

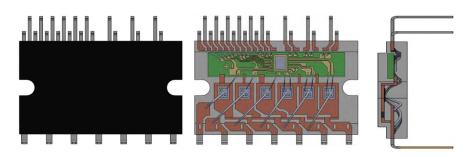
CIPOSTM Tiny 3.0 IPM, IM323 series Technology Introduction

Bryan Tian (IPC TM) May, 2022

- CIPOSTM Tiny 3.0 IPM, IM323 series technology IGBT technology and features
- Comparison data based on datasheet
- Electrical characteristic
- Thermal performance
- Package data

- CIPOS™ Tiny 3.0 IPM, IM323 series technology IGBT technology and features
- Comparison data based on datasheet
- 3 Electrical characteristic
- 4 Thermal performance
- 5 Package data

CIPOS™ Tiny 3.0 IPM, IM323 series


Key features

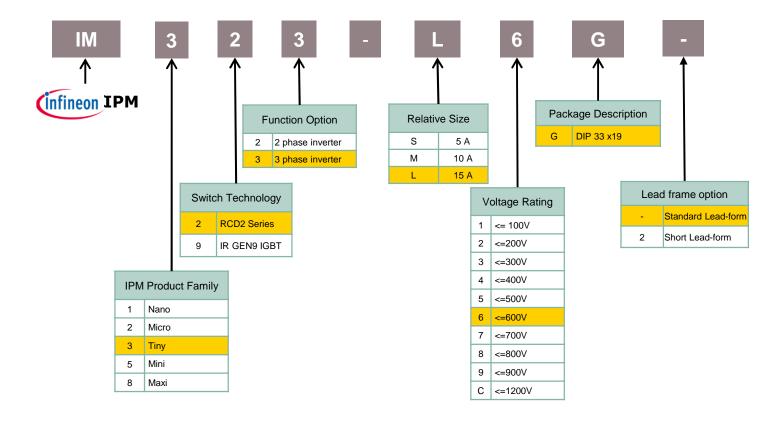
- Optimized for inverter power rating up to 1.5HP
- Latest TRENCHSTOP™ Reverse Conducting (RC) technology
- → IGBT's Maximum junction temperature 175 °C
- Rugged new SOI gate driver technology, also for negative voltage spike on the motor outputs
- One gate driver used, can implement cross conduction prevention and also turn off all switches in case of overcurrent and under voltage
- Enhanced protection functions to improve system-level reliability
- Switching losses is much lower, better performance at high switching frequency
- Pin-compatible solution

Different point views

- To increase accuracy, NTC was used
- Cost optimization (FP, full-pack package)

Visualization

Support and Logistics


- We are using Infineon-own Frontend and Backend, and can provide good and stable supply
- Infineon can provide full system solution including many other components, and good global technical support

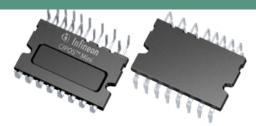
Application

- ODU(Outdoor unit) for RAC (room air conditioner)
- Home appliance
- Industrial drives

CIPOS™ Tiny 3.0 IPM, IM323 nomenclature

- 1 CIPOS™ Tiny 3.0 IPM, IM323 series technology IGBT technology and features
- Comparison data based on datasheet
- 3 Electrical characteristic
- 4 Thermal performance
- 5 Package data

CIPOS™ Tiny 3.0 and Mini FP IPM summary


CIPOS™ Tiny 3.0

32.8 x 18.8 x 3.6 mm³

- One package platform covers wide current rating from 6 A to 15 (20) A
- Package types: DIP 33 x 19 to support effective size for all applications
- Enhanced protection functions to improve system-level reliability
- > Pin-compatible solution

CIPOS™ Mini FP

36 x 21 x 3.1 mm³

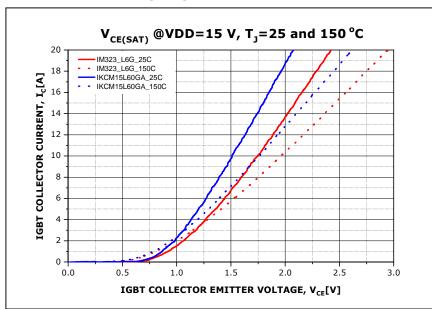
- One package platform covers wide current rating from 4 A to 30 A
- Package types: DIP 36x21 to support excellent thermal performance
- Broad range of configurations from PFC to inverter

Comparison data based on datasheet

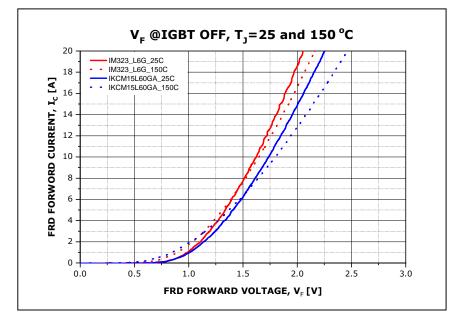
	Item		IM323-L6G	IKCM15L60GA	Remark
	Package dimension [mm]		32.8 x 18.8 x 3.6	36 x 21 x 3.1 (123%)	
Package	Isolation Vol	tage [V _{RMS} /1min]	2000 [V]	2000 [V]	
i ackage	Thermal re	esistance [K/W]	4.7	4.57	
	Basic	structure	1 driver + 6 IGBT(RC) + NTC	1 driver + 6 IGBT + 6 Diode + NTC	
	I _C @	T _C =25 ℃	15 [A]	15 [A]	
	I_{CP} @ T_{C} =25°C, less than 1ms		30 [A]	30 [A]	
Power	$V_{CE(SAT),Typ}$	T _J = 25 °C	2.10 [V] @ 15 [A]	1.80 [V] @ 15 [A]	
device		T _J = 150 °C	2.45 [V] @ 15 [A]	2.20 [V] @ 15 [A]	Based on datasheet
	$V_{F,Max}$	T _J = 25 °C	1.93 [V] @ 15 [A]	2.00 [V] @ 15 [A]	
	Junction	temperature	175 [°C]	150 [°C]	
		I_{QDD}	Max 1.1 [mA]	Max. 0.9 [mA]	
	ITRIP positiv	e going threshold	0.475 / 0.525 / 0.570 [V]	0.400 / 0.470 / 0.550 [V]	
Control part	Fault	clear time	Min. 100 [μs]	Min. 40 [μs]	
	Anti cros	s-conduction	Yes	Yes	
	Tempera	ature monitor	Typ. 85 kΩ @ T _{NTC} =25°C	Typ. 85 kΩ @ T _{NTC} =25°C	

Comparison data of GD

Item		Current GD (CIPOS™ Mini)	New GD (CIPOS™ Tiny 3.0)	Remark
Improved	HS UVLO level down	12.1 V typ.	11.5 V typ.	To improve system reliability considering bootstrap operation
system reliability	Sleep function	No	Yes	To avoid repetitive short circuit behavior after fault clear time
	I _{TRIP} variation	±15%	±9.5%	
	Fault clear time	Min. 40 μs	Min. 100 μs	To recognize fault signal more stably
Additional	Input threshold voltage	Max. 2.4V	Max. 2.3 V	To meet 3.3V JEDEC compatibility
improvements	Input/I _{TRIP} voltage range	-1 V ~ 10.5 V	-5.5 V ~ V _{DD} +0.5 V	To improve EOS by the external surge voltage
	Leakage current at V _{BS}	Max. 500 μA	Max. 300 μA	To consider smaller power supply
	Leakage current at V _{DD}	Max. 900 μA	Max. 1100μA	


2021-07-09

- CIPOSTM Tiny 3.0 IPM, IM323 series technology IGBT technology and features
- Comparison data based on datasheet
- Electrical characteristic
- Thermal performance
- Package data



Electrical characteristic – Static: IGBT $V_{\text{CE(SAT)}}$ and Diode V_{F}

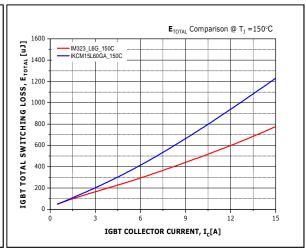
$[V_{CE(SAT)}$ Comparison]

[V_F Comparison]



2. Electrical characteristic – Dynamic

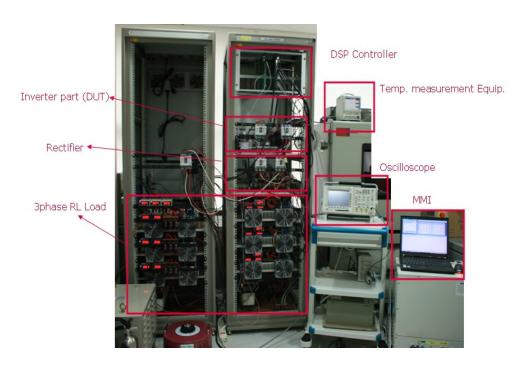
: IGBT switching loss (E_{ON} , E_{OFF} and E_{Total})


 $[E_{SW(ON)} comparison]$

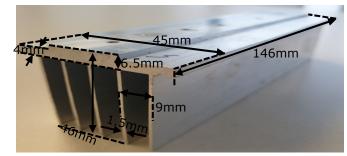
 $[E_{SW(OFF)} comparison]$

[Total loss comparison]

LOSS	IM323-L6G	IKCM15L60GA	REMARK
E _{SW(ON)} [μJ]	555	882	
E _{SW(OFF)} [μJ]	221.6	348.3	$@ I_C = 15 \text{ A}, T_J = 150^{\circ}\text{C}$
Total loss [µJ]	776.6	1230.3	



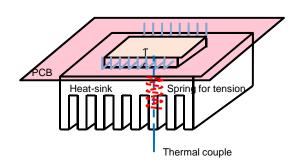
- 1 CIPOSTM Tiny 3.0 IPM, IM323 series technology IGBT technology and features
- Comparison data based on datasheet
- 3 Electrical characteristic
- 4 Thermal performance
- 5 Package data

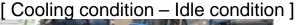

Test environment

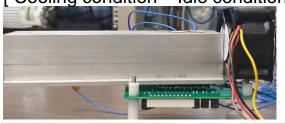
> Test bench

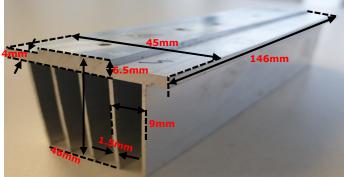
Heatsink size

For RAC (with Fan)

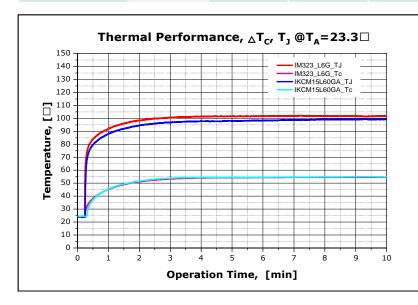

Test condition – RAC condition (IM323-L6G vs. IKCM15L60GA)


Test conditions


- V_{DC} = 340 V, V_{DD} = 15 V, F_{SW} = 5 kHz, F_O = 60 Hz, PF = 0.8, PWM = SVPWM, T_{dead} = 1 μ s, 3-Phase R-L Load,
- Force cooling by fan, MI = 0.6, R = 10 Ω , L=16 mH, I $_{\Omega}$ = 7.07 Arms (10 Apeak), operation time = 10 min.
- DUT: IM322-L6G, IKCM15L60GA


Temperature measurement

- T_C = Case Temp. (Low-side U phase IGBT)
- T_A = Ambient Temp.
- T_{SCP} = Screw Temp of "P" area
- T_{SCN} = Screw Temp of "N" area
- $\Delta T_{C-A} = T_C T_A$



Test results – RAC condition (IM323-L6G vs. IKCM15L60GA)

DUT	Io	T _A [°C]	T _C [°C]	T _{SCP} [°C]	T _{J(AVG)} [°C]	△T _{CA} [°C]	△T _{SCP-A} [°C]	△T _{J(AVG)-A} [°C]	Remark
IM323-L6G	10 Apeak	23.3	54.7	46.6	102.2	31.4	23.3	78.9	
IKCM15L60GA	(7.0 Arms)	23.3	55.0	48.0	99.5	31.7	24.7	76.2	

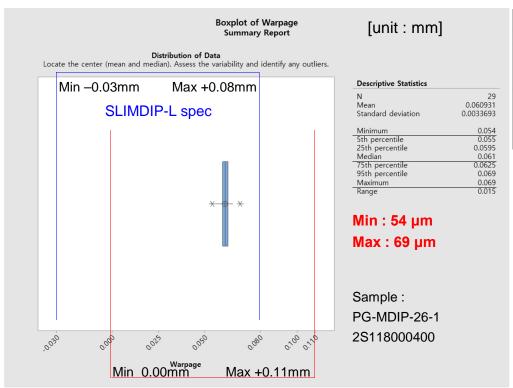
Test conditions

- Condition : $V_{DC} = 340 \text{ V}$, $V_{DD} = 15 \text{ V}$, $F_{SW} = 5 \text{ kHz}$, $F_{O} = 60 \text{ Hz}$, MI = 0.6, PF = 0.8, SVPWM, T_{dead} = 1 µs, 3-Phase R-L Load
- Cooling condition: Force cooling by fan (voltage = 10 V, $R_{th(ca)}$ = 0.62 K/W)
- Output current : $I_0 = 10$ Apeak (7.07 Arms)

Test results

- Case temperature ($\triangle T_{CA}$) is almost same (54.7°C vs. 55.0°C = -0.3°C)
- Junction temperature ($\triangle T_{J(AVG)}$) is a little higher (102.2°C vs. 99.5°C = +2.7°C)

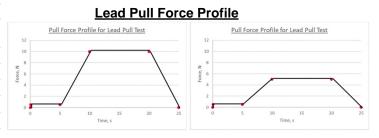
Expected response from market


- IM323 is showing same performance with Mini FP
- If customer used Mini FP(IKCM15L60GA) in RAC, customer can be used in same platform.

- CIPOSTM Tiny 3.0 IPM, IM323 series technology IGBT technology and features
- Comparison data based on datasheet
- 3 Electrical characteristic
- 4 Thermal performance
- 5 Package data

1. Warpage (or Flatness)

- 11.2 Backside Curvature Measurement Point


Figure 7 Backside curvature measurement position

IM323-L6G spec (target spec)

2.1 Package data – Pulling and bending test condition and standard

		Lead Nominal	Lead Nominal	Lead Pull Force / N	Lead Bend Load / g	
Package	Lead	Dimension	Cross section Area	Hold for 10 s	Bend 2x cycle	
Climdin	PL	0.40 x 0.60	0.24	10 N	*2 5N	
Slimdip	SL	0.40 x 0.45	0.18	5 N	*1 2.5 N	
Time 2.0	PL	0.40 x 0.60	0.26	10 N	*2 5N	
Tiny 3.0	SL	0.40 x 0.45	0.18	5 N	*1 2.5 N	
M: :ED	PL	0.60 x 0.50	0.30	10 N	*2 5N	
MiniFP	SL	0.60 x 0.50	0.32	10 N	*2 5N	

Note:

- Test parameter is according to EIAJ ED-4701/400 standards
- After lead pull test or lead bend test, samples is inspected between 10x -20x magnification for any evidence of breakage, loosening, or relative motion between lead and package.
- *1 250g of load is used.
- *2 500g of load is used.

Datasheet spec

Datasiicci spec						
Terminal pulling strength	Control terminal: Load 5N Power terminal: Load 10N	JEITA-ED-4701	10	-	-	s
Terminal bending strength	Control terminal: Load 2.5N Power terminal: Load 5N 90deg, bend	JEITA-ED-4701	2	-	-	times

Recommendations from EIAJ ED-4701/400 standards

TABLE 2 METHOD I PULL TEST CONDITIONS

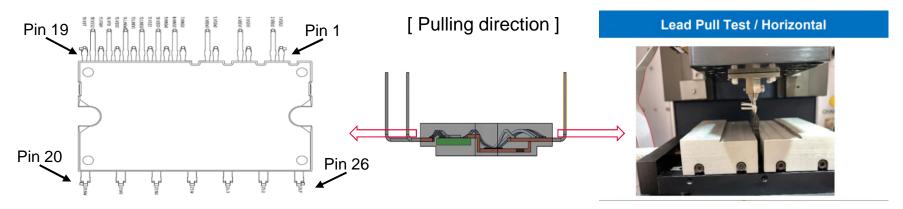
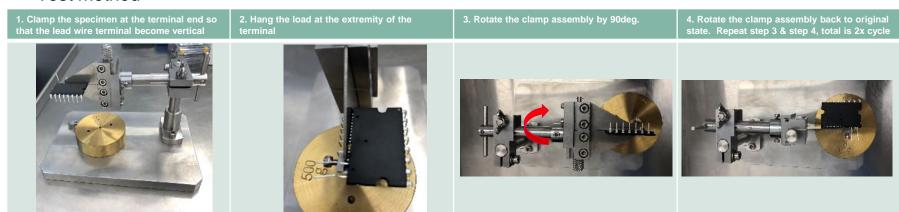

Nominal cross-sectional	Nominal lead wire diameter (d)	Pull force
area (S) mm ²	(In the case of circular cross section) mm	N
$0.03 < S \le 0.05$ $0.05 < S \le 0.07$	$0.2 < d \le 0.25$ $0.25 < d \le 0.3$	1 2.5
$0.07 < S \le 0.2$	$0.3 < d \le 0.5$	5
$0.2 < S \le 0.5$	$0.5 < d \le 0.8$	10
$0.5 < S \le 1.2$	0.8 < d ≤ 1.25	20
1.2 < S	1.25 < d	40

TABLE 5 METHOD III BENDING TEST LOAD

Nominal cross-sectional area (S) mm ²	Nominal lead wire diameter (d) (In the case of circular cross section) mm	Load N
$0.03 < S \le 0.05$ 0.05 < S < 0.07	$0.2 < d \le 0.25$	0.5 1.25
$0.07 < S \le 0.2$	$0.3 < d \le 0.5$	2.5
$0.2 < S \le 0.5$	$0.5 < d \le 0.8$	5
$0.5 < S \le 1.2$	0.8 < d ≤ 1.25	10
1.2 < S	1.25 < d	20

Package data – Pulling test (Horizontal)



		Test result		leasuremen ıntil pull out	Remark		
PKG	Datasheet spec	(Standard)	Control terminal		Power terminal		(Test method)
			Pin1	Pin 19	Pin 20	Pin 26	
IM323_L6G (Thickness: 0.38 T)	Control terminal : Load 5N Power terminal : Load 10N	Passed (11/11pcs)	50	56.8		3.5	JEITA-ED-7401
M – Company (Thickness : 0.38 T)	Control terminal : Load 5N Power terminal : Load 10N	Passed (11/11pcs)	59.5		59.5 74		JEITA-ED-7401
Mini FP (Thickness : 0.5 T)	No data Passed 90.7		0.7	92	2.1	JEITA-ED-7401	

Package data – Lead bend test

Test method

Bending test result

PKG	Datasheet spec	Limit	Test result	Remark
Tiny3.0	Control terminal: Load 2.5N, 90deg.bending Power terminal: Load 5N, 90deg.bending	Min : 2times	Passed (11/11pcs)	JEITA-ED-7401
M – Company	Control terminal : Load 2.5N, 90deg.bending Power terminal : Load 5N, 90deg.bending	Min : 2times	Passed (11/11pcs)	JEITA-ED-7401
Mini FP	No data	Min : 2times	Passed (11/11pcs)	JEITA-ED-7401

4. Package data – Torque test

			Measurement da	ta (until PKG brok	en and chipping)		
PKG	Datasheet spec		Remark				
	ороо	0.78Nm	1.0Nm	1.1Nm	1.2Nm	1.3Nm	
Tiny3.0	Max: 0.78Nm	3/3	3/3	3/3	3/3	3/3	All page
M – Company	Max: 0.78Nm	3/3	3/3	3/3	3/3	3/3	All pass

PKG	Datasheet spec		Remark				
	Орос	0.78Nm	1.0Nm	1.1Nm	1.2Nm	1.3Nm	
Tiny3.0	Max: 0.78Nm	3/3	3/3	3/3	3/3	3/3	All page
M – Company	Max: 0.78Nm	3/3	3/3	3/3	3/3	3/3	All pass

Part of your life. Part of tomorrow.