Architecture Trends Body Electronics Infiniten Symposium, Sep. 2010

Li Shi Ming Body Application Marketing Manager IFCN, ATV Marketing Team, Shanghai

E/E Network

Agenda

Body Architecture Trends

- Centralized vs. Decentralized Architectures
- Typical System Block Diagrams
- Solutions for Decentralized Electronics
- Power Distribution System

Energy Efficient Networks

- Motivation
- Two Ways to Improve Energy Efficiency of ECUs
- Sample Calculation How much Energy Can be Saved

Agenda

Body Architecture Trends

- Centralized vs. Decentralized Architectures
- Typical System Block Diagrams
- Solutions for Decentralized Electronics
- Power Distribution System

Energy Efficient Networks

- Motivation
- Two Ways to Improve Energy Efficiency of ECUs
- Sample Calculation How much Energy Can be Saved

Body Electronics / Body Control Module Changing the Cost-Benefit Situation

High Sophisticated System Architecture

Platform and Module Strategy Standardization vs. Individualization

Dr. Axel Heinrich – Volkswagen AG Electronica automotive conference, Nov. 2008, Munich

Central Body Computer Example Electronics Architecture

Coexistence of Discrete and Integrated Power Drivers

Discrete ← implementation

Integrated approach

BCM with

high complexity

BCM with **low** complexity

Complexity	Market Share	Added Features (SPI, Pdiss, PCB,)	
High	30% (trend: ↑)	high value	
Mid	40% (trend: ↑)	depends	
Low	30% (trend: ↓)	hardly relevant	

August 2010

Wide Range of Scalability of Generic BCM Designs

One BCM/PCB design but multiple Variants to handle.

"Limp Home" Function Functional Safety in Lighting Control

ASIL Compliant Requirements in Body Future Requirement – Arising Soon

			<u>, , , , , , , , , , , , , , , , , , , </u>
Function	ASIL (ISO 26262)	Failure Reaction Time (us)	Comment
IGN Switch (Body Computer, Ignition key)	В	t.b.d.	Failure Critical Event: Unwanted switching off KL15 during driving
Lighting function: Low beam, Front & Rear Turn signal light	В	t.b.d.	Failure Critical Event: Turn Signal need to be switched off, low beam need to be switched on
Lighting function: High beam, Parking light, Side marker	A	t.b.d.	Requirements not known
Lighting function: Stop light, Tail light	Α?	t.b.d.	Requirements not known
Any motor load (window lift, seat, wiper, HVAC etc.)	??	t.b.d.	No demand of ASIL so far

Centralized vs. Decentralized Architecture LED for Exterior Lighting

Generic Decentralized Front Light Module

Body Architectures BCM/Door Centralized Architecture

Features:

- Single Central BCM Module

Benefits:

- Fully scalable Functionality

Drawbacks:

- Heavy wiring effort or cars with high functionality

Coverage:

- Low End Cars
- Only few electronic functions

Low-end Markets Trend to be replaced

Body Architectures BCM/Door BCM + Door Modules Using CAN/LIN

Body Architectures BCM/Door Mixed Architecture (DCM + Central Lock)

August 2010

Decentralized Body Electronics LIN Slave System IC

Small Body Control Module **Emerging Markets**

Single CAN connects to Powertrain Electronics

2x21W + 5W

- Reduced Number of High Side Switch Loads (e.g. Indicators, Brake)
- Many High Current Loads still driven by relays
- Optional RKE functionality, interior LED, etc.

nfineor

HVAC Control Module Full Automatic Operation

August 2010

HVAC Control Module Low to Mid End / Manual + Semi-Automatic

- Same Loads as in High-End Systems / Same Devices Appocable
- Low Cost Microcontroller

nfineon

Door Module Full Door Functionality

Main Wire harness of Power Distribution is getting more volume/ weight and complex

We have seen these comparisons

Harness 1949 ca. 40 wires ca. 60 connectors

Harness 1999

- ca. 3 km cables
- ca. 39 kg weight
- ca. 1900 wires
- ca. 3800 contacts

Dr. Wulf Bramesfeld Freudenberg NOK Mechatronics GmbH & Co. KG Electronica automotive conference, Munich 2008

Contribution of Smart Power Semiconductors 1990s Automotive Lighting Module Evolution

Body Control Module Evolution @ BMW

Vehicle Power Distribution Architecture Split into Various Applications

Power Distribution architectures are the same in conventional, hybrid or electric vehicles 12 V Power Net part

SMART Power Distribution - Enabling Technology for Energy efficiency, Reliability and functionality

SMART Power Distribution is the enabler for

Energy Efficiency

Material weight

- * device
- * module
- * wire harness

Energy Consumption

- * Power dissipation
- * Driving current
- * idle mode

Reliability

Stop – Start (> 500 k cycles)

On-board diagnostic (Short circuit detection)

Reaction time (switch off speed)

Robustness

(vibration, shock)

Secure disconnect

Functionality

Maintenance Cycles (Including Reset Ability)

Module volume (Space enabler)

Module flexibility (Location)

Module handling (Waterproof)

Scalability/ Modularity

Cost down on system level under lifetime consideration

Relay + Fuse Replacement by Power PROFET[™] Relay Replacement by Infineon[®] Connect FET

Lead Type (1.5 mΩ) Engineering Samples available

Power PROFET[™]

Replacement relay + fuse

switch

BTS5000 x

LOGIC

Chip-On-Chip Technology

Lead Type (1.0 mΩ) Engineering Samples available

connect

Infineon[®] Connect FET

Replacement of the relay only

Module avec C_FET.vsd

Master: BTS 50015-1TAA SOP

SOP Dec 2010

Master: BTC 50010-1TAA

SOP Apr 2011

Agenda

Body Architecture Trends

- Centralized vs. Decentralized Architectures
- Typical System Block Diagrams
- Solutions for Decentralized Electronics
- Power Distribution System

Energy Efficient Networks

- Motivation
- Two Ways to Improve Energy Efficiency of ECUs
- Sample Calculation How much Energy Can be Saved

Energy Efficiency and CO₂ Emission Impact of Electric Power and Weight

20 kg

 100 W (elektr.)
 ⇔ 0.1 ℓ/100km

 50 kg
 ⇔ 0.1 ℓ/100km

1 ℓ/100km Gasoline ⇔ 23.6 g CO2/km 1 ℓ/100km Diesel ⇔ 26.5 g CO2/km

1 g CO2/km ⇔ 40 W (elektr.) 1 g CO2/km ⇔ 20 kg

Source: VDI Conference "Elektronik im Kraftfahrzeug", Baden-Baden 2007

or

40 W

1 g CO2/km

Motivation

Source: http://images.google.de

IGN off – Car in Sleep Mode

- Target: Sleep mode current <100 µA per ECU
 - No Bus traffic, Wakeup events possible
 - Remote Keyless Entry
 - Inquiry of Switch Panels

Total Car Current Consumption:

~ 5..20 mA

Source:Infineon AG

IGN on – Car runs

- Target Parameter Performance / Functionality
- Current Consumption –
 Not Yet a Constraint
- Permanent Network Traffic

Total Car Current Consumption:

~ > 10 Amps
(without any loads)

How To Enhance Vehicle Efficiency when Car Drives

Partial Node Deactivation

Scalable Functionality

Complete Deactivation of unused ECU's

Dynamical Adaptation of ECU Performance

Energy Efficient Networks Different Ways to Save Energy

Partial Node Deactivation

Affected Products

- Standalone CAN Transceiver
- System Basis Chip

<u>Challenge</u>

- Standardization of Wakeup CAN message

<u>Market</u>

- Mid-/high end vehicles, world-wide

Scalable Functionality

Affected Products

- Microcontroller

<u>Challenge</u>

- Implementation across µC families <u>Market</u>
 - Mid-/high end vehicles, world-wide

Current ECU Operating Modes No Energy Efficiency while Car is Driving

New Operating Modes Reducing Energy Consumption

Scalable Current Consumption Example: XC228xM Family

Current(mA)

Example Calculation / Use Case Analysis Total Current Consumption

Assumptions: Network with 40 ECUs. Average Current Consumption per ECU 200mA. ECUs with scalable performance save 50 % (half average current consumption). Partial Network Mode: Capable ECUs remain 95% of run time in partial network mode with a current consumption of 1mA (μ C off) resp. 10mA (μ C in STOP or IDLE).