Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Edition January 2000
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Contents

Introduction .. 4
SMD-Package Properties for Power Applications ... 5
Using a Printed Circuit Board as a Heat Sink ... 6
Static Properties ... 6
Dynamic Properties .. 9
Finite Element Method (FEM) .. 13
Determining the Static Heat Resistance .. 16
Measuring the $R_{\text{thj-a}}$ in the Real Application .. 17
Determining the Dynamic Heat Resistance ... 19
Summary .. 20
Package and Thermal Information .. 21
Power-SMD applications or what’s the size of the heat sink?

More and more frequently, modern SMD-component users (Surface Mounted Devices) ask the question, “What’s the size of the heat sink?”

The reason: The trend from through-hole packages to low-cost SMD-applications is marked by the improvement of chip technologies.

„Silicon instead of heat sink” is therefore possible in many cases. The printed circuit board (PCB) itself becomes the heat sink. As many applications today use PCBs assembled with SMD-technology, the emphasis is on Power-ICs in SMD packages mounted on single-sided PCBs laminated on one side.

Pricing pressure demands simple processes and lowest-cost solutions. This report describes a solution.
SMD-Package Properties for Power Applications

There are two basic groups of packages: **Heat Sink** packages are the first group. The heat sink (chip carrier - lead frame) is soldered directly to the PCB. The thermal resistance of this packages between chip and heat sink is called $R_{\text{thj-c}}$ (junction-case) and has low values. **Thermal Enhanced Leadframes** constitute the second group of packages. Metal bridges are connected between the chip carrier (lead frame) and the pins. From the outside, this package looks identical to standard components because the plastic molding compound conceals these details. **Figure 1** shows both types of packages with the examples P-TO252-3-1 (D-Pack) and P-DSO-14-4 (3 center pins each per side of the cooling path). The internal structure is described in more detail in this report and can be seen in **Figure 11**.

Figure 1 Heat Sink - vs. Thermal Enhanced Package Types
Using a printed circuit board as a heat sink?
How do I calculate that?
How big does my heat sink need to be?
Which size do we need?

In earlier fabrications, a solid heat sink was either screwed or clamped to the power package. It was easy to calculate the thermal resistance from the geometry of the heat sink.

In SMD-technology, this calculation is much more difficult because the heat path must be evaluated: chip (junction) - lead frame - case or pin - footprint - PCB materials (basic material, thickness of the laminate) - PCB volume - surroundings.

As the layout of the PCB is a main contributor to the result, a new technique must be applied. The Appendix provides thermal data for all packages listed in Table 1.

Let us start with some theoretical considerations:

Static Properties

To facilitate discussion of the static properties of a Power IC (PIC), the internal structure of a PIC and its method of mounting on a PCB or heat sink is illustrated in Figure 2. The PIC consists of a chip mounted on a chip carrier or lead frame, and held by solder or bonding adhesive. The lead frame consists of a high-conductivity material such as copper, and can have a

<table>
<thead>
<tr>
<th>Package</th>
<th>Heat Sink / Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-8-1</td>
<td>–</td>
</tr>
<tr>
<td>P-DSO-14-4</td>
<td>Pin 3-5; 10-12</td>
</tr>
<tr>
<td>P-DSO-16-1</td>
<td>–</td>
</tr>
<tr>
<td>P-DSO-20-1</td>
<td>–</td>
</tr>
<tr>
<td>P-DSO-20-6</td>
<td>Pin 4-7; 14-17</td>
</tr>
<tr>
<td>P-DSO-24-3</td>
<td>Pin 5-8; 17-20</td>
</tr>
<tr>
<td>P-DSO-28-6</td>
<td>Pin 6-9; 20-23</td>
</tr>
<tr>
<td>P-DSO-20-10</td>
<td>Tab</td>
</tr>
<tr>
<td>P-DSO-36-10</td>
<td>Tab</td>
</tr>
<tr>
<td>SCT-595-5-1</td>
<td>Pin 2; 5</td>
</tr>
<tr>
<td>SOT-223-4-2</td>
<td>Tab or Pin 4</td>
</tr>
<tr>
<td>P-TO252-3-1 (D-Pack)</td>
<td>Tab</td>
</tr>
<tr>
<td>P-TO263-5-1</td>
<td>Tab</td>
</tr>
</tbody>
</table>

Table 1 The Most Important SMD-Packages
The thickness of several millimeters. The associated static equivalent circuit is shown in Figure 3. The following analogies with electrical quantities have been used:

- The power dissipation P_V occurring close to the chip surface is symbolized by a current source.
- The thermal resistances are represented by ohmic resistors. The “resistance” network is essentially a serial connection to the ambient temperature. As a first approximation, the parallel-connected thermal resistance of the molding (broken lines) can be neglected in power packages.
- The ambient temperature is represented by a voltage source.

In accordance with the analogy, the thermal current $P_V = Q/t$ can now be calculated from the “thermic Ohm’s law” $V = I \cdot R$ as $T_j - T_a = P_V \cdot R_{thj-a}$.

For the purpose of discussing the application as a whole, the function $P_V = f(T_j)$ is of practical interest. One obtains:

$P_V = -T_a / R_{thj-a} + T_j / R_{thj-a}$.

This is a descending straight line of gradient $-1 / R_{thj-a}$ with its zero at T_j.

Figure 2 Internal Structure of a PIC and Method of Mounting on a Heat Sink

Figure 3 Static Equivalent Circuit for the Structure shown in Figure 2
In Figure 4, this function is shown for the P-DSO-14-4 Package (Thermal Enhanced Power Package) mounted on the standard application board. From this function, the user can derive the permissible power dissipation directly for any ambient temperature. At $T_a = 85 \, ^\circ C$, for example, the permissible dissipation is approximately 0.7 W. The exact value can be calculated from the equation:

$$P_V = \frac{T_j - T_{\text{amax}}}{R_{\text{thj-a}}} = \frac{65 \, K}{92 \, K/W} = 0.7 \, W.$$

It should be noted that in the data sheets of the PICs the power dissipation is given as a function of the package (case) temperature T_C, because the application-specific thermal resistances are not known to the manufacturer. This function, like the previous one, is a descending straight line. The slope now has the value $1 / R_{\text{thj-c}}$. The zero remains at T_j. As an example, this function is presented in Figure 5 for the P-TO252-3-1 Package.

The new P-TO252-3-1 package has a thermal resistance of max. 4 K/W and is unique in the small size of its base area when compared with packages of equivalent performance (PCB board area). At approximately 30 °C, the permissible power dissipation is 30 W. Higher power dissipation is prevented by intervention of the chip-internal current limiters. For this reason, the value for power dissipation at lower temperatures remains constant.
Dynamic Properties

As mentioned earlier, the thermal behavior of PICs changes when dynamic phenomena are considered (pulse power operation). This behavior can be described in terms of thermal capacity C_{th}, which is directly proportional to the relevant volume V (in cm³), to the density ρ (in g/cm³) of the material and to a proportionality factor of the specific heat c in Ws/g • K. The applicable equation is:

$$C_{th} = c \cdot \rho \cdot V = m \cdot c$$

This means: The thermal capacity of a body of mass $m = \rho \cdot V$ corresponds to the quantity of heat needed to heat the body by 1 °C. To calculate the temperature change ΔT it is necessary to use the quantity-of-charge equation for a capacitance C.

The equation is:

$$V \cdot C = I \cdot t = Q$$

By analogy, the quantity-of-heat equation is:

$$\Delta T \cdot C_{th} = P \cdot t = Q$$

This means: Just as the current $I = Q/t$ represents a transport of charge per unit of time, the power dissipation P represents the transport of thermal energy per unit of time. Consequently:

$$\Delta T = \frac{P \cdot t}{C_{th}}$$

The equivalent circuit of the P-TO263-7-3 power package, with the thermal capacities added, is shown in Figure 6. The thermal capacities calculated from the material and the volume are shown in parallel with the thermal resistances.

When calculating the components of a network it is necessary to know the thickness d, the cross-sectional area A and the thermal conductivity L in W/m • K, in order to obtain the appropriate thermal resistance R_{th}. The formula is:

$$R_{th} = \frac{d}{L \cdot A} \frac{K}{W}$$
To calculate the thermal capacity C_{th}, it is necessary to know the volume $V = d \cdot A$, the specific weight ρ in g/cm3 and the specific thermal capacity c in Ws/g \cdot K.

The thermal capacity C_{th} is calculated from:

$$C_{th} = m \cdot c \text{ (Ws/K)}.$$

The package dimensions are shown in Figure 7.

Table 2 lists all the important parametric data of the P-TO263-7-3 package.

<table>
<thead>
<tr>
<th>Parameters for the Chip</th>
<th>Symbol</th>
<th>Value</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>A_D</td>
<td>5</td>
<td>mm2</td>
</tr>
<tr>
<td>Thickness</td>
<td>d_D</td>
<td>360</td>
<td>μm</td>
</tr>
<tr>
<td>Thermal conductivity of silicon</td>
<td>L_{Si}</td>
<td>150</td>
<td>W/m \cdot K</td>
</tr>
<tr>
<td>Thermal resistance of chip</td>
<td>R_{PD}</td>
<td>0.48</td>
<td>K/W</td>
</tr>
<tr>
<td>Specific weight of silicon</td>
<td>ρ_{Si}</td>
<td>2.33</td>
<td>g/cm3</td>
</tr>
<tr>
<td>Mass of chip</td>
<td>m_D</td>
<td>4.2</td>
<td>mg</td>
</tr>
<tr>
<td>Spec, thermal capacity of Si</td>
<td>C_{Si}</td>
<td>approx. 0.7</td>
<td>Ws/g \cdot K</td>
</tr>
<tr>
<td>Thermal capacity of chip</td>
<td>C_{PD}</td>
<td>approx. 3</td>
<td>mWs/K</td>
</tr>
<tr>
<td>Thermal time constant of chip</td>
<td>τ_D</td>
<td>approx. 1.5</td>
<td>ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters for the Heat Slug</th>
<th>Symbol</th>
<th>Value</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (effective area of 64 mm2)</td>
<td>A_{HS}</td>
<td>14</td>
<td>mm2</td>
</tr>
<tr>
<td>Thickness</td>
<td>d_{HS}</td>
<td>1.27</td>
<td>mm</td>
</tr>
<tr>
<td>Thermal conductivity of cooper</td>
<td>L_{Cu}</td>
<td>384</td>
<td>W/m \cdot K</td>
</tr>
<tr>
<td>Thermal resistance of heat slug</td>
<td>R_{PHS}</td>
<td>0.24</td>
<td>K/W</td>
</tr>
<tr>
<td>Specific weight of cooper</td>
<td>ρ_{Cu}</td>
<td>8.93</td>
<td>g/cm3</td>
</tr>
<tr>
<td>Mass of heat slug</td>
<td>m_{HS}</td>
<td>0.8</td>
<td>g</td>
</tr>
<tr>
<td>Spec, thermal capacity of Cu</td>
<td>C_{Cu}</td>
<td>0.385</td>
<td>Ws/g \cdot K</td>
</tr>
<tr>
<td>Thermal capacity of heat slug</td>
<td>C_{PHS}</td>
<td>310</td>
<td>mWs/K</td>
</tr>
<tr>
<td>Thermal time constant of heat slug</td>
<td>τ_{HS}</td>
<td>70</td>
<td>ms</td>
</tr>
</tbody>
</table>

Figure 7 Outline Drawing of the P-TO263-7-3 Power Package

Table 2 Parametric Data of the P-TO263-7-3

All metal surfaces tin plated, except area of cut.
The die bond and molding components have been omitted from this discussion because they do not significantly influence the calculation of R_{thj-c}.

For reference, these data are listed here:
- $R_{thDB} = 0.01$ to 0.1 K/W;
- $C_{thDB} = 0.1$ to 0.5 mWs/K;
- $\tau_{DB} = 1$ to 50 ms;
- $R_{thM} = 100$ K/W;
- $C_{thM} = 0.64$ Ws/K and
- $\tau_{M} = 64$ s.

(Die Bond = index: DB; molding = index: M)

The time constance of the die bond is smaller than that of the chip by two orders of magnitude and can, thus, be neglected. The thermal resistance R_{thM} of the molding is even three orders of magnitude bigger than that of the chip and that of the heat slug, and, being in parallel, can be neglected also.

Pulse operation and the associated chip temperature responses also deserve examination. In accordance with the analogy to electrical systems, the chip temperature response can be viewed like a voltage increase across an RC section which is being fed by a current pulse generator.

The following relationship applies:
$$V(t) = R \cdot I \cdot (1 - e^{t/R \cdot C})$$

and for the increase in temperature:
$$T(t) = R_{th} \cdot P \cdot (1 - e^{t/R_{th} \cdot C})$$

This heating-up and cooling-down process is presented qualitatively in Figure 8 (valid for $t_p >> 2$ ms only).

The chip temperature goes up and down between T_{min} and T_{max}. The variation depends on the magnitude of the power pulse and its duty cycle.

Figure 8 Chip Temperature T_j vs. Time, for Periodic Pulse Operation
This junction temperature transients can be represented in the form of a function if the dynamic thermal impedance
\[Z_{\text{th}} = \frac{(T_{\text{max}} - T_{\text{min}})}{P_v} \]
is shown versus pulse width \(t_p \) for different duty cycles (duty cycle = \(DC = \frac{t_p}{T} \)) (Figure 9).

A special case of this representation is the dynamic thermal impedance in single-pulse operation (DC = 0). Figure 10 shows the thermal impedance in single-pulse operation for the medium-power package P-DSO-14-4 for three different cooling areas on the PCB.

This function clearly shows the regions of dominance of the various time constants of the chip, the lead frame, and the PCB.

The chip time constant \(t_D \) lies in the millisecond range, whereas the lead frame dominates in the range of several 100 ms and the PCB in the 100-second range.

Figure 9 Dynamic Thermal Impedance \(Z_{\text{th}-\text{c}} \) of a P-TO263-7-3 Package

Figure 10 Thermal Impedance of the P-DSO-14-4 Package for Single-Pulse Operation
Finite Element Method (FEM)

The steps of the Finite Element Method (FEM) are explained below and one example is provided per group.

The geometric data of the package is entered into the FEM model to calculate the thermal resistance. This avoids time-consuming measurements. Figure 11 shows an implemented model.

Figure 11 FEM Model of Heat Sink and Thermal Enhanced Package
The temperatures of the individual components (chip, die-pad, molding compound, and leadframe) can be viewed individually or in combination (Figure 12).

Figure 12 FEM Analysis Possibilities

- Chip with two active areas (dice only)
- Mold compound without cooling tab, chip, and lead frame
- P-TO252-3-1 without mold compound with $P_v = 3$ W for determining the R_{thj-c}
- Chip and lead frame of the SOT223-4-2 package on a PCB with heat sink
- Lead frame of the SCT595-5-1 on a PCB with heat sink
- SOT223-4-2 on a PCB with 6 cm² heat sink; $R_{thj-a} \approx 70$ K/W is calculated at $P_v = 0.5$ W
Three different PCBs have been created for each package model. They differ in the size of the copper laminated area A (heat sink) which is linked to the heat dissipating parts of the case (die-pad in the P-TO252-3-1 or center pins in the P-DSO-14) (Figure 13).

Figure 13 PCB-Layout for FEM-Simulation
P-DSO-14-4 and P-TO252-3-1
Determining the Static Heat Resistance

The FEM simulation calculates the thermal static resistance R_{thj-a} (junction-ambient) and the R_{thj-c} (junction-case) for packages with enhanced die-pad or $R_{thj-pin}$ (junction to a defined pin) for thermal enhanced P-DSO packages without die-pad. This value depends only slightly on the active chip area. It is sufficient to simulate just one medium-sized chip (>2 mm²).

If the static thermal resistance R_{thj-a} is applied versus the PCB heat sink area, a very important function is obtained for the application of the component. By estimating the heat sink area in a real application, the user can easily determine the expected R_{thj-a} especially as the simulated values are calculated in still air. Therefore, they represent the “worst case”. In real applications the values for the heat resistance are much lower. At an air stream of 500 lin ft/min (linear feet per minute) the R_{thj-a} of the P-DSO-14-4 for example is up to 15 % lower (Figure 15).

![Diagram](image-url)

Figure 14 Thermal Resistance Junction to Ambient R_{thj-a} vs. PCB Heat Sink Area λ at zero airflow

![Diagram](image-url)

Figure 15 Thermal Resistance Junction to Ambient R_{thj-a} vs. Airspeed for the P-DSO-14-4 and P-TO252-3-1 Packages
Measuring the $R_{\text{thj-a}}$ in a Real Application:

Using the measurement described below the real thermal resistance can be determined.
To determine the actual $R_{\text{thj-a}}$ the temperature difference between chip temperature T_j and ambient temperature T_a is required. The equation $R_{\text{thj-a}} = \frac{T_j - T_a}{P_V}$ applies.

The power loss P_V and the ambient temperature T_a can be determined easily in a temperature chamber or calculated.

To measure the chip temperature (T_j) requires a little trick: A temperature sensor is required on the chip which can also be read during operation. In many products a substrate diode can be used at an output (Status, Reset, etc.) to measure the chip temperature. To do this, the forward voltage V_F of the diode is measured at load independent current as a calibration curve. Due to the characteristic temperature behavior of the forward voltage - it has a negative temperature coefficient of approx. -2 mV/K - the relevant chip temperature can be determined.

The calibration curve is measured in the temperature chamber with airflow. The power loss should be kept as low as possible to ensure the chip temperature remains equal to the ambient temperature. For the voltage regulator TLE 4269 GM (P-DSO-14-4 Package) a calibration curve (measured at the diode at the reset output, pin 7). RO is illustrated in Figure 16. Figure 17 shows the corresponding measuring circuit.

Figure 16 Calibration Curve TLE 4269 GM for $I_{RO} = -500 \, \mu\text{A}$ (current drawn from Pin 7; RO)
The R_{th-a} of any application can be determined by measuring the forward voltage of an output with substrate diode during operation (Figure 17).

When the switch S_1 is closed and the output voltage $V_Q = 5\, \text{V}$, the output current is $\frac{5}{35}\, \text{A}$.

The power loss $P_V = (V_I - V_Q) \cdot I_Q$ in the chip of the voltage regulator is now 1 W. Now, change the ambient temperature T_a and measure the respective forward voltage V_F of the diode.

The appropriate T_j for every V_F value can be read from the calibration curve $V_F = f(T_j)$.

The exact heat resistance of the real application is calculated with this values in the formula

$$R_{th-a} = \frac{T_j - T_a}{P_V}$$

Parameters such as air flow can be changed without affecting the measuring accuracy.

Figure 17 Measuring Circuit with TLE 4269GM
Determining the Dynamic Heat Resistance

The FEM analysis is used also for dynamic processes. As described above, the dynamic thermal impedance is defined as the ratio of the temperature difference \(\Delta T = T_j - T_a \) (chip temperature - start temperature) after the time \(t_p \) to the power loss. If a transient FEM simulation is performed, it is easy to obtain the graph \(Z_{thj-a} = f(t_p) \) (dynamic thermal impedance as a function of the pulse width \(t_p \)).

For the P-TO252-3-1 (D-Pack) and the P-DSO-14-4 the thermal impedances for the above-mentioned PCB configurations are specified (Figure 18). The peak temperatures can be calculated easily from these curves:

- P-TO252-3-1 (D-Pack)
- 3 cm² heat sink
- Power loss \(P_V = 10 \) W
- Pulse width \(t_p = 200 \) ms
- Ambient temperature \(T_a = 85 \) °C.

From the middle curve (Figure 18), the \(Z_{thj-a} \) of approximately 3.5 K/W at \(t_p = 200 \) ms gives a temperature rise \(\Delta T = P_V \times Z_{thj-a} \) of 35 K and finally a peak temperature \(T_{j_{max}} \) of 85 °C+35 °C = 120 °C.

![Figure 18 Thermal Impedance Junction to Ambient \(Z_{thj-a} \) vs. Single Pulse Time \(t_p \)]
For each case listed in Table 1, a “Package and Thermal Information” data sheet is provided in the appendix. Each data sheet shows the footprint and case dimensions. The various versions of the PCBs used for the simulation are shown. It shows the heat distribution diagrams and the result diagrams of the FEM simulation. The left side shows the diagram of the static thermal resistance R_{thj-a} depending on the PCB heat sink area A. It includes the related thermal resistance R_{thj-c} (junction-case) or $R_{thj-pin}$.

On the right side is the diagram for the dynamic heat resistance Z_{thj-a}, with three graphs for the various PCB heat sinks depending on the single pulse duration t_p. This information is a valuable aid for SMD Power applications. It is intentionally limited to PCBs laminated on one side because it represents the cost optimum. For double sided PCBs or multilayers a simple attempt with conductance cross sections can be made to determine the change in the PCB thermal resistance (compare thermal data sheet of P-DSO-20-10 with P-DSO-36-10 in the appendix).

The PCBs are usually installed in closed plastic cases. The most favorable heat path then usually forms at plug contacts to the cables because a supply wire with an adequate cross section is ideal as a heat conductor.

The future of chip placement requires mechatronic solutions where the PCB can be replaced by chip-connector-supply wire configurations.
Package and Thermal Information

Appendix

<table>
<thead>
<tr>
<th>Package Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-8-1</td>
<td>22</td>
</tr>
<tr>
<td>P-DSO-14-4</td>
<td>23</td>
</tr>
<tr>
<td>P-DSO-16-1</td>
<td>24</td>
</tr>
<tr>
<td>P-DSO-20-1</td>
<td>25</td>
</tr>
<tr>
<td>P-DSO-20-6</td>
<td>26</td>
</tr>
<tr>
<td>P-DSO-24-3</td>
<td>27</td>
</tr>
<tr>
<td>P-DSO-28-6</td>
<td>28</td>
</tr>
<tr>
<td>P-DSO-20-10</td>
<td>29</td>
</tr>
<tr>
<td>P-DSO-36-10</td>
<td>30</td>
</tr>
<tr>
<td>SCT595-5-1</td>
<td>31</td>
</tr>
<tr>
<td>SOT223-4-2</td>
<td>32</td>
</tr>
<tr>
<td>P-TO252-3-1</td>
<td>33</td>
</tr>
<tr>
<td>P-TO263-5-1</td>
<td>34</td>
</tr>
</tbody>
</table>
P-DSO-8-1

Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>e</th>
<th>A</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-8-1</td>
<td>1.27</td>
<td>5.69</td>
<td>1.31</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Reflow soldering

Dimensions in mm

PC-Board

Application-Boards for R_{th} - Measurement

- FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - A = 600 mm²; $a = 17.32$ mm

- FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - A = 300 mm²; $a = 12.247$ mm

Footprint only

Finite Element Method

FEM Simulation (chip area ≥ 2 mm²; $P_v = 0.5$ W; zero airflow)

- A = 600 mm²; $T_a = 298$ K; $T_{max} = 369$ K
- A = 300 mm²; $T_a = 298$ K; $T_{max} = 380$ K
- Footprint only; $T_a = 298$ K; $T_{max} = 390$ K

Diagrams

- Thermal Resistance Junction to Ambient R_{thj-a} vs. PCB Heat Sink Area A (zero airflow)
- Thermal Impedance Junction to Ambient Z_{thj-a} vs. Single Pulse Time t_p (zero airflow)
Package and Thermal Information

Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>c</th>
<th>A</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-14-4</td>
<td>1.27</td>
<td>5.69</td>
<td>1.31</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Rework soldering

Dimensions in mm

Application-Boards for R_{th} - Measurement

1. FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - $A = 600 \text{ mm}^2$; $a = 17.32 \text{ mm}$

2. FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - $A = 300 \text{ mm}^2$; $a = 12.247 \text{ mm}$

3. Footprint only
 - FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn

Finite Element Method

- FEM Simulation (chip area $\geq 2 \text{ mm}^2$; $P_v = 1 \text{ W}$; zero airflow)
 - $A = 600 \text{ mm}^2$; $T_a = 298.1 \text{ K}$; $T_{\text{max}} = 377.7 \text{ K}$
 - $A = 300 \text{ mm}^2$; $T_a = 298 \text{ K}$; $T_{\text{max}} = 389.8 \text{ K}$
 - Footprint only; $T_a = 298 \text{ K}$; $T_{\text{max}} = 410.1 \text{ K}$

Diagrams

- Thermal Resistance Junction to Ambient R_{th} vs. PCB Heat Sink Area A (zero airflow)
 - R_{th} vs. A
 - $R_{th} = 31.7 \text{ K/W}$

- Thermal Impedance Junction to Ambient Z_{th} vs. Single Pulse Time t_p (zero airflow)
 - Z_{th} vs. t_p

Infineon Technologies AG
Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>c</th>
<th>A</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-16-1</td>
<td>1.27</td>
<td>5.69</td>
<td>1.31</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Reflow soldering

Dimensions in mm

PC-Board

Application-Board for R_{th} - Measurement

Finite Element Method

FEM Simulation (chip area ≥ 2 mm²; $P_v = 1$ W; zero airflow)

Diagrams

Thermal Resistance Junction to Ambient $R_{\text{thj-a}}$ vs. PCB Heat Sink Area A (zero airflow)

Thermal Impedance Junction to Ambient $Z_{\text{thj-a}}$ vs. Single Pulse Time t_p (zero airflow)
Package and Thermal Information

Footprint / Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>e</th>
<th>A</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-20-1</td>
<td>1.27</td>
<td>9.73</td>
<td>1.67</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Reflow soldering

Dimensions in mm

Application-Board for R_{th} - Measurement

PC-Board

Application-Board for R_{th} - Measurement

FR4: 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn

Footprint only

FEM Simulation (chip area ≥ 2 mm2; $P_v = 1$ W; zero airflow)

Finite Element Method

FEM Simulation (chip area ≥ 2 mm2; $P_v = 1$ W; zero airflow)

Footprint only: $T_a = 298$ K; $T_{max} = 407$ K

Thermal Resistance Junction to Ambient R_{th-j-a} vs. PCB Heat Sink Area A (zero airflow)

Diagrams

Thermal Resistance Junction to Ambient R_{th-j-a} vs. PCB Heat Sink Area A (zero airflow)

Thermal Impedance Junction to Ambient Z_{th-j-a} vs. Single Pulse Time t_p (zero airflow)
P-DSO-20-6

Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>e</th>
<th>A</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-20-6</td>
<td>1.27</td>
<td>9.73</td>
<td>1.67</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Reflow soldering

Index Marking

PC-Board

Application-Boards for R_{th} - Measurement

FR4: 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
$A = 600 \text{ mm}^2; a = 17.32 \text{ mm}$

FR4: 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
$A = 300 \text{ mm}^2; a = 12.247 \text{ mm}$

FR4: 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only

Finite Element Method

FEM Simulation (chip area ≥ 2 mm²; $P_v = 1 \text{ W}$; zero airflow)

$A = 600 \text{ mm}^2; T_s = 298 \text{ K}; T_{max} = 372 \text{ K}$

$A = 300 \text{ mm}^2; T_s = 298 \text{ K}; T_{max} = 379 \text{ K}$

Footprint only; $T_s = 298 \text{ K}; T_{max} = 397 \text{ K}$

Diagrams

Thermal Resistance Junction to Ambient R_{thj-a} vs. PCB Heat Sink Area A (zero airflow)

Thermal Impedance Junction to Ambient Z_{thj-a} vs. Single Pulse Time t_p (zero airflow)
Package and Thermal Information

Package	L	B	A
P-DSO-24-3 | 1.27 | 1.67 | 0.65

A = 600 mm2; $a = 17.32$ mm

Index Marking

Dimensions in mm

Application-Boards for R_{th} - Measurement

PC-Board

FR4; 80 x 80 x 1.5 mm; 35 μm Cu, 5 μm Sn
A = 600 mm2; $a = 17.32$ mm

FR4; 80 x 80 x 1.5 mm; 35 μm Cu, 5 μm Sn
A = 300 mm2; $a = 12.247$ mm

Footprint only

FEM Simulation (chip area ≥ 2 mm2; $P_v = 1$ W; zero airflow)

A = 600 mm2; $T_a = 298$ K; $T_{max} = 358$ K

A = 300 mm2; $T_a = 298$ K; $T_{max} = 365$ K

Footprint only; $T_a = 298$ K; $T_{max} = 374$ K

Thermal Resistance Junction to Ambient R_{th-j-a} vs. PCB Heat Sink Area A (zero airflow)

R_{th-j-a} vs. A

Thermal Impedance Junction to Ambient Z_{th-j-a} vs. Single Pulse Time t_p (zero airflow)
Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>(c)</th>
<th>(A)</th>
<th>(L)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-28-6</td>
<td>1.27</td>
<td>9.73</td>
<td>1.67</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Reflow soldering

Index Marking

Dimensions in mm

PC-Board

Application-Boards for \(R_{th} \) Measurement

Footprint only; \(T_a = 298 \) K; \(T_{\text{max}} = 359 \) K

\(A = 600 \text{ mm}^2; a = 17.32 \text{ mm} \)

FR4; 80 x 80 x 1.5 mm; 35 \(\mu \) Cu, 5 \(\mu \) Sn

Footprint only

Footprint only; \(T_a = 298 \) K; \(T_{\text{max}} = 354 \) K

\(A = 300 \text{ mm}^2; a = 12.247 \text{ mm} \)

FR4; 80 x 80 x 1.5 mm; 35 \(\mu \) Cu, 5 \(\mu \) Sn

Finite Element Method

FEM Simulation (chip area \(\geq 2 \text{ mm}^2; P_v = 1 \text{ W}; \) zero airflow)

\(A = 600 \text{ mm}^2; T_a = 298 \) K; \(T_{\text{max}} = 349 \) K

\(A = 300 \text{ mm}^2; T_a = 298 \) K; \(T_{\text{max}} = 354 \) K

Footprint only; \(T_a = 298 \) K; \(T_{\text{max}} = 359 \) K

Diagrams

Thermal Resistance Junction to Ambient \(R_{th\alpha} \) vs. PCB Heat Sink Area \(A \) (zero airflow)

Thermal Impedance Junction to Ambient \(Z_{th\alpha} \) vs. Single Pulse Time \(t_p \) (zero airflow)
Package and Thermal Information

Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>e</th>
<th>A</th>
<th>L</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-DSO-20-10</td>
<td>1.27</td>
<td>13.48</td>
<td>1.83</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Dimensions in mm

Application-Boards for R_{th} **- Measurement**

- **PC-Board**
 - **P-DSO-20-10**
 - FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - $A = 600 \text{ mm}^2$; $a = 17.32 \text{ mm}$
 - **P-DSO-20-10**
 - FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - $A = 300 \text{ mm}^2$; $a = 12.247 \text{ mm}$
 - **Footprint only**

FEM Simulation (chip area ≥ 2 mm²; $P_v = 3 \text{ W}$; zero airflow)

- $A = 600 \text{ mm}^2$; $T_a = 298 \text{ K}$; $T_{\text{max}} = 406 \text{ K}$
- $A = 300 \text{ mm}^2$; $T_a = 298 \text{ K}$; $T_{\text{max}} = 421 \text{ K}$
- Footprint only; $T_a = 298 \text{ K}$; $T_{\text{max}} = 463 \text{ K}$

Finite Element Method

Diagrams

- Thermal Resistance Junction to Ambient R_{th-A} vs. PCB Heat Sink Area A (zero airflow)
- Thermal Impedance Junction to Ambient Z_{th-A} vs. Single Pulse Time t_p (zero airflow)
Footprint/Dimensions

<table>
<thead>
<tr>
<th>Package</th>
<th>0.65</th>
<th>13.48</th>
<th>1.83</th>
<th>0.45</th>
</tr>
</thead>
</table>
P-DSO-36-10| 0.65 | 13.48 | 1.83 | 0.45 |

Reflow soldering

PC-Board

Application-Boards for R_{th} - Measurement

- P-DSO-36-10
 - FR4: 47 x 50 x 1.5 mm; 70 μ Cu
 - $A = 600$ mm2; 24.5 x 24.5 mm

- P-DSO-36-10
 - FR4: 47 x 50 x 1.5 mm; 70 μ Cu
 - $A = 300$ mm2; 16 x 19 mm

Finite Element Method

FEM Simulation (chip area ≥ 2 mm2; $P_v = 3.5$ W; zero airflow)

- $A = 600$ mm2; $T_i = 298$ K; $T_{\text{max}} = 398$ K
- $A = 300$ mm2; $T_i = 298$ K; $T_{\text{max}} = 427$ K

Diagrams

Thermal Resistance Junction to Ambient R_{th-a} vs. PCB Heat Sink Area A (zero airflow)

Thermal Impedance Junction to Ambient Z_{th-a} vs. Single Pulse Time t_p (zero airflow)
Package and Thermal Information

Footprint/Dimensions

Application-Boards for R_{th} - Measurement

PC-Board

Finite Element Method

Diagrams

FEM Simulation (chip area ≥ 2 mm²; $P_v = 0.2$ W; zero airflow)

Diagrams

Thermal Resistance Junction to Ambient R_{th-a} vs. PCB Heat Sink Area A (zero airflow)

Thermal Impedance Junction to Ambient Z_{th-a} vs. Single Pulse Time t_p (zero airflow)
Footprint/Dimensions

![Footprint/Dimensions diagram]

PC-Board

Application-Boards for R_{th} - Measurement

- **SOT223**
 - FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - $A = 600 \text{ mm}^2$; $a = 24.49 \text{ mm}$

- **SOT223**
 - FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - $A = 300 \text{ mm}^2$; $a = 17.32 \text{ mm}$

- **SOT223**
 - FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn
 - Footprint only

Finite Element Method

FEM Simulation (chip area ≥ 2 mm²; $P_v = 0.5 \text{ W}$; zero airflow)

- $A = 600 \text{ mm}^2$; $T_a = 298 \text{ K}$; $T_{\text{max}} = 332 \text{ K}$
- $A = 300 \text{ mm}^2$; $T_a = 298 \text{ K}$; $T_{\text{max}} = 339 \text{ K}$
- Footprint only; $T_a = 298 \text{ K}$; $T_{\text{max}} = 380 \text{ K}$

Diagrams

- **Thermal Impedance Z_{th-j-a}**
 - Footprint 300 mm²
 - 600 mm²

- **Thermal Resistance R_{th-j-a}**
 - R_{th-j-a} vs. A (zero airflow)
 - R_{th-j-a} vs. Single Pulse Time t_p (zero airflow)
Package and Thermal Information

Footprint/Dimensions

Application-Boards for R_{th} - Measurement

PC-Board

Finite Element Method

Diagrams

Footprint only; $T_a = 298 \text{ K}; T_{\text{max}} = 376 \text{ K}$

Thermal Resistance Junction to Ambient $R_{th,a}$ vs. PCB Heat Sink Area A (zero airflow)

<table>
<thead>
<tr>
<th>$R_{th,a}$ (K/W)</th>
<th>A (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.9</td>
<td>600</td>
</tr>
<tr>
<td>54.7</td>
<td>300</td>
</tr>
<tr>
<td>78</td>
<td>300</td>
</tr>
</tbody>
</table>

Thermal Impedance Junction to Ambient $Z_{th,a}$ vs. Single Pulse Time t_p (zero airflow)

<table>
<thead>
<tr>
<th>$Z_{th,a}$ (K/W)</th>
<th>t_p (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>120</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>80</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

Footprint only; $T_a = 298 \text{ K}; T_{\text{max}} = 442 \text{ K}$

Footprint only; $T_a = 298 \text{ K}; T_{\text{max}} = 353 \text{ K}$

Footprint only; $T_a = 298 \text{ K}; T_{\text{max}} = 376 \text{ K}$

A = 600 mm²; $T_a = 298 \text{ K}; T_{\text{max}} = 353 \text{ K}$

A = 300 mm²; $T_a = 298 \text{ K}; T_{\text{max}} = 376 \text{ K}$

Footprint only; $T_a = 298 \text{ K}; T_{\text{max}} = 442 \text{ K}$
Footprint/Dimensions

PC-Board

Application-Boards for R_{th} - Measurement

Finite Element Method

FEM Simulation (chip area ≥ 2 mm²; $P_v = 3$ W; zero airflow)

Diagrams

Thermal Resistance Junction to Ambient R_{th-a} vs. PCB Heat Sink Area A (zero airflow)

Thermal Impedance Junction to Ambient Z_{th-a} vs. Single Pulse Time t_p (zero airflow)
Infineon Technologies AG’s sales offices worldwide – partly represented by Siemens AG

A

Siemens AG Österreich
Endberge Lände 26
A-1031 Wien
(+43) 1-377 53 61
Fax (+43) 1-377 55 93

B

Siemens Ltd.
885 Mountain Highway
Bayswater, Victoria 3153
(+61) 9-97 21 22
Fax (+61) 9-97 22 27

C

Siemens Electronic Components Benelux
Chauffmanestraat 116
B-1060 Bruxelles/Bruxelles
(+32) 2-56 66 05
Fax (+32) 2-56 36 28 57
Email: components@siemens.nl

D

Siemens Ltda.
Semiconductors
Avenida Mutanga, 3800-Pintuba
05110-919 São Paulo-SP
(+55) 11-39 08 25 61
Fax (+55) 11-39 08 27 28

E

Infineon Technologies Corporation
320 March Road, Suite 604
Canada, Ontario K3K 2E2
(+1) 6-13 59 61 83
Fax (+1) 6-13 59 61 83

F

Infineon Technologies AG
Baulelemente
Freilagerstrasse 40
CH-Baach Zürich
(+41) 1-45 50 06
Fax (+41) 1-45 50 50

G

Infineon Technologies AG
Volklinger Str. 2
D-40299 Düsseldorf
(+49) 2-11 13 61 29 30
Fax (+49) 2-11 3 99 14 81

H

Infineon Technologies AG
Werner-von-Siemens-Platz 1
D-30880 Laatzen (Hannover)
(+49) 51-11 77 75 20
Fax (+49) 51-11 77 75 20

I

Infineon Technologies AG
Von der Tann-Straße 30
D-94039 Nürnberg
(+49) 9-11 54 76 99
Fax (+49) 9-11 54 76 24

J

Infineon Technologies AG
Weischerstraße 11
D-70499 Stuttgart
(+49) 71-13 77 33 14
Fax (+49) 71-13 77 24 18

K

Siemens AG
Halbleiter Distribution
Richard-Strauss-Straße 76
D-81679 München
(+49) 89-92 21 40 86
Fax (+49) 89-92 21 40 70

L

Siemens A/S
Borupvang 3
DK-2750 Ballerup
(+44) 44 77 44 77
Fax (+44) 44 77 44 17

M

Siemens S.A.
Dpto. Semiconductores
Ronda de Europa, 5
E-28750 Los Cantos-Madr.
(+34) 91-14 21 01 51
Fax (+34) 91-14 20 11

N

Infineon Technologies France, 947, Bd. Orano
F-93357 Saint-Denis CEDEX 2
(+33) 1-49 21 31 00
Fax (+33) 1-49 22 28 01

O

Siemens Components Scandinavia
P.O. Box 60
FIN-02001 Espoo (Helsinki)
(+358) 10-51 11 51
Fax (+358) 10-51 11 24 95
Email: scs@components.siemens.de

P

Infineon Technologies AG
Siemens House Oldbury
GB-Bradwell, Berkshire
(+44) 13 44 39 66 18
Fax (+44) 13 44 39 66 32

Q

Simacomp Kft.
Lajos ut. 101
H-1036 Budapest
(+36) 3-47 17 16 90
Fax (+36) 3-47 17 16 92

R

Infineon Technologies Hong Kong Ltd.
Suite 302, Level 3, Festival Walk,
80 Tat Chee Avenue,
Yam Yat Tsuen,
Kowloon Tong
Hong Kong
(+852) 8-28 32 05 00
Fax (+852) 8-28 37 62

S

Siemens Components Scandinavia
Østre Aker vei 24
Postboks 10, Velvet
N-0518 Oslo
(+47) 22-63 30 00
Fax (+47) 22-68 49 13
Email: scs@components.siemens.de

T

Siemens Ltd.
Components Division
No. 84 Reonics Electronic City
Hosur Road
Bangalore 561 229
(+91) 88-8 52 11 22
Fax (+91) 88-8 52 11 80

U

Siemens Ltd.
CMP Div., 5th Floor
4A Ring Road,
IP Estate
New Delhi 110 002
(+91) 11-31 39 12
Fax (+91) 11-31 96 64

V

Siemens Ltd.
Electronic Components Division
8, Raglan Road
IRL-Dublin 4
(+353) 1-14 26 23 42
Fax (+353) 1-14 26 23 49

W

Nikko Ltd.
2A, Harabara St.
Tokyo, 175-0031
(+81) 3-37 65 73 00
Fax (+81) 3-37 65 73 55

X

Siemens Components K.K.
Takanawa Park Tower 12 F, 8-17 Takanawa
3-20-14, Higashigotanda,
Shinagawa-ku
Tokyo
(+81) 3-54 49 64 11
Fax (+81) 3-54 49 64 01

Y

Infineon Technologies AG
Sichuan Shunpo Industrial Zone
11900 Penang
(+60) 13 41 89 95 75
Fax (+60) 13 41 89 95 72

Z

Siemens Components Scandinavia
Østre Aker vei 24
Postboks 10, Velvet
N-0518 Oslo
(+47) 22-63 30 00
Fax (+47) 22-68 49 13
Email: scs@components.siemens.de

Infineon Technologies Asia Pacific Pte. Ltd.
Taiwan Branch
101F, No. 136 Nan Kin King East Road
Section 23, Taipei
(+886) 2-2773 66 06
Fax (+886) 2-277 21 70 76

Infineon Technologies China Ltd.
Postbox 16068
N. 2020 BD Bin Haag
(+49) 70 33 20 65
Fax (+49) 70 33 28 85
Email: components@siemens.nl

Siemens Auckland
300 Great South Road
Greenland
Auckland
(+64) 9-5 20 30 33
Fax (+64) 9-5 20 15 56

Siemens S.A.
an Componentes Electronics
R. Imans Siemens, 1
Alfragide
P-2720-093 Amadora
(+351) 1-47 85 90
Fax (+351) 1-47 85 83

Siemens Technologies Corporation
15000 Homestead Road
Cupertino, CA 95014
(+1) 408-25 77 90
Fax (+1) 408-25 36 39

Siemens Technologies, Inc.
Special Products Division
86 Wood Avenue South
Iselin, NJ 08830-2770
(+1) 7 32-6 06 43 00
Fax (+1) 7 32-6 32 28 30

Infineon Technologies Hong Kong Ltd.
Beijing Office
Room 2106, Building A
Vantone New World Plaza
No. 2 Fu Cheng Men Wai Da Jie
10037 Beijing
(+86) 10-68 57 90-06, 07
Fax (+86) 10-68 57 90-08

Infineon Technologies Hong Kong Ltd.
Chengdu Office
Room 1411, Jinyang Mansion
58 Tudu Street
Chengdu,
Sichuan Province 610016
(+86) 28-8 61 54 46 / 79 51
Fax (+86) 28-8 61 54 39

Infineon Technologies Hong Kong Ltd.
Shanghai Office
Room 1002, Lucky Target Square
No. 500 Chengdu Road North
Shanghai 200003
(+86) 21-65 61 24 18 19
Fax (+86) 21-65 61 11 67

Infineon Technologies Hong Kong Ltd.
Shenzhen Office
Room 1502, Block A
Tian An International Building
Renin South Road
Shenzhen 518005
(+86) 7 55 2 28 41 04
Fax (+86) 7 55 2 28 42 17

Siemens Ltd.
Components Division
P.O. Box 1438
Hallway House 1685
(+21) 3-65 61 27 02
Fax (+21) 3-65 62 30 22

Internet-address: http://www.infineon.com

06.10.99
Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen.

Unternehmensweit orientieren wir uns dabei auch an „top“ (Time Optimized Processes), um Ihnen durch größere Schnelligkeit den entscheidenden Wettbewerbsvorsprung zu verschaffen.

Geben Sie uns die Chance, hohe Leistung durch umfassende Qualität zu beweisen.

Wir werden Sie überzeugen.

Quality takes on an all-encompassing significance at Semiconductor Group. For us it means living up to each and every one of your demands in the best possible way. So we are not only concerned with product quality. We direct our efforts equally at quality of supply and logistics, service and support, as well as all the other ways in which we advise and attend to you.

Part of this is the very special attitude of our staff. Total Quality in thought and deed, towards co-workers, suppliers and you, our customer. Our guideline is “do everything with zero defects”, in an open manner that is demonstrated beyond your immediate workplace, and to constantly improve.

Throughout the corporation we also think in terms of Time Optimized Processes (top), greater speed on our part to give you that decisive competitive edge. Give us the chance to prove the best of performance through the best of quality – you will be convinced.