

3千瓦半桥感应加热评估板(采用650V 逆导型R6系列IGBT)

Peter Wang 2022 June

restricted

3KW感应加热半桥评估板EVAL-IHW65R62EDS06 板载具有新的650 V逆导R6 IGBT,专门为高达50 kHz的感应加热和谐振开关应用设计

Peter Wang IPC GC SMD FAE

Key Take-away

3 kW half bridge induction heating evaluation board with 650 V Reverse Conducting R6 IGBT

EVAL-IHW65R62EDS06J - Top side

Main Features

- Input voltage: 180 270 Vdc
- Max auxiliary supply voltage: 20 Vdc
- Nominal output power: 3 kW

Customer Benefits

- Easy to measure waveforms of IGBT
- Easy exchange or replacement of resonant coil
- Easy evaluation of different gate driver ICs
- Direct access to the device for thermal measurements

Applications

- Sales Code: SA005678249
- SP-number: SP005678248
- OPN: EVALIHW65R62EDS06JTOBO1

2022-06-07 restricted

Copyright © Infineon Technologies AG 2022. All rights reserved.

Block diagram

The board at a glance

Main Features

- Have isolated low-voltage power supplies ready for input support and logic supply (VCC1) with a current capability of at least 2.5 A for VCC1
- Have a high-voltage power supply ready for HV-DC between X3+ (V-HV) and X3- (HV_GND)
- Have the load coil (~65 µH) ready, or any other coil that is suitable for induction cooking application
- Have the XMC 1300 Boot Kit board ready and programmed (or, as an alternative, a dual-channel pulsewidth modulation (PWM) generator for half-bridge PWM input)

Connection of measurement probes

Key Take-away

System Trend

Applications	Topologies	Features	
<section-header></section-header>	SE Inverter	 Only 1000V-1600V IGBT opportunity Lower cost structure BJT gate drive circuit is common On needs PFC No houlk capacitor Chock coil & input cap. form a passive PFC (>95% PF) Ohon needs isolated gate drive circuits Simpler and cheaper No need high performance co-pak diode RC IGBT is prefer Disadvantages Needs high voltage components (IGBT, Capacitor & Inductor) Output power limitation : < 2.3kW 	
Cook-top	HB Inverter	 Two 600V(or 650V) IGBTs & HVIC (or opto) opportunity No needs PFC No bulk capacitor Chock coil & input cap. form a passive PFC (>95% PF) Advantages Prefer to over 2.3kW Better efficiency Lower working voltage (600V or 650V IGBTs) Disadvantages : Expensive Needs 2 IGBTs & many resonant capacitors Higher resonant current : thicker wire diameter and device ratings Needs isolated gate drive circuit (HVIC or Opto) Needs high performance co-pak diode 	

Induction cooking

Block diagram of Induction cooking equip.

H/B Resonant Inv. : Operation modes

H/B Resonant Inv. : Operation modes

H/B Resonant Inv. : Operation modes

IGBT Topologies in Induction Heating and Microwave Ovens

1200V+: Single Ended Topology

Reverse Conducting IGBTs designed specifically soft switching topologies

RC-H family of devices optimized for the requirements of Induction Cooking systems

□ IGBT: low
$$V_{CEsat}$$
, low E_{off} and low R_{th}

Single-end vs. Half-bridge

Topology comparison

Key Take-away

650 V R6 family for induction cooking application in half-bridge topology

Most common application for half-bridge topology

Multi-Hob induction stoves Inverterized microwave ovens

Half-bridge topology is preferred for application requiring

- good power efficiency for wide load range,
- less control requirement due to stable Vce,
- higher reliability thanks to less sensitivity on control errors (better controllability)

The R6 650 V family, with its monolithically integrated diode, has been designed to fulfil specific requirements of induction heating applications using Half-bridge topology.

Reverse Conducting IGBTs For induction heating applications

> Technology concept

Monolithically integrated diode higher performance and higher reliability

- > Free-wheeling diode monolithically integrated with IGBT chip
 - **RC-H** families: Performance leadership in resonant topologies
 - RC-E family: Optimized for best price-performance in soft switching applications like induction cookers

About the RC Technology

The RC IGBT technology from Infineon presents the anti-parallel diode monolithically integrated within the IGBT chip: this is realized by integrating n-type regions in the backside p-emitter of the IGBT

- Snap-back of output characteristics is typical of this technology and due to the turn-on of the backside PN diode of the IGBT structure.
- At low current density, as soon as the MOS channel is turned-on, electron current flows ("Resistive" characteristics): due to the lateral electron flow in front of the p+ regions, a voltage drop is created, increasing the (positive) potential of the n- drift region.
- By further increasing Vce, when the build-in Voltage of the PN junction is reached, the PN junction suddenly turns-on ("Diode" characteristics)

传统IGBT与逆导型IGBT结构示意图

Product family at a glance 650 V Reverse Conducting R6 IGBTs

Target key features

- Improved IGBT performance to offer best trade-off between power losses and EMI performance
- Improved diode performance reducing Vf and dependency of gate voltage
- Diode forward recovery peak and time comparable to co-packed device
- > Portfolio of 30 A, 40 A, and 50 A devices
- Tj(max) = 175°C
- > TO247 3pin package

Typical applications

Sample schematic

Value proposition

 The new specifically designed for induction heating application, in order to meet the specific requirements in term of <u>efficiency</u> (lowest possible losses in soft switching conditions), <u>higher output</u> <u>power (optimal thermal behavior), reliability</u> (standard Infineon quality level) and <u>capacity</u> (12" production line)

Key features	Key benefits	Value		
Lowest V_{CEsat} = 1.29 V (VGE =15 V, Ic nom T _j = 25°C)		Plug & play solution for half-bridge IH application		
Improved diode performance (Diode V_F (typ) = 1.50 V Indipendent from V _{GE}	 > High compatibility with existing gate driver solutions > Optimized performance in 	Maximize system output power		
VFR(peak) and time comparable with co-packed device	 application conditions Low conduction losses Low switching losses 	Reduced cooling effort		
Softer turn-off behavior Eoff = 0.42 mJ (Ic nom $T_j = 25^{\circ}C$)	 Improved EMI performance 	Ease to design EMI filtering		

New RC IGBT portfolio for induction cooking appliances

	Features	Price		Protection			
I _c nom [A]	Topology	Single ended	Half-bridge		Single ended		
	Family	E1	R6	R5	R5	R5	IPD
	Voltage	1200V	650V	1200V	1350V	1600V	1350V
	15	IHW15N120E1					
20				IHW20N120R5	IHW20N135R5		IEWS20R5135IPB
	25	IHW25N120E1					
	30		IHW30N65R6	IHW30N120R5	IHW30N135R5	IHW30N160R5	
	40		IHW40N65R6	IHW40N120R5	IHW40N135R5		
	50		IHW50N65R6				
	Package	TO247-3	TO247-3	TO247-3	TO247-3	TO247-3	TO247-6
Recommended driver IC		IRS44273L	2ED21844S06J	IRS44273L	IRS44273L	IRS44273L	Co-packed driver with protection functions

What if a customer asks ... Why 650 V Reverse Conducting R6 IGBT?

* Based on or includes research from Omdia, "Power Semiconductor Market Share Database – 2020", September 2020

650 V Reverse Conducting R6 IGBTs in a nutshell

650 V: Half-bridge topology

650 V R6 portfolio

Current class	650 V		
30 A	IHW30N65R6		
40 A	IHW40N65R6		
50 A	IHW50N65R6		
Package	TO247 3pin		
Suggested driver	2ED21844S06J		

Collaterals and brochures	 Product briefs Selection guides Application brochures Presentations Press releases, ads 	Family page 650 V/ 1200 V/ 1350 V/ 1600 V Next Generation Reverse Conducting IGBT
Technical material	 Application notes Technical articles Simulation models Datasheets, MCDS files PCB design data 	Product type pages <u>IHW30N65R6</u> <u>IHW40N65R6</u> <u>IHW50N65R6</u>
Evaluation boards	 Evaluation boards Demo boards Reference designs 	Additional product presentation Discrete IGBT & SiC - Overview for Distributors
Videos / Distribution trainings	 Technical videos Product information videos 	TrainingOnline course TRENCHSTOP™ IGBT6 andRC-D2 for consumer drives below 300 W

2ED21844S06J The perfect match for your system

2ED218xS06F / 2ED218x4S06J 650 V half-bridge and HS+LS high current gate drivers

Key features

- Infineon SOI technology fully operational up to 650 V offset voltage
 - Bootstrap voltage up to 675 V
- Negative VS transient immunity of 100 V
- > Integrated ultra-fast, low R_{DSON} bootstrap diode
- I₀₊ / I₀₋ drive currents of 2.5 A / 2.5 A (typical)
- > Independent, dual channel under voltage lockouts (UVLO)
- > Supports maximum supply voltage of 25 V
- Logic operational for V_s of -11 V
- > Reduced level shift losses for switching frequencies above 100 kHz
- Dual package options
 - 2ED218xS06F: DSO-8 (SOIC-8)
 - 2ED218xS06J: DSO-14 (SOIC-14) with separate power and logic ground

Key applications	AC,DC Lighting - - - - - - - - - - - - -				
Part number	I _{O+/-} typ. [A]	t _{on/off} (typ) [ns]	MT (max) [ns]	t _{r/f} (typ) [ns]	Pin compatibility
2ED218xS06F	2.5 / 2.5	200 / 200	60	15 / 15	IR218xS / IRS218xS
2ED218x4S06J	2.5 / 2.5		00	15 / 15	IR218x4S / IRS218x4S

Sample schematic

Value proposition

- Highest reliability and quickest time to market with superior negative VS immunity
- Lower BOM system level cost with integrated, monolithic bootstrap diode
- Superior latch-up immunity with SOI
- Simple, low-cost solution to drive MOSFETs or IGBTs up to 650 V
- Reduced level shift losses, tailored for high frequency applications
- Robust IC with increased device reliability
- Form, fit, function, pin2pin, and electrically compatible with earlier generation drivers

X

>

X

Part of your life. Part of tomorrow.