High efficient power discretes for solar inverter

Vincent Zeng(曾伟权)

Business Development engineer

Infineon Technologies China

Weiquan.zeng@infineon.com

Solar inverter overview and market outlook

Topologies and power components

Infineon best-in-class power discretes for solar inverter

Summary

10.02.2010

Copyright © Infineon Technologies 2011. All rights reserved.

Output power and I-V characteristic of a solar panel changes with sunlight and temperature

Solar system setup

* Source: Soeren Baekhoej Kjaer et al. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE 2005

Power classes and naming

Central inverter (connects to a solar field)
20..100 kW, large cabinets
Up to few MW in paralleled cabinets

- String / multi string inverter
 - 1 kW..8 kW string inverters (connects to one string of solar panels)
 - 8 kW..20 kW multi string inverters (several strings with individual MPP tracking can be connected)

Microinverter (connects to one solar panel only)
150W..600W

Requirement of solar inverter system

Solar market outlook

MW shipment in 2010 by IMS research

WW installation forecast by EPIA

Solar inverter overview and market outlook

Topologies and power components

Infineon best-in-class power discretes for solar inverter

Summary

10.02.2010

Copyright © Infineon Technologies 2011. All rights reserved.

Non- isolated string inverter (Single phase) Boost + 2-level DC/AC stage

Devices	Function	Recommended IFX parts	
S1	Boost switch	CoolMOS™ 650V C6	
D1	Boost diode	SiC SBD 600V Gen 3	
S2S5	High frequency output switches	IGBT 600V HS3 + SiC SBD Gen 3	

Isolated string inverter (Single phase) Boost + LLC + isolation + unipolar PWM

Devices	Function	Recommended IFX parts
S1	Boost switch	CoolMOS™ 650V C6
D1	Boost diode	SiC SBD 600V Gen 3
S2S5	LLC FETs	CoolMOS™ 650V CFD2
D2D5	Rectification diodes	SiC SBD 600V Gen 3
S6S7	High frequency output switches	CoolMOS™ 650V CFD2
S8S9	Polarity selection switches	IGBT 600V TrenchStop)

Three phase solution, transformerless Boost + Neutral point clamp 3-level inverter

	Devices	Function	Recommended IFX part	
	S1	Boost IGBT	Highspeed3 IGBT 1200V	
	D1	Boost diode	SiC SBD 1200V	1
	S2S3	High frequency switches	CoolMOS CFD2 650V / Highspeed 3 IGBT 600V	
	D2D3	Clamping diodes	SiC SBD 600V	/
10.08	S4S5	Polarity switches	TrenchStop IGBT 600V	1

Central inverter: Boost + B6 bridge

Devices	Function	Recommended IFX part
S1	Boost MOSFET	IGBT 1200V T2
D1	Boost diode	Si-Diode EmitterControlled 1200V
B6	B6 switches	IGBT 1200V T2 + Si-Diode 1200V

EconoPACK[™] 4 62mm

EconoDUAL EconoPACK+ PrimePACK

IHM IHV

Stacks

Micro-inverter

Devices	Function	Recommended IFX part	() Infineon DRAK
S1	High frequency flyback switch	OptiMOS 150V /60V (if double ends)	
D1	Rectification diode	SiC SBD 1200V	(SUSSE SSA
S2S5	50Hz unfolding switch	CoolMOS 800V/ 900V	0.70

What is the advantage of Microinverter?

- Less shading impact
- Individual panel MPPT
- Safety(low AC voltage)
- Easy installation
- Longer service life(warranty)

Solar inverter overview and market outlook

topologies and power components

Infineon best-in-class power discretes for solar inverter

Summary

10.02.2010

Copyright © Infineon Technologies 2011. All rights reserved.

• Infineon SiC JFET is upcoming...

• Infineon provides Discretes well as Multi-Chip-Packaging solutions

Copyright © Infineon Technologies 2010. All rights reserved.

Infineon OptiMOS[™] boost MPPT tracker/Micro-inverter efficiency

Lowest R_{DS(on)} and FOM against competitors

Package revolution for low voltage MOSFET

infineon

OptiMOS[™] in SMD leadless package achieve higher efficiency& less voltage overshoots

Tested in a 12V server power supply in the Sync Rec stage

- Benefits of SMD leadless package (SuperSO8/S3O8)
 - Less parasitic inductances
 - Less space consumption

Less voltage overshoots, better switching behavior

Higher system efficiency & power density

How to achieve highest efficiency? CoolMOS or IGBT?

Efficiency measurements on 8kw PV inverter. 1) Red curve: Switch 1,2,3,4,5 are IGBT; 2) Blue curve: Switch 2, 4 and 5 are CoolMOS CFD, Switch 1 and 3 are IGBT

Highest efficiency in photovoltaic system using CoolMOS! CoolMOS vs IGBT: 8 kW photovoltaic DC/AC converter, **98.1% peak efficient**

The evolution on CoolMOS is never end

CoolMOS C6/CFD2 is the new generation Super- Junction MOSFET

CoolMOS[™] C6 & CFD2 650V Latest generation SJ MOSFET

CoolMOS[™] C6 650V

- True 650V technology enables open circuit voltage of up to 600V
- Best combination of efficiency and ease-of-use
- Reduction of capacitive losses vs previous generation and competitors
- Proven CoolMOS[™] quality since 1998
- Large volume manufacturing in two independent frontends & backends
- BIC device IPW60R037C6, Rdson=37mOhm

CoolMOS[™] CFD2 650V

- First 650V technology with integrated fast body diode on the market
- Very low voltage overshoot during hard commutation
- Lowest reverse recovery charge of all inhouse and competing technologies
- Reduction of capacitive losses vs previous generation and competitors
- Proven CoolMOS[™] quality since 1998
- BIC device IPW65R041CFD, Rdson=41mOhm

CoolMOS C6 gate switching behavior Under high conduction current

C6 shows no gate spikes up to pulse currents beyond 2 times rated current

Competitor part shows turn off gate spikes even below nominal current.

How to cope with high switching frequency CoolMOS?

Oscillation appears 20A turn off current

Clean up to 50A turn off current with a ferrite bead

- Control dv/dt and di/dt by proper selection of gate resistor
- Minimize parasitic gate-drain capacitance on board
- Use gate ferrite beads
- Locate gate drivers and gate turn-off components as close as possible to the gate
- Use symmetrical layout for paralleling

But, a MOSFET with integrated fast body diode is required in some design...

ZVS topology

- S2..S5 require the MOSFET has low reverse recovery charge Qrr and robustness body diode for hard-commutation
- Reactive power operation
 - S6,S7 switches to hard commutation of body diodes

...Infineon has officially launched CoolMOS CFD2

nfineon

CFD2 offers lowest reverse recovery charge 80 mOhm types at rated nominal current

Main differences between CFD and CFD2

- CFD2 is a 650V class MOSFET (CFD is 600V)
- Better light load efficiency due to reduced gate charge
- Softer commutation behavior and therefore better EMI behavior
- CFD2 offers customers a new cost down roadmap

Is IGBT still working at low switching frequency?

High Speed IGBT was developed to brige the gap between IGBT and mosfets in mid-high frequency hardswitching applications

New Highspeed 3 IGBT technology

Trench gate+ Field Stop offers superior trade-off

- Reduced switching losses for switching Frequencies above 20 kHz
- Soft switching behaviour
- Optimized diode for target applications

Elimination of tail current at high temperature...

... for MOSFET-like switching behavior

Powerloss comparison Simulation with IPOSIM[™]

infineon

Inverter Loss (W)

In comparison with the previous generation TrenchStop2, the HighSpeed 3 shows 30% reduction in switching losses and only 16% increase in conduction losses.

The HighSpeed 3 shows approx 10% lower losses than the best competitor, setting benchmark performance.

IGBT Best competitor

Smooth switching waveforms

A' C4 / 312V

Low dV/dt and dI/dt for reduced EMI

C2 100mV/div

C3 5.0V/div

C4 100V/div

(Z1C2) 100mV 100ns -500ns 500ns

Ic=5A

1MQ Bw:500M

1MΩ BW:500M

1MQ 80:500M

(Z1C3) 5.0V

(Z1C4) 100V

100ns

-500ns 500ns

100ns -500ns 500ns

Infineon's High Speed 3 IGBT Portfolio 600V and 1200V Product Family

	600V				1200V
		TO-263	TO-220	TO-247	TO-247
Co c at T	ontinuous collector current Γ _c =100° C		G	Ci li	Ci
	15A				IGP15N120H3 🗸
BT	20A	IGB20N60H3*	IGP20N60H3 🗸		
le IG	25A				IGP25N120H3 🗸
Sing	9 30A	IGB30N60H3*	IGP30N60H3 💙		
0,	40A				IGP40N120H3 🗸
	50A				
	15A				IKW15N120H3 🗸
TM	20A	IKB20N60H3*	IKP20N60H3*	IKW20N60H3 🗸	
DuoPack	25A				
	30A	IKB30N60H3*	IKP20N60H3*		
	4UA				
	5UA 75A				
	1 JA				

 $\sqrt{\frac{1}{2011}}$ Devices are fully released! * Engineering samples October 2010

TrenchStop IGBT for PV inverter with low switching frequency, e.g. 50Hz

SiC diode feature fast forward conduction

Reduce the Maximum **V**_{DS} Stress of Power MOSFET!

Replacement of diode allows spike reduction of more than 100 V

Full switching speed range of boost MOSFET useable for highest efficiency

Zero reverse recovery charge only with unipolar devices... SiC Schottky diode

Not possible with Si technology at 600 V rating... ...therefore SiC Schottky diode concept required!

Switching loss of SiC keep constant vs Io,Rg and Tc

Advantages of your design - > switching loss does not change with

- 1) Load condition
- 2) Switching speed of MOSFET
- 3) Temperature.

SiC and Energy Efficiency Improvement

Infineon

Infineon SiC diode package

Copyright © Infineon Technologies 2011. All rights reserved.

Improved switching loss Reduction of device capacitances

- 3G SiC offers ever lowest Qc(Qrr) per given current rating in the market
- Enable higher switching frequency
- Enable smaller form-factor design
- Attain higher efficiency at light load

Improved thermal performance Reduction of thermal resistance junction to case

- Thin soldering technique reduces dramatically solder contribution to RthJC
- Thermal margin (Tcase) in your design may be improved.

SiC Diode for solar inverter

Package	Voltage	P/N	I _F	Q _C
	600∨	IDD03SG60C	3.0 A	3.2 nC
DFAR(10-252)		IDD04SG60C	4.0 A	4.5 nC
		IDD05SG60C	5.0 A	6.0 nC
Infinen		IDD06SG60C	6.0 A	8.0 nC
SPAR UN		IDD08SG60C	8.0 A	12.0 nC
		IDD09SG60C	9.0 A	15.0 nC
		IDD10SG60C	10.0 A	16.0 nC
		IDD12SG60C	12.0 A	19.0 nC
		IDH03SG60C	3.0 A	3.2 nC
TO-220 real 2pin		IDH04SG60C	4.0 A	4.5 nC
· •• · • • • • • • • • • •		IDH05SG60C	5.0 A	6.0 nC
	6001/	IDH06SG60C	6.0 A	8.0 nC
	600V	IDH08SG60C	8.0 A	12.0 nC
GL		IDH09SG60C	9.0 A	15.0 nC
TO-220		IDH10SG60C	10.0 A	16.0 nC
Cal 2pin		IDH12SG60C	12.0 A	19.0 nC
	1200V	IDH02SG120	2.0A	7.2 nC
		IDH05S120	5.0 A	18.0 nC
		IDH08S120	7.5 A	27.0 nC
		IDH10S120	10.0 A	36.0 nC
7		IDH15S120	15.0 A	54.0 nC
TO247HC	1200V	IDY10S120	10 A	36 nC
		IDY15S120	15A	54 nC

Solar inverter overview and market outlook

Topologies and power components

Infineon best-in-class power discretes for solar inverter

Summary

10.02.2010

Copyright © Infineon Technologies 2011. All rights reserved.

- Microinverter, String and multi string inverters use specific, often customer IP protected topologies
- OptiMOS, CoolMOS, IGBT and SiC Schottky barrier diodes will boost system efficiency and provide more flexibility to designer. Infineon can serve all applications.
 - □ CoolMOS (500V~900V)
 - ¬ www.infineon.com/CoolMOS
 - □ OptiMOS (25V~250V)
 - www.infineon.com/OptiMOS
 - □ IGBT
 - ¬ www.infineon.com/IGBT
 - □ SiC diode (600V/1200V)
 - ¬ www.infineon.com/SiC

ENERGY EFFICIENCY COMMUNICATIONS SECURITY

Innovative semiconductor solutions for energy efficiency, communications and security.

