an oscilloscope. The algorithm was executed in the main loop of the microcontroller, please refer to the code of the algorithm in Chapter 8 for the implementation.

5.3.1 Varying INITIAL_ICHGx

The algorithm has been executed with different INITIAL_ICHGx to check if tRISEx_TG can be achieved regardless of this initial value. These are the constants which were not changed throughout the tests of this subsection:

- MIN_ICHG3 = 0
- MAX_ICHG3 = 63
- α3 = 0.5, which implies that the last measured tRISE3 has the same weight as the historic EMA
- tRISE3_TG = 11, which corresponds to 11 · 53.3 ns = 586 ns.

First, the algorithm was run with an INITIAL_ICHG3 = 13. In Figure 15, it can be observed at the bottom in the P1 column of the table that the algorithm achieved a mean tRISE3 = 12.64, which is not exactly tRISE3_TG = 11. As it will be shown in Figure 17, the algorithm gives more importance to avoiding the toggle of ICHG3 and tRISE3 than to minimizing the error.
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate tRISEx

For an INIT_ICHG3 of 13, the tRISE3_ema of the adjacent ICHG3s can be observed in Figure 16. When the MOSFET driver starts switching with an ICHG3 = 13, the algorithm detects that tRISE3_TG is larger than the calculated tRISE3_ema[13] and it decreases progressively ICHG3, which causes an increment of tRISE3_ema[m_ichg3 - MIN_ICHG3]. tRISE3_ema[m_ichg3 + 1 - MIN_ICHG3] starts at EOS, decreases to the calculated tRISE_ema[13] when ICHG3 is changed to 12 and then successively increases with a decreasing ICHG3. tRISE3_ema[m_ichg3 - 1 - MIN_ICHG3] stays at 0, the initialization value, which indicates that the algorithm does not try to increase ICHG3 during this test.

Figure 15 Results with an INIT_ICHG3 = 13 and tRISE3_TG = 11

Figure 16 tRISE3_ema of adjacent ICHG3s, tested with an INIT_ICHG3 = 13 and tRISE3_TG = 11
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate tRISEx

The decisions taken by the algorithm where the cursor is pointing to on the snapshot have been depicted in blue in Figure 17. At this point, \(m_{ichg3} = 8 \) and the calculated \(m_{trise3_ema}[8] \) is 13, which was calculated out of all tRISE3 measured when the MOSFET driver was switching with ICHG3 = 8. Since this value is larger than tRISE3_TG=10 (11), the algorithm further checks if increasing ICHG3 would lead to a tRISE3 which would still be larger than the target.

However, instead of directly increasing the ICHG3 to 9, the algorithm checks if an ICHG3 = 9 has been previously used and analyzes the EMA of the tRISE3 that was obtained for that ICHG3. Indeed, the tRISE3_ema[9] had been calculated previously and was 10.5. Consequently, the algorithm decides not to increase the current to prevent ICHG3 and tRISE3 from toggling. Note that this tRISE3 EMA was available in memory because the algorithm had previously configured an ICHG3 = 9 when it was decreasing ICHG3 from the INIT_ICHG3 = 13.

Figure 17 Decisions taken by the algorithm (in blue) at the cursor of Figure 16

In Figure 18, it is shown that if the INIT_ICHG3 is much larger than the ICHG3 that would be necessary to achieve tRISE3_TG, the algorithm also regulates ICHG3 correctly, although the time it needs to converge is larger.
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate tRISEx

The closer INIT_IHGx is to the ICHGx required to achieve tRISEx_TG, the faster the algorithm converges, as shown in Figure 19 for an INIT_IHG3 = 11. In Chapter 7, it is explained how INIT_IHGx can be calculated to accelerate the convergence of the algorithm.

Figure 18 Results with an INIT_IHG3 = 40 and tRISE3_TG = 11

Figure 19 Results with an INIT_IHG3 = 11 and tRISE3_TG = 11
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate tRISEx

The behavior of the algorithm has been also checked if ICHGx needs to be increased. Figure 20 shows that in steady state, ICHG3 is 9 and the mean tRISE3 is 10. In this test, the algorithm increases m_ichg3 from INIT_ICHG3 = 6 until the tRISE3 EMA is lower than tRISE3_TG and it does not reduce it again to avoid toggling. This also means that neither an ICHG3 = 8 (which yields a tRISE3 mean of 12.6, see Figure 19) nor an ICHG3 = 9 (which yields a tRISE3 mean of 10, see Figure 20) would exactly achieve the configured tRISE3_TG = 11. As discussed in Chapter 4.4.1, discrete ICHGs can only achieve discrete rise times.

![Figure 20](image-url)

Figure 20 Results with an INIT_ICHG3 = 6 and tRISE3_TG = 11

5.3.2 Varying tRISEx_TG

The tests presented in the previous chapter were conducted with a tRISE3_TG = 11. This chapter shows two additional tests with different tRISEx_TG to demonstrate that the algorithm can achieve both slower and faster tRISE.

The constants which were not changed throughout the tests of this subsection are as follows:

- MIN_ICHG3 = 0
- MAX_ICHG3 = 63
- α3 = 0.5, which implies that the last measured tRISE3 has the same weight as the historic EMA
- INIT_ICHG3 = 9

First, tRISE3_TG was set to 20, which corresponds to 1066 ns. It can be seen in Figure 21 that the algorithm first decreases ICHG3 to 5 and in steady state it selects an ICHG3 of 6 to achieve a tRISE3 closer to 20. The mean tRISE3 is 19.9 during the 10 seconds shown in the snapshot, see P1 in the table of the figure.
Rise and fall time regulation with current source MOSFET gate drivers

EMA-based hysteresis algorithm to regulate tRISEx

The algorithm also regulates ICHGx correctly if a fast switching is desired. In Figure 22, tRISE3_TG has been set to 5, which corresponds to 266 ns. It can be observed that the algorithm increases ICHG3 from the INIT_ICHG3 = 9 to 14, obtaining a mean tRISE3 of 4.9.
Rise and fall time regulation with current source MOSFET gate drivers

Conclusions and future work

6 Conclusions and future work

In this application note, an algorithm that regulates ICHGx to control the tRISEx of MOSFETs with a current source MOSFET driver in PWM operation and a microcontroller has been proposed. This algorithm consists of a decision tree with adaptive hysteresis that is based on the EMA of the tRISEx measured by the MOSFET driver. This prevents the algorithm from toggling ICHGx, which would increase the conducted electromagnetic emissions. The robustness of the algorithm has been shown in several tests by varying the initial conditions and the targeted tRISEx.

In future work, the behavior of the algorithm under a changing operating point could be analyzed, i.e. in scenarios where Vbat, the load current and the temperature vary. Future work could also involve modifying the algorithm so that the calculated EMAs are reinitialized or in a way that αx is changed if the operating point varies significantly. The proposed implementation of the algorithm does not consider the cases where the MOSFET driver writes a 0 in tRISEx to indicate some error, e.g. when tRISEx is larger than tHBxBLANK Active or the duty cycle is very low or very high. These cases are further explained in the datasheet of the corresponding MOSFET driver and could be taken into consideration in future versions of the algorithm. Although this application note has focused on controlling tRISEx, the implementation for tFALLx, tDONx and tDOFFx would be similar. Future work could also include the implementation and testing of the algorithm for them.

This algorithm has been designed for being executed during runtime while the MOSFETs are switching. However, it could be also executed only once when calibrating the ECU at the end of line. With this approach, the uC would run the algorithm at end of line to find out the required ICHGx for the soldered MOSFETs. This ICHGx would then be stored in memory and it would not be changed afterwards to avoid reconfiguring the MOSFET driver during runtime.

This algorithm has been proposed for the Infineon’s Motor System ICs (TLE956x). However, it could be used with slight modifications for all Infineon current source gate drivers with integrated measurement of the switching times, like the Multi MOSFET driver ICs (TLE9210x) or the Embedded Power ICs (TLE985x).
Appendix A: Calculating INIT_ICHGx to boost the algorithm’s convergence

It has been previously shown in Figure 19 that the convergence of the algorithm can be boosted, i.e. tRISEx_TG can be achieved faster, if INIT_ICHGx is selected in such a way that it is close to the ICHGx necessary to achieve tRISEx_TG. In this appendix, it is explained how this ICHGx can be calculated with the MOSFET’s parameters.

In Chapter 4, it has been discussed that the dv/dt phase of the MOSFET occurs while it is at the Miller plateau, i.e. VGS_HSx = VGSMI_HSx. Since the MOSFET driver sources a constant current ICHGx during the Miller plateau, as it can be seen in Figure 23, the charge that is sourced to the MOSFET Qg_mi_app_activex can be expressed as:

\[Q_{g_mi_app_activex} = \int_{tmi_start}^{tmi_end} I_{G_active}(t) \cdot dt \approx ICHGx \cdot tRISEx_{100} \]

Hence, the ICHGx that should be configured in the MOSFET driver so that the MOSFET switches with a certain tRISEx_100 can be calculated as follows:

\[ICHGx = \frac{Q_{g_mi_app_activex}}{tRISEx_{100}} \]

Figure 23 Linear approximation of VSH3 to calculate Qg_mi_app_hs3

Qg_mi_app_activex can be obtained indirectly from the Qg specified in the MOSFET’s datasheet by just recalculating it for our operating point Vdd = 12V, as depicted in Figure 24. Although the Id at which Qg was tested (Id = 40A) and the Id of our operating point are different, this can be neglected, since a smaller Id would just lead to a smaller voltage VGSMI_active but not to a different length of the Miller plateau.

For example, if we want that the HS3 MOSFET switches with a tRISEx_100 = 1000 ns, the INIT_ICHG3 that would boost the convergence of the algorithm is calculated as follows:

\[INIT_ICHG3 = \frac{Q_{g_mi_app_hs3}}{tRISEx_{100}} = \frac{5.5 \text{nC}}{1000 \text{ns}} = 5.5 \text{mA} \]
Rise and fall time regulation with current source MOSFET gate drivers

Appendix A: Calculating INIT_ICHGx to boost the algorithm’s convergence

Thus, the constant INIT_ICHG3 should be set to 11, which corresponds to an ICHG3 of 5 mA according to the datasheet of the TLE956x.

![Extrapolation of Qg_mi_app_hs3 for Vdd = 12 V](image)

The value for the tRISE3_TG constant of our algorithm can be obtained from the desired tRISE3_100 by doing a linear approximation of VSH3 as depicted in Figure 23:

\[
tRISE3_TG = tRISE3_L = \left(1 - \frac{VSHL + (Vs - VSHH)}{Vs}\right) \cdot tRISE3_100
\]

\[
tRISE3_TG = \left(1 - \frac{2.25\ V + 2.25\ V}{12\ V}\right) \cdot 1000\ ns = 625\ ns
\]

Since the MOSFET driver measures the tRISE3 with a granularity of 53.3 ns, the tRISE3_TG constant of the algorithm should be set to 11:

\[
tRISE3_TG = \frac{625\ ns}{53.3\ ns} = 11
\]
8 Appendix B: Source code EMA-based hysteresis algorithm

The source code in C of the proposed algorithm is presented in this appendix. Notice that the initialization functions of the microcontroller and the gate driver and the application itself (when the motor is switched on, when the PWM is changed, etc) must be written by the user depending on the used microcontroller and gate driver and according to the application.

Code Listing 1

```c
// CONSTANTS ////
// Defined in precompiler to avoid float variables and to declare
// arrays with a predefined length
// Target tRISE3 (tRISE3_TG * 53.3 ns)
#define tRISE3_TG 11
// ALPHA3, constant for the EMA calculation, 0 <= ALPHA3 <= 1
// A value > 0.5 gives more importance to the last tRISE3 sampled
// A value < 0.5 gives more importance to the history of sampled tRISE3
#define ALPHA3 0.5
// Scaling factor for fixed-point arithmetic (FPA)
#define SCALING_FACTOR_FPA (0xFF)
// ALPHA3, already scaled for FPA
#define ALPHA3_FPA_SCALED (ALPHA3 * SCALING_FACTOR_FPA)
// (1 - ALPHA3), already scaled for FPA
#define ONE_MINUS_ALPHA3_FPA_SCALED (SCALING_FACTOR_FPA - ALPHA3_FPA_SCALED)
// Maximum charge current that will be set by the algorithm
#define MAX_ICHG3 63
// Minimum charge current that will be set by the algorithm
#define MIN_ICHG3 0
// Starting charge current that will be first used by the algorithm
#define INIT_ICHG3 1
// End of scale of a uint16 variable (m_trise3_ema variable), for initialization purposes
#define EOS 0xFFFF

// GLOBAL VARIABLES ////
// Array of the calculated tRISEx EMAs for the different configured ICHGx
uint16 m_trise3_ema[MAX_ICHG3 - MIN_ICHG3 + 1];
// Current ICHGx with which the MOSFET driver is configured
uint8 m_ichg3;

// FUNCTION DECLARATIONS ////
void initializationAlgorithm(void);
void emaCalculation(void);
void adaptiveHysteresisDecisionTree(void);

// Functions definition ////
void initializationAlgorithm(void) {
    // Initialize the algorithm variable
    m_ichg3 = INIT_ICHG3;
    // Initialize the ICHG3 at the TLE9562
    writeSpiIchg3(INIT_ICHG3);

    // The elements with an index lower than (INIT_ICHG3 - MIN_ICHG3) are initialized
    // with a 0, the rest of the elements with EOS
    for (int i = 0; i < (INIT_ICHG3 - MIN_ICHG3); i++)
        m_trise3_ema[i] = 0;
    for (int i = (INIT_ICHG3 - MIN_ICHG3); i <= (MAX_ICHG3 - MIN_ICHG3); i++)
        m_trise3_ema[i] = EOS;
}
```
Rise and fall time regulation with current source MOSFET gate drivers

Appendix B: Source code EMA-based hysteresis algorithm

Code Listing 1

```c
void emaCalculation(void) {
    uint16 tRISE3;
    // Read the last tRISE3 measured by the TLE9562
    tRISE3 = readSpiTrise3();

    // If m_ichg3 still has the initialization value, tRISEEx is directly m_trisex_ema
    // without calculating the EMA
    if (m_trise3_ema[m_ichg3 - MIN_ICHG3] == EOS ||
        m_trise3_ema[m_ichg3 - MIN_ICHG3] == 0)
        m_trise3_ema[m_ichg3 - MIN_ICHG3] = tRISE3 * SCALING_FACTOR_FPA;
    else
        // EMA calculated and stored in m_trise3_ema for the current charge current
        m_trise3_ema[m_ichg3 - MIN_ICHG3] = tRISE3 * ALPHA3_FPA_SCALED
        + (m_trise3_ema[m_ichg3 - MIN_ICHG3] / SCALING_FACTOR_FPA) / ONE_MINUS_ALPHA3_FPA_SCALED;
}

void adaptiveHysteresisDecisionTree (void) {
    // The charge current is decreased if all conditions are true:
    // 1. The EMA calculated for the current ICHG3 is lower than tRISE3_TG
    // 2. The EMA that was calculated when the ICHG3 was set to the
    // immediately lower value is also lower than tRISE3_TG
    // 3. The minimum ICHGx has still not been reached.
    if (((m_trise3_ema[m_ichg3 - MIN_ICHG3] <= (tRISE3_TG * SCALING_FACTOR_FPA))
        && (m_trise3_ema[m_ichg3 - MIN_ICHG3 - 1] < (tRISE3_TG * SCALING_FACTOR_FPA))
        && m_ichg3 > MIN_ICHG3)
        m_ichg3 --;

    // The charge current is increased if these three conditions are met:
    // 1. The EMA calculated for the current ICHG3 is higher than tRISE3_TG
    // 2. The EMA that was calculated when the ICHGx was set to the
    // immediately higher value of the current one is also higher than tRISE3_TG
    // 3. The maximum ICHGx has still not been reached.
    if (((m_trise3_ema[m_ichg3 - MIN_ICHG3] >= (tRISE3_TG * SCALING_FACTOR_FPA))
        && (m_trise3_ema[m_ichg3 - MIN_ICHG3 + 1] > (tRISE3_TG * SCALING_FACTOR_FPA))
        && m_ichg3 < MAX_ICHG3)
        m_ichg3 ++;

    // Set the ICHG3 at the TLE9562
    writeSpiIchg3(m_ichg3);
}

void main (void) {
    // Initialize modules of uC, the definition of this function is not included
    initializationUcModules();
    // Initialize modules of the gate driver, the definition of this function is not
    // included
    initializationGateDriver();
    // Initialize algorithm for the regulation of tRISE3
    initializationAlgorithm();
    while (1) {
        // Read tRISE3 and calculate the EMA
        emaCalculation();
        // Decide if ICHG3 should be changed according to the hysteresis tree
        adaptiveHysteresisDecisionTree();
    }
```
9 References

Rise and fall time regulation with current source MOSFET gate drivers

Revision history

<table>
<thead>
<tr>
<th>Document version</th>
<th>Date of release</th>
<th>Description of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1.0</td>
<td></td>
<td>Initial version</td>
</tr>
</tbody>
</table>

Initial version
IMPORTANT NOTICE
The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.