Cafineon

TriCore™
32-bit

TriCore™ V1.6

Instruction Set
32-bit Unified Processor Core

User Manual (Volume 2)

V1.0, 2012-05

Microcontrollers




Edition 2012-05

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2012 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.


http://www.infineon.com

Cafineon

TriCore™
32-bit

TriCore™ V1.6

Instruction Set
32-bit Unified Processor Core

User Manual (Volume 2)

V1.0, 2012-05

Microcontrollers




'y TriCore™ V1.6
@I ne& 32-bit Unified Processor Core

TriCore™ User Manual (Volume 2)

Revision History: V1.0 2012-05

Previous Versions:

Page Description
All TC1.6 First release
Trademarks

TriCore™ is a trademark of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to
continuously improve the quality of our documentation.

Please send your proposal (including a reference to this document) to:

ipdoc@infineon.com |Z|

User Manual (Volume 2) L-1 V1.0, 2012-05



'y TriCore™ V1.6
@I neon 32-bit Unified Processor Core

/

Table of Contents

Table of Contents

1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.2
1.2.1
1.2.2
1.23
1.3
1.3.1
1.3.2
1.3.3
1.4
1.5
1.6

2

2.1
211
2.1.2
213
214
215
2.1.6
2.1.7
2.1.8
219
2.1.10
2.1.11
2.2
2.3
2.31
2.3.2
24
241
24.2
243
244
245
246
247
2.4.8
2.5
2.51
252

Table of Contents . .. ... ... ... . . 1-1
Preface .. ... .. P-1
Instruction Set Information .. ... ... ... .. . ... 1-1
Instruction Syntax . . ... ... 11
Operand Definitions . . . . . ... e 1-1
Instruction MNemoNIicC . . . . ... ... e 11
Operation Modifiers . ... ... ... e 1-2
Data Type Modifiers . . . ... e e e 1-3
Opcode FOrmats . . ... ..o e e 1-3
16-bit Opcode Formats . ... ... . . . . e 1-3
32-bit Opcode Formats . ... ... .. e 1-4
Opcode Field Definitions . .. ... ... .. . 1-5
Instruction Operation Syntax .. ... ... 1-6
RTL FUNCHONS . . oo 1-8
Cache RTL FUNCHiONS . ... . e e 1-9
Floating Point Operation Syntax .. ........ ... i e e e 1-11
Coprocessor Instructions . . .. .. ... e 1-13
PSW Status Flags (User Status Bits) ......... ... .. . 1-14
List of OS and I/O Privileged Instructions ... ... ... ... . . . 1-14
Instruction Set Overview ... ... ... . . . 2-1
Integer Arithmetic . ... ... 2-1
MOV . 2-1
Addition and Subtraction . ... ... ... 2-1
Multiply and Multiply-Add . . . . .. 2-2
DIVISION . .. 2-2
Absolute Value, Absolute Difference ... ....... .. . . e 2-2
Min, Max, Saturate . . .. ... 2-2
Conditional Arithmetic Instructions ... ... . . . . 2-2
LogiCal . .. e 2-3
Count Leading Zeros, Ones and Signs . . ... ..o e 2-3
SNt L 2-4
Bit-Field Extract and Insert . ... ... . . . e 2-4
Packed Arithmetic . . . . . ... e 2-6
PSW (Program Status Word) Status Flags and Arithmetic Instructions . ..................... 2-8
USA0E . . 2-8
Saturation . . ... e 2-8
DSP Arithmetic . .. ... . e 2-8
SCaliNg . . o 2-8
Special Case: -1 * =1 .. 2-9
Guard Bits . ... e 2-9
RoUNdINg . . .. 2-9
Overflow and Saturation . .. ... ... . 2-9
Sticky Advance Overflow and Block Scaling if FFT .. ........ ... ... . . . . . . ... 2-9
Multiply and MAC . . ... 2-10
Packed Multiply and Packed MAC . . ... .. ... . . 2-10
Compare INStrUCtioNS . ... ... 2-11
Simple Compare . ... .. e 2-11
Accumulating Compare . . ... .. e 2-11

User Manual (Volume 2) L-1 V1.0, 2012-05



'y TriCore™ V1.6
@I neon 32-bit Unified Processor Core

/

253
254
26
2.6.1
2.6.2
2.6.3
2.7
2.8
29
2.91
29.2
293
2.10
2.10.1
2.10.2
2.10.3
2.11
2.11.1
2.11.2
2.12
2121
2122
2.12.3
2124
2.12.5
2.12.6
2127
2.13
2.14

3.1
3.2
3.3
3.3.1
3.3.2

Table of Contents

Compare with Shift .. ... . e 2-12
Packed Compare . ........ .. 2-12
Bit Operations . . .. ... .. 2-13
Simple Bit Operations . ... ... . e 2-13
Accumulating Bit Operations . .. ... ... ... . 2-14
Shifting Bit Operations . . ... . . 2-14
Address Arithmetic . ... ... .. e 2-15
Address CompPariSON ... ... 2-15
Branch Instructions . . ... .. . 2-16
Unconditional Branch . . .. ... 2-16
Conditional BranCh ... ... .. e 2-17
Loop INStruCtioNS . . . ... e 2-18
Load and Store Instructions . .. ... ... . e 2-19
Load/Store Basic Data Types . ... ..ot e 2-19
Load Bit ... e e 2-20
Store Bitand Bit Field ... ... ... . . . e 2-20
Context Related Instructions . . ... ... . 2-21
Lower Context Savingand Restoring . .......... ... e 2-21
Context Loading and Storing . . ... ... 2-21
System Instructions . . ... ... 2-22
System Call . ... e 2-22
Synchronization Primitives (DYSNC and ISYNC) . ... . 2-22
Access to the Core Special Function Registers (CSFRs) ........... ... ... ... .......... 2-23
Enabling and Disabling the Interrupt System . . .. .. ... ... ... . . . . 2-23
Return (RET) and Return From Exception (RFE) Instructions .......................... 2-24
Trap INStruCtioNS . . . . ... e 2-24
No-Operation (NOP) . ... . e 2-24
Coprocessor (COP) Instructions . . . .. ... 2-24
16-bit INStruCtioONS . . . . .. e 2-24
Instruction Set . . .. ... ... 3-1
CPU INSIrUCHIONS . . . .o o e 3-1
FPU INStructions . . . . ... 3-393
LS and IP Instruction Summary Lists . ... .. . 3-414
List of LS Instructions . .. ... ... .. e 3-414
List of IP INStruCtioNS . . . .. ... . e 3-415
List of Instructions by Shortname .. ... ... ... ... . ... L-1
List of Instructions by Longname . .. ... ... .. . .. .. L-5
Keyword Index . ... .. L-9

User Manual (Volume 2) 2 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Preface

Preface

TriCore™ is a unified, 32-bit microcontroller-DSP, single-core architecture optimized for real-time embedded
systems.

This document has been written for system developers and programmers, and hardware and software engineers.

* Volume 1 provides a detailed description of the Core Architecture and system interaction.
*+ Volume 2 (this volume) gives a complete description of the TriCore Instruction Set including optional
extensions for the Memory Management Unit (MMU) and Floating Point Unit (FPU).

It is important to note that this document describes the TriCore architecture, not an implementation. An
implementation may have features and resources which are not part of the Core Architecture. The documentation
for that implementation will describe all implementation specific features.

When working with a specific TriCore based product always refer to the appropriate supporting documentation.

TriCore Versions

There have been several versions of the TriCore Architecture implemented in production devices. This manual
documents the following architectures:

+ TriCore 1.6
Please note that:
» Unless stated otherwise in the text, all descriptions are common to all TriCore versions listed in this preface.

Additional Information
For information and links to documentation for Infineon products that use TriCore, visit:
http://www.infineon.com/32-bit-microcontrollers

User Manual (Volume 2) P-1 V1.0, 2012-05


www.infineon.com/32-bit-microcontrollers

'y TriCore™ V1.6
@I neon 32-bit Unified Processor Core

/

Preface

Text Conventions

This document uses the following text conventions:

The default radix is decimal.

— Hexadecimal constants are suffixed with a subscript letter ‘H’, as in: FFC,,.

— Binary constants are suffixed with a subscript letter ‘B’, as in: 1115

Register reset values are not generally architecturally defined, but require setting on startup in a given
implementation of the architecture. Only those reset values that are architecturally defined are shown in this
document. Where no value is shown, the reset value is not defined. Refer to the documentation for a specific
TriCore implementation.

Bit field and bits in registers are in general referenced as ‘Register name.Bit field’, for example PSW.IS. The
Interrupt Stack Control bit of the PSW register.

Units are abbreviated as follows:

— MHz = Megahertz.

— kBaud, kBit = 1000 characters/bits per second.

— MBaud, MBit = 1,000,000 characters per second.

— KByte = 1024 bytes.

— MByte = 1048576 bytes of memory.

— GByte = 1,024 megabytes.

Data format quantities referenced are as follows:

Byte = 8-bit quantity.

Half-word = 16-bit quantity.

Word = 32-bit quantity.

— Double-word = 64-bit quantity.

Pins using negative logic are indicated by an overbar: BRKOUT.

In tables where register bit fields are defined, the conventions shown in the following table are used in this
document.

Table 0-1 Bit Type Abbreviations

Abbreviation Description

—

Read-only. The bit or bit field can only be read.

Write-Only. The bit or bit field can only be written.

The bit or bit field can be read and written.

The bit or bit field can be modified by hardware (such as a status bit). ‘h’ can be combined
with ‘rw’ or ‘r’ bits, to form ‘rwh’ or ‘rh’ bits.

Reserved. Read value is undefined, but must be written with 0.

User Manual (Volume 2) P-2 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Information

1 Instruction Set Information

This chapter contains descriptions of all TriCore™ instructions. The instruction mnemonics are grouped into
families of similar or related instructions, then listed in alphabetical order within those groups.

Notes

1. All instructions and operators are signed unless stated ‘unsigned’.
2. Information specific to 16-bit instructions is shown in a box with a grey background.

1.1 Instruction Syntax

The syntax definition specifies the operation to be performed and the operands used. Instruction operands are
separated by commas.

111 Operand Definitions
The Operand definitions are detailed in the following table.

Table 1-1 Operand Definitions

Operand Definition

D[n] Data register n

Aln] Address register n

E[n] Extended data register n containing a 64-bit value made from an even/odd pair of registers

(D[n], D[n+1]). The format is little endian.
E[n][63:32] = D[n+1][31:0]; E[n][31:0] = D[n][31:0]

dispn Displacement value of ‘n’ bits, used to form the effective address in branch instructions
constn Constant value of ‘n’ bits, used as instruction operand

offn Offset value of ‘n’ bits, used to form the effective address in Load and Store instructions
pos1, pos2 Used to specify the position in a bit field instruction

pos Pos (position) is used with width to define a field

width Specifies the width of the bit field in bit field instructions

1.1.2 Instruction Mnemonic

An instruction mnemonic is composed of up to three basic parts.

* A base operation
— Specifies the instructions basic operation. For example: ADD for addition, J for jump and LD for memory
load. Some instructions such as OR.EQ, have more than one base operation, separated by a period (.).
* An operation modifier
— Specifies the operation more precisely. For example: ADDI for addition using an immediate value, or JL for
a jump that includes a link. More than one operation modifier may be used for some instructions (ADDIH for
example).
* An operand (data type) modifier.
— Gives the data type of the source operands. For example: ADD.B for byte addition, JZ.A for a jump using an
address register and LD.H for a half-word load. The data type modifier is separated by a period (.).

Using the ADDS.U instruction as an example:

+ ‘ADD’ is the base operation.
+ ‘S’is an operation modifier specifying that the result is saturated.
+ ‘U is a data type modifier specifying that the operands are unsigned.

User Manual (Volume 2) 1-1 V1.0, 2012-05



'y TriCore™ V1.6
@I ne& 32-bit Unified Processor Core

Instruction Set Information

Some instructions, typically 16-bit instructions, use a General Purpose Register (GPR) as an implicit source or
destination.

Table 1-2 Implicit Operand Definitions

Operand Definition

D[15] Implicit Data register for many 16-bit instructions

A[10] Stack Pointer (SP)

A[11] Return Address (RA) register for CALL, JL, JLA and JLI instructions, and Return PC value
on interrupts

A[15] Implicit Address Register for many 16-bit Load/Store instructions

Note: In the syntax section of the instruction descriptions, the implicit registers are included as explicit operands.
However they are not explicitly encoded in the instructions.

113 Operation Modifiers

The operation modifiers are shown in the following table. The order of the modifiers in this table is the same as the
order in which they appear as modifiers in an instruction mnemonic.

Table 1-3 Operation Modifiers

Operation Name Description Example

Modifier

C Carry Use and update PSW carry bit ADDC

I Immediate Large immediate ADDI

H High Word Immediate value put in most-significant bits ADDIH

S Saturation Saturate result ADDS

X Carry out Update PSW carry bit ADDX

EQ Equal Comparison equal JEQ

GE Greater than Comparison greater than or equal JGE

L Link Record link (jump subroutine) JL
Absolute Absolute (jump) JLA

I Indirect Register indirect (jump) JLI

LT Less than Comparison less than JLT

NE Not equal Comparison not equal JNE

D Decrement Decrement counter JNED

I Increment Increment counter JNEI

Z Zero Use zero immediate JNZ

M Multi-precision Multi-precision result (>32-bit) in Q format MULM

R Round Round result MULR

N Not Logical NOT SELN

User Manual (Volume 2) 1-2 V1.0, 2012-05



'y TriCore™ V1.6
@I ne& 32-bit Unified Processor Core

Instruction Set Information

114 Data Type Modifiers

The data type modifiers used in the instruction mnemonics are listed here. When multiple suffixes occur in an
instruction, the order of occurrence in the mnemonic is the same as the order in this table:

Table 1-4 Data Type Modifiers

Data Type Name Description Example
Modifier

D Data 32-bit data MOV.D
D Double-word 64-bit data/address LD.D

w Word 32-bit (word) data EQ.W

A Address 32-bit address ADD.A
Q Q Format 16-bit signed fraction (Q format) MADD.Q
H Half-word 16-bit data or two packed half-words ADD.H
B Byte 8-bit data or four packed bytes ADD.B
T Bit 1-bit data AND.T

U Unsigned Unsigned data type ADDS.U

Note: Q format can be used as signed half-word multipliers.

1.2 Opcode Formats

1.21 16-bit Opcode Formats

Note: Bit[0] of the op1 field is always 0 for 16-bit instructions.

Table 1-5 16-bit Opcode Formats

15-14 13-12 11-10 09-08 07-06 05-04 03-02 01-00
SB disp8 op1
SBC const4 disp4 op1
SBR s2 disp4 op1
SBRN n disp4 op1
SC const8 op1
SLR s2 d op1
SLRO off4 d op1
SR op2 s1/d op1
SRC const4 s1/d op1
SRO s2 off4 op1
SRR s2 s1/d op1
SRRS s2 s1/d n op1
SSR s2 s1 op1
SSRO off4 s1 op1

User Manual (Volume 2) 1-3 V1.0, 2012-05



(infineon.

TriCore™ V1.6
32-bit Unified Processor Core

1.2.2

Note: Bit[0] of the op1 field is always 1 for 32-bit instructions.

32-bit Opcode Formats

Table 1-6  32-bit Opcode Formats

Instruction Set Information

o (-] [{<] < N o O (L] < N o
(3] N N N N AN N| ~ - -~ -— -
- | & ~ 0 I - - & ~ ) “ - ® |76 <
™ N N N N AN N| ~— - - - - (7] wn
ABS off18 op2 |off18 off18 s1/d
[9:6] [13:10] off18[5:0] [17:14] op1
ABSB off18 op2 |off18 off18 b |bpos3
[9:6] [13:10] off18[5:0] [17:14] op1
B disp24[15:0] disp24[23:16]
op1
BIT d pos2 ‘ op2 ‘ pos1 s2 s1 op1
BO off10[9:6] op2 off10[5:0] s2 s1/d
op1
BOL 0off16[9:6] off16[15:10] off16[5:0] s2 s1/d
op1
BRC o |disp15 const4 s1
P op1
2
BRN o |disp15 n[3:0] s1 op1
p —
2 =
BRR o |disp15 s2 s1 op1
p
2
RC d op2 const9 s1 op1
RCPW d pos op2 width const4 s1 op1
RCR d s3 op2 const9 s1 op1
RCRR d s3 op2 - const4 s1 op1
RCRW d s3 op2 width const4 s1 op1
RLC d const16 s1 op1
RR d op2 - n s2 s1 op1
RR1 d op2 n s2 s1 op1
RR2 d op2 s2 s1 op1
RRPW  |d pos (op2 | width s2 s1 op1
RRR d s3 op2 - n s2 s1 op1
RRR1 d s3 op2 n s2 s1 op1
RRR2 d s3 op2 s2 s1 op1
RRRR d s3 op2 - s2 s op1
RRRW d s3 op2 width s2 s1 op1
SYS - op2 - s1/d op1
User Manual (Volume 2) 1-4 V1.0, 2012-05



con.

TriCore™ V1.6
32-bit Unified Processor Core

Instruction Set Information

1.2.3 Opcode Field Definitions

Table 1-7 Opcode Field Definitions

Name Width Definition

s1 4 Source register(s) one

s2 4 Source register(s) number two

s3 4 Source register(s) number three

d 4 Destination register
For a register pair (E), the coding follows the register number:
E[0] = 0000g, E[2] = 0010g, E[4] = 0100g, and so on.

b 1 Bit value

bpos3 3 Bit position in a byte

pos 5 Bit position in a register

pos1 5 Bit position in a register

pos2 5 Bit position in a register

width 5 Bit position in a register

n 2 + Multiplication result shift value (only 005 and 015 are valid).
* Address shift value in add scale.
+ Default to zero in all other operations using the RR format.
» Coprocessor number for coprocessor instructions.

const4 4 4-bit constant

const9 9 9-bit constant

const16 16 16-bit constant

disp4 4 4-bit displacement

disp8 8 8-bit displacement

disp15 15 15-bit displacement

disp24 24 24-bit displacement

off4 4 4-bit offset

off10 10 10-bit offset

off16 16 16-bit offset

- - Reserved field.
Read value is undefined; should be written with zero (0).
Must be set to zero (0) to allow for future compatibility.

op1 Primary Opcode

op2 Secondary Opcode

User Manual (Volume 2)

V1.0, 2012-05



(infineon.

TriCore™ V1.6
32-bit Unified Processor Core

Instruction Set Information

1.3 Instruction Operation Syntax

The operation of each instruction is described using a ‘C-like’ Register Transfer Level (RTL) notation.

Notes

1. The numbering of bits begins with bit zero, which is the least-significant bit of the word.
2. All intermediate ‘result' values are assumed to have infinite precision unless otherwise indicated.

Table 1-8 RTL Syntax

Syntax Definition

bpos3 Bit position

const’n’ Constant value of ‘n’bits, used as instruction operand

disp’n’ Displacement value of ‘n’ bits, used to form the effective address in branch instructions

(expression)[p]

A single bit, wiht ordinal index ‘p’ in the bit field ‘expression’

n’bx Constant bit string, where ‘n’ is the number of bits in the constant and X’ is the constant
in binary. For example; 2'b11

n’hx Constant bit string, where ‘n’ is the number of bits in the constant and X’ is the constant
in hexadecimal. For example, 16’hFFFF

offn’ Offset value of ‘n’ bits, used to form the effective address in Load and Store instructions

pos Single bit position

signed A value that can be positive, negative or zero

ssov Saturation on signed overflow

suov Saturation on unsigned overflow

unsigned A value that can be positive or zero

{x,y} A bit string where X’ and 'y’ are expressions representing a bit or bit field. Any number
of expressions can be concatenated. For example, {x,y,z}

Aln] Address register ‘n’

CR Core Register

D[n] Data register ‘n’

EA Effective Address

E[n] Data register containing a 64-bit value, constructed by pairing two data registers. The

least-significant bit is in the even register D[n], and the most significant bit is in the odd
register D[n+1]

M(EA, data_size)

Memory locations beginning at the specified byte location EA, and extending to EA +
data_size - 1.
data_size = byte, half-word, word, , 16-word

<mode> And addressing mode

PIn] Address register containing a 64-bit value, constructed by pairing two address registers.
The least-significant bit is in the even register A[n], and the most significant bit is in the
odd register A[n+1]

PC The address of the instruction in memory

[x:y] Bits y, y+1, ..., x where x>y;

For example D[a][x:y], if x=y then this is a single bit range which is also denoted by [x],
as in D[a][x]. For cases where x<y, this denotes an empty range.

User Manual (Volume 2)

1-6 V1.0, 2012-05



TriCore™ V1.6

32-bit Unified Processor Core

Table 1-8 RTL Syntax

Instruction Set Information

Syntax Definition

TRUE Boolean true. Equivalent to integer 1

FALSE Boolean false. Equivalent to integer 0

AND Logical AND. Returns a boolean result

OR Logical OR. Returns a boolean result

XOR Logical XOR. Returns a boolean result

! Logical NOT. Returns a boolean result

A Bitwise XOR

& Bitwise AND

| Bitwise OR

~ Bitwise NOT

< Less than. Returns a boolean result

> Greater than. Returns a boolean result

<= Less than or equal to. Returns a boolean result
>= Greater than or equal to. Returns a boolean result
>> Right shift. High order bits shifted in are 0’s

<< Left shift. Low order bits shifted in are 0’s

+ Add

- Subtract

* Multiply

/ Divide

% Modulo

= Equal to (assignment)

== Is equal to (comparison). Returns a boolean result
1= Not equal to. Returns a boolean result

= Approximately equal to

[l Parallel operation

?: Conditional expression (Ternary operator)

0 Infinity

I Comment

User Manual (Volume 2)

1-7

V1.0, 2012-05



(infineon.

TriCore™ V1.6
32-bit Unified Processor Core

1.31 RTL Functions

Instruction Set Information

Register Transfer Level functions are defined in the table which follows.

Table 1-9 RTL Functions

Function

Definition

abs(x)

abs(x) returns ((x <0) ? (0 - x) : x);

cache_address_ivld(EA)

Defined in ‘Cache RTL Functions’, which follows

cache_address_wb(EA)

Defined in ‘Cache RTL Functions’, which follows

cache_address_wi(EA)

Defined in ‘Cache RTL Functions’, which follows

cache_index_ivid

Defined in ‘Cache RTL Functions’, which follows

cache_index_wb

Defined in ‘Cache RTL Functions’, which follows

cache_index_wi

Defined in ‘Cache RTL Functions’, which follows

cache_index_wb(EA)

Defined in the ‘Cache RTL Functions’ section, which follows. ( TriCore1.6 )

cache_index_wi(EA)

Defined in the ‘Cache RTL Functions’ section, which follows. ( TriCore1.6 )

carry(a,b,c)

carry(a,b,c) {
result = a + b + ¢; // unsigned additions
return result[32];

cdc_decrement()

If PSW.CDC == 7’b1111111 returns FALSE, otherwise decrements
PSW.CDC.COUNT and returns TRUE if PSW.CDC.COUNT underflows,
otherwise returns FALSE

cdc_increment()

If PSW.CDC == 7'b1111111 returns FALSE, otherwise increments
PSW.CDC.COUNT and returns TRUE if PSW.CDC.COUNT overflows,
otherwise returns FALSE

cdc_zero()

Returns TRUE if PCW.CDC.COUNT == 0 or if PSW.CDC == 7'b1111111,
otherwise returns FALSE

leading_ones(x)

Returns the number of leading ones of X’

leading_signs(x)

Returns the number of leading sign bits of X’

leading_zeros(x)

Returns the number of leading zeros of X’

reverse16(n) {n[0], n[1], n[2], n[3], n[4], n[3], n[6], n[7], n[8], n[9], n[10], n[11], n[12], n[13],
n[14], n[15]}
round16(n) = {(x + 32'h00008000)[31:16],16'h0000};
ssov(X,Y) max_pos = (1 << (y-1))-1;
max_neg = -(1 << (y - 1));
return ((x > max_pos) ? max_pos : ((x < max_neg) ?
max_neg : X ));
Suov(x,y) max_pos = (1 <<y)-1;
return ((x > max_pos) ? max_pos : ((x <0) ? 0 : x));
sign_ext(x) Sign extension; high-order bit of x is left extended
trap(x) Instruction will take trap ‘x’

zero_ext(x)

Zero extensions; high-order bits are setto 0

User Manual (Volume 2)

1-8 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Information

1.3.2 Cache RTL Functions
CACHE([ ] is a syntactic structure which hides the implementation characteristics of the cache implemented.
CACHE can be associatively accessed either by:

» A single argument which is an address.

» Two arguments consisting of implementation defined ranges for set_index and set_element.
In either case the CACHE] ] access returns a structure with:

* Boolean validity information (CACHE[ ].valid).

» Boolean data modification information (CACHE[ ].modified).

* Physical address of the copied location (CACHE] ].physical_address).

» Stored data associated with the address (CACHE[ ].data).

The cache function descriptions are given in the following table.

Notes

1. ‘cacheline’, which appears in the cache function descriptions, is the size of the cache line in bytes and is
implementation dependent.

2. ‘index’ and ‘elem’, which appear in the cache function descriptions, are the set_index and set_element values.
These values are implementation dependent.

Table 1-10 Cache Functions

Function Definition
cache_address_ivId(EA) if (CACHE[EA].valid==1) then CACHE [EA].valid=0;
cache_address_wb(EA) if (CACHE[EA].valid==1) AND (CACHE[EA].modified==1)) then {

pa = CACHE[EA].physical_address;
M[pa,cacheline] = CACHE[EA].data;
CACHE[EA].modified = 0;

}
cache_address_wi(EA) if (CACHE[EA].valid==1) then {

if (CACHE[EA].modified==1) then {
pa = CACHE[EA].physical_address;
M[pa,cacheline] = CACHE[EA].data;
}
CACHE[EA].modified = 0;
CACHE[EA].valid = 0;

}
cache_index_ivid if (CACHE[index,elem].valid = = 1) then CACHE][index,elem].valid = 0;
cache_index_wb if ((CACHE[index,elem].valid==1) AND (CACHE[index,elem].modified==1))
then {

pa = CACHE[index,elem].physical_address;
M[pa,cacheline] = CACHE[index,elem].data;
CACHE]Jindex,elem].modified = 0;

}

User Manual (Volume 2) 1-9 V1.0, 2012-05



'y TriCore™ V1.6
@I ne& 32-bit Unified Processor Core

Instruction Set Information

Table 1-10 Cache Functions
Function Definition

cache_index_wi if (CACHE[index,elem].valid==1) then {

if (CACHE][index,elem].modified==1) then {
pa = CACHE]Jindex,elem].physical_address;
M[pa,cacheline] = CACHE][index,elem].data;
}
CACHE][index,elem].modified = 0;
CACHE]Jindex,elem].valid = 0;

}
cache_Index_wb(location) if ((CACHE[index,elem].valid==1) AND (CACHE[index,elem].modified==1))
then {

pa = CACHE]Jindex,elem].physical_address;

M[pa,cacheline] = CACHE][index,elem].data;

CACHE][index,elem].modified = 0;

}
cache_index_wi(location) if (CACHE[index,elem].valid==1) then {

if (CACHE[index,elem].modified==1) then {
pa = CACHEJindex,elem].physical_address;
M[pa,cacheline] = CACHE[index,elem].data;
}
CACHE][index,elem].modified = 0;
CACHE][index,elem].valid = 0O;

}

User Manual (Volume 2) 1-10 V1.0, 2012-05



(infineon.

TriCore™ V1.6
32-bit Unified Processor Core

Instruction Set Information

1.3.3 Floating Point Operation Syntax

The following table defines the floating point operation syntax.

Table 1-11 Floating Point Operation Syntax

Syntax Definition

ADD_NAN 7FC00001y

MUL_NAN 7FC00002,,

SQRT_NAN 7FC00004,,

DIV_NAN 7FC00008,,

POS_INFINITY 7F800000

NEG_INFINITY FF800000,

is_s_nan(x) Takes the IEEE754 32-bit single precision floating point format value x’ and
returns the boolean result of the expression:
(x[30:23] == 8'b11111111) AND (x[22] == 1'b0) AND (x[21:0] != 0);

is_q_nan(x) Takes the IEEE754 32-bit single precision floating point format value x’ and
returns the boolean result of the expression:
(x[30:23] == 8'b11111111) AND (x[22] == 1’b1);

is_nan(x) Takes the IEEE754 32-bit single precision floating point format value X’ and
returns the boolean result of the expression: (is_s_nan(x) OR is_qg_nan(x));

is_pos_inf(x) Takes the IEEE754 32-bit single precision floating point format value x’ and
returns the boolean result of the expression:
(x[31:0] == POS_INFINITY);

is_neg_inf(x) Takes the IEEE754 32-bit single precision floating point format value X’ and
returns the boolean result of the expression:
(x[31:0] == NEG_INFINITY);

is_inf(x) Takes the IEEE754 32-bit single precision floating point format value X’ and
returns the boolean result of the expression: (is_neg_inf(x) OR is_pos_inf(x));

is_zero(x) Takes the IEEE754 32-bit single precision floating point format value X’ and

returns the boolean result of the expression: (x[30:0] == 0);

is_denorm(x)

Takes the IEEE754 32-bit single precision floating point format value x’ and
returns the boolean result of the expression: (x[30:23] == 0) AND (x[22:0] != 0);

denorm_to_zero(x)

If the IEEE754 32-bit single precision floating point format value ‘X’ is a
denormal value return the appropriately signed infinitely accurate real value 0.
Otherwise return ‘x’ as an infinitely accurate real value; i.e.

if((x < 0) AND (x > -2-126)) then return -0.0;

else if((x > 0) AND (x < 2126)) then return +0.0;

else return f_real(x);

round_to_integer(x,y)

Returns a signed integer result of infinite width by rounding the IEEE754 32-bit
single precision floating point format value ‘x’ to an integer value using the
IEEE754 mode specified by ‘y’.

round_to_unsigned(x,y)

Returns an unsigned integer result of infinite width by rounding the IEEE754
32-bit single precision floating point format value X’ to an integer value using
the IEEE754 mode specified by ‘y’.

round_to_q31(x,y)

Returns a Q format result of infinite width by rounding the real value ‘X’ to a Q
format value using the IEEE754 mode specified by ‘y’.

User Manual (Volume 2)

1-11 V1.0, 2012-05



(infineon.

TriCore™ V1.6
32-bit Unified Processor Core

Instruction Set Information

Table 1-11 Floating Point Operation Syntax

Syntax Definition

i_real(x) Returns a infinitely accurate real number of equal value to the 32-bit signed
integer value ‘X’

u_real(x) Returns a infinitely accurate real number of equal value to the 32-bit unsigned
integer value ‘X’

f_real(x) Returns the IEEE754 32-bit single precision floating point format value ‘x’ as
an infinitely accurate real value.

g_real(x) Returns the Q31 format value ‘X’ as an infinitely accurate real value.

add(x,y) Adds the real value ‘X’ to the real value 'y’ and returns an infinitely accurate real
result.

mul(x,y) Multiply the real value X’ by the real value ‘y’ and return an infinitely accurate
real result.

divide(x,y) Divides the real value ‘X’ by the real value ‘y’ and returns an infinitely accurate

real result.

ieee754_round(x,y)

Rounds the real value X’ using the type of rounding specified by ‘y’ compliant
with IEEE754.

ieee754 _32bit_format(x)

Returns the real value ‘X’ in the standard 32-bit single precision IEEE754
floating point format. ‘X’ is converted to the correct IEEE754 result on overflow
or underflow.

ieee754_It(x,y)

Returns TRUE if ‘X’ is less than ‘y’ according to the IEEE754 rules for 32-bit
single precision floating point numbers otherwise returns FALSE.

ieee754 gt(x,y)

Returns TRUE if X’ is greater than ‘y’ according to the IEEE754 rules for 32-bit
single precision floating point numbers otherwise returns FALSE.

ieee754_eq(x,y)

Returns TRUE if X’ is equal to ‘y’ according to the IEEE754 rules for 32-bit
single precision floating point numbers otherwise returns FALSE.

fp_abs(x)

Returns the infinitely accurate absolute value of the real value X’; i.e. (x < 0.0)
?(0.0-x):x;

approx_inv_sqrt(x)

Takes the real argument x and returns the approximate inverse square root (x°
05) to at least 6.75 bits of precision.

User Manual (Volume 2)

1-12 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Information

1.4 Coprocessor Instructions

The TriCore® instruction set architecture may be extended with implementation defined, application specific
coprocessor instructions. These instructions are executed on dedicated coprocessor hardware attached to the
coprocessor interface.

The coprocessors operate in a similar manner to the integer instructions, receiving operands from the general
purpose data registers, returning a result to the same registers.

The architecture supports the operation of up to four concurrent coprocessors (n =0, 1, 2, 3).

Two of these (n =0, 1) are reserved for use by the TriCore CPU, allowing two (n = 2, 3) for use by the application
hardware.

COPROCESSOR. D[d], D[a], DIb] {)

3 2827 20 19 18 17 16 145 12 11 g8 7 0
| C | op2 | - | n | b a 48,

D[e]= op2n] (D[], DR,

COPROCESSOR D[c], D[d], D[a], D[b] {R)

k] 2827 24 23 20 19 18 17 16 14 12 1 87 0
(= [ o [ [ [+ v [ =
Dcl= opZ(n] (D[d], D], DIk,

Figure 1-1 Coprocessor Instructions

Table 1-12 Coprocessor Status Flags

C Not set by this instruction
V Not set by this instruction
SV Not set by this instruction
AV Not set by this instruction
SAV Not set by this instruction

User Manual (Volume 2) 1-13 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Information

1.5 PSW Status Flags (User Status Bits)

The Status section of a given instruction description lists the five status flags that may be affected by the operation.
The PSW logically groups the five user bits together as shown below.

Notes

1. In the following table, ‘result’ for 32-bit instructions is D[c]. For 16-bit instructions it is D[a] or D[15](when
implicit).

2. The PSW register is defined in Volume 1, Core Registers.

Table 1-13 PSW Status Flags
Field PSW Bit Type Description

C 31 rw Carry

The result has generated a carry_out.

if (carry_out) then PSW.C = 1 else PSW.C = 0;

V 30 rw Overflow *

The result exceeds the maximum or minimum signed or unsigned value,
as appropriate.

if (overflow) then PSW.V = 1 else PSW.V = 0;

SV 29 rw Sticky Overflow

A memorized overflow. Overflow is defined by V, above.

if (overflow) then PSW.SV = 1 else PSW.SV = PSW.SV;

AV 28 rw Advance Overflow *
if (advanced_overflow) then PSW.AV = 1 else PSW.AV = 0;

SAV 27 rw Sticky Advance Overflow
A memorized advanced overflow. Advanced_overflow is defined by AV,
above.

if (advanced_overflow) then PSW.SAV = 1 else PSW.SAV = PSW.SAV;

* Programming Note: V (Overflow) and AV (Advanced Overflow) Status Bits

Because the TriCore Instruction Set contains many compound instructions (MULR, MAC, ABSDIF), it is necessary
to understand when the overflow flags are computed.

The AV and V flags are computed on the final operation, except in the case of instructions with saturation, when
it is always before saturation. Saturation is not part of the operation as such, but is the resulting effect (chosen by
the user) of an overflow situation.

1.6 List of OS and I/O Privileged Instructions
The following is a list of operating system Input/Output priviliged instructions:

Table 1-14 OS and /O Privileged Instructions

Kernel (Supervisor) User-1 Mode User-0 Mode

BISR ENABLE All others (including DEBUG)
MTCR DISABLE

CACHELI RESTORE

CACHEA.I

RFM

User Manual (Volume 2) 1-14 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

2 Instruction Set Overview

This chapter provides an overview of the TrICore™ Instruction Set Architecture (ISA). The basic properties and
use of each instruction type are desribed, together with a description of the selection and use of the 16-bit (short)
instructions.

21 Integer Arithmetic

This section covers the following topics:

* Move, page 2-1

» Addition and Subtraction, page 2-1

* Multiply and Multiply-Add, page 2-2

» Division, page 2-2

* Absolute Value, Absolute Difference, page 2-2
* Min, Max, Saturate, page 2-2

+ Conditional Arithmetic Instructions, page 2-2
* Logical, page 2-3

» Count Leading Zeros, Ones and Signs, page 2-3
+ Shift, page 2-4

+ Bit-Field Extract and Insert, page 2-4

211 Move

The move instructions move a value in a data register or a constant value in the instruction to a destination data
register, and can be used to quickly load a large constant into a data register.

A 16-bit constant is created using MOV (which sign-extends the value to 32-bits) or MOV.U (which zero-extends
to 32-bits).

The MOVH (Move High-word) instruction loads a 16-bit constant into the most-significant 16 bits of the register
and zero fills the least-significant 16-bits. This is useful for loading a left-justified constant fraction.

Loading a 32-bit constant is achieved by using a MOVH instruction followed by an ADDI (Add Immediate), or a
MOV.U followed by ADDIH (Add Immediate High-word).

2.1.2 Addition and Subtraction
The addition instructions have three versions:

* ADD (No saturation)
» ADDS (Signed saturation)
+ ADDS.U (Unsigned saturation)

For extended precision addition, the ADDX (Add Extended) instruction sets the PSW carry bit to the value of the
ALU carry out. The ADDC (Add with Carry) instruction uses the PSW carry bit as the carry in, and updates the
PSW carry bit with the ALU carry out. For extended precision addition, the least-significant word of the operands
is added using the ADDX instruction, and the remaining words are added using the ADDC instruction. The ADDC
and ADDX instructions do not support saturation.

It is often necessary to add 16-bit or 32-bit constants to integers. The ADDI (Add Immediate) and ADDIH (Add
Immediate High) instructions add a 16-bit, sign-extended constant or a 16-bit constant, left-shifted by 16. Addition
of any 32-bit constant is carried out using ADDI followed by an ADDIH.

All add instructions except those with constants, have similar corresponding subtract instructions. Because the
immediate of ADDI is sign-extended, it may be used for both addition and subtraction.

The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using zero as the constant yields
negation as a special case.

User Manual (Volume 2) 2-1 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

21.3 Multiply and Multiply-Add

For the multiplication of 32-bit integers, the available mnemonics are:
»  MUL (Multiply Signed)

*  MULS (Multiply Signed with Saturation)

+  MULS.U (Multiply Unsigned with Saturation)

These translate to machine instructions producing either 32-bit or 64-bit results, depending on whether the
destination operand encoded in the assembly instruction is a single data register D[n] (where n =0, 1, ...15), or
an extended data register E[n] (where n =0, 2, ...14).

In those cases where the number of bits in the destination is 32-bit, the result is taken from the lower bits of the
product. This corresponds to the standard ‘C’ multiplication of two integers.

The MAC instructions (Multiplication with Accumulation) follow the instruction forms for multiplication; MADD,
MADDS, MADD.U, MADDS.U, and MSUB, MSUBS, MSUB.U, MSUBS.U.

In all cases a third source operand register is specified, which provides the accumulator to which the multiplier
results are added.

21.4 Division

Division of 32-bit by 32-bit integers is supported for both signed and unsigned integers. Because an atomic divide
instruction would require an excessive number of cycles to execute, a divide-step sequence is used, which keeps
interrupt latency down. The divide step sequence allows the divide time to be proportional to the number of
significant quotient bits expected.

The sequence begins with a Divide-Initialize instruction: DVINIT(.U), DVINIT.H(U) or DVINIT.B(U), depending on
the size of the quotient and on whether the operands are to be treated as signed or unsigned. The divide
initialization instruction extends the 32-bit dividend to 64-bits, then shifts it left by 0, 16 or 24-bits. It simultaneously
shifts in that many copies of the quotient sign bit to the low-order bit positions. 4, 2 or 1 Divide-Step instructions
(DVSTEP or DVSTEP.U) then follow. Each Divide-Step instruction develops eight bits of quotient.

At the end of the divide step sequence, the 32-bit quotient occupies the low-order word of the 64-bit dividend
register pair, and the remainder is held in the high-order word. If the divide operation was signed, the Divide-Adjust
instruction (DVADJ) is required to perform a final adjustment of negative values. If the dividend and the divisor are
both known to be positive, the DVADJ instruction can be omitted.

21.5 Absolute Value, Absolute Difference

A common operation on data is the computation of the absolute value of a signed number or the absolute value
of the difference between two signed numbers. These operations are provided directly by the ABS and ABSDIF
instructions. There is a version of each instruction which saturates when the result is too large to be represented
as a signed number.

2.1.6 Min, Max, Saturate

Instructions are provided that directly calculate the minimum or maximum of two operands. The MIN and MAX
instructions are used for signed integers, and MIN.U and MAX.U are used for unsigned integers.

The SAT instructions can be used to saturate the result of a 32-bit calculation before storing it in a byte or half-
word, in memory or a register.

21.7 Conditional Arithmetic Instructions
Conditional arithmetic instructions are:

+ CADD (Conditional Add) and CADDN (Conditional Add-Not)
+ CSUB (Conditional Subtract) and CSUBN (Conditional Subtract-Not)
» SEL (Select) and SELN (Select-Not)

User Manual (Volume 2) 2-2 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

The conditional instructions provide efficient alternatives to conditional jumps around very short sequences of
code. All of the conditional instructions use a condition operand that controls the execution of the instruction.

The condition operand is a data register, with any non-zero value interpreted as TRUE, and a zero value
interpreted as FALSE. For the CADD and CSUB instructions, the addition/subtraction is performed if the condition
is TRUE. For the CADDN and CSUBN instructions it is performed if the condition is FALSE.

The SEL instruction copies one of its two source operands to its destination operand, with the selection of source
operands determined by the value of the condition operand (This operation is the same as the C language ?
operation). A typical use might be to record the index value yielding the larger of two array elements:

index max = (al[i] > al[j]) 2 i : 3J;

If one of the two source operands in a SEL instruction is the same as the destination operand, then the SEL
instruction implements a simple conditional move. This occurs often in source statements of the general form:

if (<condition>) then <variable> = <expression>;

Provided that <expression> is simple, it is more efficient to evaluate it unconditionally into a source register, using
a SEL instruction to perform the conditional assignment, rather than conditionally jumping around the assignment
statement.

21.8 Logical
The TriCore architecture provides a complete set of two-operand, bit-wise logic operations. In addition to the AND,

OR, and XOR functions, there are the negations of the output; NAND, NOR, and XNOR, and negations of one of
the inputs; ANDN and ORN (the negation of an input for XOR is the same as XNOR).

219 Count Leading Zeros, Ones and Signs

To provide efficient support for normalization of numerical results, prioritization, and certain graphics operations,
three Count Leading instructions are provided:

* CLZ (Count Leading Zeros)
+ CLO (Count Leading Ones)
+ CLS (Count Leading Signs)

These instructions are used to determine the amount of left shifting necessary to remove redundant zeros, ones,
or signs.

Note: The CLS instruction returns the number of leading redundant signs, which is the number of leading signs
minus one.

The following special cases are defined:

+ CLZ(0)=32,CLO(-1)=32

+ CLS(0) = CLS(-1) =31

For example, CLZ returns the number of consecutive zeros starting from the most significant bit of the value in the

source data register. In the example shown in Figure 2-1, there are seven zeros in the most significant portion of
the input register. If the most significant bit of the input is a 1, CLZ returns 0:

User Manual (Volume 2) 2-3 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

Data Register
[000000011100000110111010101110101101|

Count Leading Zero Logic

FE2%

Figure 2-1 Operation of the CLZ Instruction

TC1044

21.10 Shift

The shift instructions support multi-bit shifts.

The shift amount is specified by a signed integer (n), which may be the contents of a register or a sign-extended
constant in the instruction.

If n >= 0, the data is shifted left by n[4:0]; otherwise, the data is shifted right by (-n)[4:0].
The (logical) shift instruction SH, shifts in zeros for both right and left shifts.
The arithmetic shift instruction SHA, shifts in sign bits for right shifts and zeros for left shifts.

The arithmetic shift with saturation instruction SHAS, will saturate (on a left shift) if the sign bits that are shifted out
are not identical to the sign bit of the result.

21.11 Bit-Field Extract and Insert
The TriCore architecture supports three, bit-field extract instructions:

*  EXTR (Extract bit field)
+  EXTR.U (Extract bit field unsigned)
+ DEXTR (Extract from Double Register)

The INSERT instruction is described on Page 2-6.

EXTR and EXTR.U

The EXTR and EXTR.U instructions extract width consecutive bits from the source, beginning with the bit number
specified by the pos (position) operand. The width and pos can be specified by two immediate values, by an
immediate value and a data register, or by a data register pair.

The EXTR instruction fills the most-significant bits of the result by sign-extending the bit field extracted (duplicating
the most-significant bit of the bit field). See Figure 2-2.

EXTR.U zero-fills the most significant (32-w) bits of the result. See Figure 2-3.

User Manual (Volume 2) 2-4 V1.0, 2012-05



(infineon.

TriCore™ V1.6
32-bit Unified Processor Core

Instruction Set Overview

31

«—— Pos ——»
0

Source Registers

31

Destination Register

S\\O

Sign Fill
— Width —»
TC1046B
Figure 2-2 EXTR Operation
4—— Pos ——»
31 0
Source Registers
Destination Register 0
Zero fill

<4+—— Width —»

TC1045B

Figure 2-3 EXTR.U Operation

DEXTR

The DEXTR instruction concatenates two data register sources to form a 64-bit value from which 32 consecutive
bits are extracted. The operation can be thought of as a left shift by pos bits, followed by the truncation of the least-
significant 32-bits of the result. The value of pos is contained in a data register, or is an immediate value in the

instruction.

The DEXTR instruction can be used to normalize the result of a DSP filter accumulation in which a 64-bit
accumulator is used with several guard bits. The value of pos can be determined by using the CLS (Count Leading
Signs) instruction. The DEXTR instruction can also be used to perform a multi-bit rotation by using the same
source register for both of the sources (that are concatenated).

¢—Pos—p
63

32 31

Source Registers

31

/

Destination Register

TC1047B

Figure 2-4 DEXTR Operation

User Manual (Volume 2) 2-5

V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

INSERT

The INSERT instruction takes the width least-significant bits of a source data register, shifted left by pos bits and
substitutes them into the value of another source register. All other (32-w) bits of the value of the second register
are passed through. The width and pos can be specified by two immediate values, by an immediate value and a
data register, or by a data register pair.

There is also an alternative form of INSERT that allows a zero-extended 4-bit constant to be the value which is
inserted.

g Width___y,
31 0
Source Register
Destination Register
¢——Pos————P
TC1048B

Figure 2-5 INSERT Operation

2.2 Packed Arithmetic

The packed arithmetic instructions partition a 32-bit word into several identical objects which can then be fetched,
stored, and operated on in parallel. These instructions in particular allow the full exploitation of the 32-bit word of
the TriCore architecture in signal and data processing applications.

The TriCore architecture supports two packed formats:

« Packed Half-word Data format
+ Packed Byte Data format

The Packed Half-word Data format divides the 32-bit word into two, 16-bit (half-word) values. Instructions which
operate on data in this way are denoted in the instruction mnemonic by the .H and .HU modifiers.

Half-word 1 Half-word 0 Operand m
Half-word 1 Half-word 0 Operand n
Operation
Destination 1 Destination 0 Result
TC1049B

Figure 2-6 Packed Half-word Data Format

The Packed Byte Data format divides the 32-bit word into four, 8-bit values. Instructions which operate on the data
in this way are denoted by the .B and .BU data type modifiers.

User Manual (Volume 2) 2-6 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

Byte 3 Byte 2 Byte 1 Byte 0 Operand m
Byte 3 Byte 2 Byte 1 Byte 0 Operand n
Operation
Destination 3 Destination 2 Destination 1 Destination 0 | Result
TC1050B

Figure 2-7 Packed Byte Data Format

The loading and storing of packed values into data registers is supported by the normal Load Word and Store
Word instructions (LD.W and ST.W). The packed objects can then be manipulated in parallel by a set of special
packed arithmetic instructions that perform such arithmetic operations as addition, subtraction, multiplication, and
SO on.

Addition is performed on individual packed bytes or half-words using the ADD.B and ADD.H instructions. The
saturating variation (ADDS.H) only exists for half-words.

The ADD.H instruction ignores overflow or underflow within individual half-words. ADDS.H will saturate individual
half-words to the most positive 16-bit signed integer (215-1) on individual overflow, or to the most negative 16-bit
signed integer (-215) on individual underflow. Saturation for unsigned integers is also supported by the ADDS.HU
instruction. Similarly, all packed addition operations have an equivalent subtraction.

Besides addition and subtraction, arithmetic on packed data includes absolute value, absolute difference, shift,
and count leading operations.

Packed multiplication is described in the section Packed Multiply and Packed MAC, page 2-10.
Compare instructions are described in Compare Instructions, page 2-11.

User Manual (Volume 2) 2-7 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

23 PSW (Program Status Word) Status Flags and Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information about the result of the
arithmetic operations is recorded in the five status flags in the Program Status Word (PSW) register.

231 Usage

The status flags can be read by software using the Move From Core Register (MFCR) instruction, and can be
written using the Move to Core Register (MTCR) instruction.

Note: MTCR is only available in Supervisor mode.
The Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSYV) instructions can be used to cause a trap

if the respective V (overflow) and SV (sticky overflow) bits are set. The overflow bits can be cleared using the Reset
Overflow Bits instruction (RSTV).

Individual arithmetic operations can be checked for overflow by reading and testing V.

If it is only necessary to determine if an overflow occurred somewhere in an entire block of computation, then the
SV bit is reset before the block (using the RSTV instruction) and tested after completion of the block (using MFCR).

Jumping based on the overflow result is achieved by using a MFCR instruction followed by a JZ.T or JNZ.T
(conditional jump on the value of a bit) instruction.

2.3.2 Saturation

Because most signal-processing applications can handle overflow by simply saturating the result, most of the
arithmetic instructions have a saturating version for signed and unsigned overflow.

Note: Saturating versions of all instructions can be synthesized using short code sequences.

When saturation is used for 32-bit signed arithmetic overflow, if the true result of the computation is greater than
(2%1-1) or less than -237, the result is set to (2%'-1) or -2%', respectively.

The bounds for 16-bit signed arithmetic are (2'°-1) and -2'°, and the bounds for 8-bit signed arithmetic are (27-1)
and -2".

When saturation is used for unsigned arithmetic, the lower bound is always zero and the upper bounds are (2%2-1),
(2'8-1), and (28-1).

Saturation is indicated in the instruction mnemonic by an S and unsigned is indicated by a U following the period

(.). For example, the instruction mnemonic for a signed saturating addition is ADDS, and the mnemonic for an
unsigned saturating addition is ADDS.U.

24 DSP Arithmetic
DSP arithmetic instructions operate on 16-bit signed fractional data in the 1.15 format (also known as Q15), and
32-bit signed fractional data in 1.31 format (Q31).

Data values in this format have a single, high-order sign bit, with a value of 0 or -1, followed by an implied binary
point and fraction. Their values are in the range [-1, 1).

241 Scaling
The multiplier result can be treated in one of two ways:

+ Left shifted by 1
— One sign bit is suppressed and the result is left-aligned, so conserving the input format.
* Not shifted
— The result retains its two sign bits (2.30 format). This format can be used with IIR (Infinite Impulse Response)
filters for example, in which some of the coefficients are between 1 and 2, and to have one guard bit for
accumulation.

User Manual (Volume 2) 2-8 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

242 Special Case: -1 * -1

When multiplying two maximum-negative 1.15 format values (-1), the result is the positive nhumber (+1). For
example:

8000H * 8000H = 4000 0000H
This is correctly interpreted in Q format as:
-1(1.15 format) * -1(1.15 format) = +1 (2.30 format)

However, when the result is shifted left by 1 (left-justified), the result is 8000 0000H. This is incorrectly interpreted
as:

-1(1.15 format) * -1(1.15 format) = -1 (1.31 format)

To avoid this problem, the result of a Q format operation (-1 * -1) that has been left-shifted by 1, is saturated to the
maximum positive value. Therefore:

8000H * 8000H = 7FFF FFFFH
This is correctly interpreted in Q format as:
-1(1.15 format) * -1(1.15 format) = (nearest representation of)+1 (1.31 format)

This operation is completely transparent to the user and does not set the overflow flags. It applies only to 16-bit
by 16-bit multiplies and does not apply to 16 by 32-bit or 32 by 32-bit multiplies.

243 Guard Bits

When accumulating sums (in filter calculations for example), guard bits are often required to prevent overflow.

The instruction set directly supports the use of one guard bit when using a 32-bit accumulator (2.30 format, where
left shift by 1-bit of result is not requested).

When more guard bits are required a register pair (64-bits) can be used. In that instance the intermediate result
(also in 2.30 format, where left shift by 1-bit is not performed) is left shifted by 16-bits giving effectively a 18.46
format.

24.4 Rounding
Rounding is used to retain the 16 most-significant bits of a 32-bit result.
Rounding is implemented by adding 1 to bit 15 of a 32-bit intermediate result.

If the operation writes a full 32-bit register (i.e. is not a component of a packed half-word operation), it then clears
the lower 16-bits.

2.4.5 Overflow and Saturation
Saturation on overflow is available on all DSP instructions.

246 Sticky Advance Overflow and Block Scaling if FFT

The Sticky Advance Overflow (SAV) bit, which is set whenever an overflow ‘almost’ occurred, can be used in block
scaling of intermediate results during an FFT calculation.

Before each pass of applying a butterfly operation, the SAV bit is cleared.

After the pass the SAV bit is tested. If it is set then all of the data is scaled (using an arithmetic right shift) before
starting the next pass.

This procedure gives the greatest dynamic range for intermediate results without the risk of overflow.

User Manual (Volume 2) 2-9 V1.0, 2012-05



'y TriCore™ V1.6
@I neo/n 32-bit Unified Processor Core

Instruction Set Overview

247 Multiply and MAC
The available instructions for multiplication include:

+  MUL.Q (Multiply Q format)
*  MULR.Q (Multiply Q format with Rounding)

The operand encodings for the MUL.Q instruction distinguish between 16-bit source operands in either the upper
D[n]U or lower half D[n]L of a data register, 32-bit source operands (D[n]), and 32-bit or 64-bit destination operands
(D[n] or E[n]). This gives a totel of eight different cases:

+ 16U * 16U — 32
+ 16L*16L — 32
+ 16U *32 > 32
+ 16L*32—> 32

+ 32*32- 32

+ 16U *32 > 64
+ 16L*32 > 64

+ 32*32->064

In those cases where the number of bits in the destination is less than the sum of the bits in the two source
operands, the result is taken from the upper bits of the product.

The MAC instructions consist of all the MUL combinations described above, followed by addition (MADD.Q,
MADDS.Q,) and the rounding versions (MADDR.Q, MADDRS.Q). For the subtract versions of these instructions,
ADD is replaced by SUB.

24.8 Packed Multiply and Packed MAC
There are three instructions for various forms of multiplication on packed 16-bit fractional values:

*  MUL.H (Packed Multiply Q format)
* MULR.H (Packed Multiply Q format with Rounding)
*+  MULM.H (Packed Multiply Q format, Multi-Precision)

These instructions perform two 16 x 16 bit multiplications in parallel, using 16-bit source operands in the upper or
lower halves of their source operand registers.

MUL.H produces two 32-bit products, stored into the upper and lower registers of an extended register pair. Its
results are exact, with no need for rounding.

MULR.H produces two 16-bit Q-format products, stored into the upper and lower halves of a single 32-bit register.
Its 32-bit inte