Applications
- High Frequency Synchronous Buck Converters for Computer Processor Power
- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Consumer Use
- Lead-Free

Benefits
- Very Low RDS(on) at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS} Drain-to-Source Voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>V_{GS} Gate-to-Source Voltage</td>
<td>± 20</td>
<td></td>
</tr>
<tr>
<td>$I_D @ T_C = 25^\circ C$ Continuous Drain Current, $V_{GS} @ 10V$</td>
<td>150(^\circ)</td>
<td>A</td>
</tr>
<tr>
<td>$I_D @ T_C = 100^\circ C$ Continuous Drain Current, $V_{GS} @ 10V$</td>
<td>110(^\circ)</td>
<td>A</td>
</tr>
<tr>
<td>I_{DM} Pulsed Drain Current (\Omega)</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>$P_D @ T_C = 25^\circ C$ Maximum Power Dissipation (\Omega)</td>
<td>140</td>
<td>W</td>
</tr>
<tr>
<td>$P_D @ T_C = 100^\circ C$ Maximum Power Dissipation (\Omega)</td>
<td>72</td>
<td>W</td>
</tr>
<tr>
<td>T_J Operating Junction and Storage Temperature Range</td>
<td>-55 to + 175</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG} Mounting Torque, 6-32 or M3 screw</td>
<td>10 lbf•in (1.1N•m)</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC} Junction-to-Case</td>
<td>——</td>
<td>1.04</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JCG} Case-to-Sink, Flat, Greased Surface (\Omega)</td>
<td>0.50</td>
<td>——</td>
<td></td>
</tr>
<tr>
<td>R_{JUA} Junction-to-Ambient (\Omega)</td>
<td>——</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>R_{JUA} Junction-to-Ambient (PCB Mount) (\Omega)</td>
<td>——</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Notes: \(\Omega\) through \(\circ\) are on page 12
IRL7833/S/LPbF

Static @ T\textsubscript{J} = 25°C (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV\textsubscript{DSS}</td>
<td>Drain-to-Source Breakdown Voltage</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>V (V_{GS} = 0V, I_D = 250\mu A)</td>
</tr>
<tr>
<td>(\Delta B\textsubscript{V_{DSS}}/\Delta T\textsubscript{J})</td>
<td>Breakdown Voltage Temp. Coefficient</td>
<td>—</td>
<td>18</td>
<td>—</td>
<td>mV/°C</td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
<td>Static Drain-to-Source On-Resistance</td>
<td>—</td>
<td>3.1</td>
<td>3.8</td>
<td>mΩ</td>
</tr>
<tr>
<td>(V_{GS(th)})</td>
<td>Gate Threshold Voltage</td>
<td>1.4</td>
<td>—</td>
<td>2.3</td>
<td>V (V_{DS} = V_{GS}, I_D = 250\mu A)</td>
</tr>
<tr>
<td>(\Delta V_{GS(th)/\Delta T\textsubscript{J}})</td>
<td>Gate Threshold Voltage Coefficient</td>
<td>—</td>
<td>-11</td>
<td>—</td>
<td>mV/°C</td>
</tr>
<tr>
<td>(I_{DSS})</td>
<td>Drain-to-Source Leakage Current</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{RSS})</td>
<td>Gate-to-Source Reverse Leakage</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>(g_{fs})</td>
<td>Forward Transconductance</td>
<td>150</td>
<td>—</td>
<td>—</td>
<td>S</td>
</tr>
<tr>
<td>(Q_g)</td>
<td>Total Gate Charge</td>
<td>—</td>
<td>32</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>(Q_{gs1})</td>
<td>Pre-Vth Gate-to-Source Charge</td>
<td>—</td>
<td>8.7</td>
<td>—</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{gs2})</td>
<td>Post-Vth Gate-to-Source Charge</td>
<td>—</td>
<td>5.1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>(Q_{gd})</td>
<td>Gate-to-Drain Charge</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(Q_{gsd})</td>
<td>Gate Charge Overdrive</td>
<td>—</td>
<td>5.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(Q_{sw})</td>
<td>Switch Charge ((Q_{gs2} + Q_{gd}))</td>
<td>—</td>
<td>18</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(Q_{oss})</td>
<td>Output Charge</td>
<td>—</td>
<td>22</td>
<td>—</td>
<td>nC</td>
</tr>
<tr>
<td>(t_{d(on)})</td>
<td>Turn-On Delay Time</td>
<td>—</td>
<td>18</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r)</td>
<td>Rise Time</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(t_{off})</td>
<td>Turn-Off Delay Time</td>
<td>—</td>
<td>21</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Fall Time</td>
<td>—</td>
<td>6.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(C_{iss})</td>
<td>Input Capacitance</td>
<td>—</td>
<td>4170</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{oss})</td>
<td>Output Capacitance</td>
<td>—</td>
<td>950</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(C_{rss})</td>
<td>Reverse Transfer Capacitance</td>
<td>—</td>
<td>470</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Avalanche Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{AS})</td>
<td>Single Pulse Avalanche Energy</td>
<td>—</td>
<td>560</td>
</tr>
<tr>
<td>(I_{AR})</td>
<td>Avalanche Current</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>(E_{AR})</td>
<td>Repetitive Avalanche Energy</td>
<td>—</td>
<td>14</td>
</tr>
</tbody>
</table>

Diode Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_S)</td>
<td>Continuous Source Current (\text{(Body Diode)})</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>(I_{SM})</td>
<td>Pulsed Source Current (\text{(Body Diode)})</td>
<td>—</td>
<td>—</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>(V_{SD})</td>
<td>Diode Forward Voltage</td>
<td>—</td>
<td>—</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>(I_{R})</td>
<td>Reverse Recovery Time</td>
<td>—</td>
<td>42</td>
<td>63</td>
<td>ns</td>
</tr>
<tr>
<td>(Q_{R})</td>
<td>Reverse Recovery Charge</td>
<td>—</td>
<td>34</td>
<td>51</td>
<td>nC</td>
</tr>
</tbody>
</table>

\(di/dt = 100A/\mu s\)
Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRL7833/S/LPbF

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14a. Switching Time Test Circuit

Fig 14b. Switching Time Waveforms
Fig 15. Peak Diode Recovery \(\frac{dv}{dt} \) Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Waveform
IRL7833/S/LPbF

Power MOSFET Selection for Non-Isolated DC/DC Converters

Control FET

Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{d_{ss(on)}}$ of the MOSFET, but these conduction losses are only about one half of the total losses.

Power losses in the control switch Q1 are given by;

$$P_{loss} = P_{conduction} + P_{switching} + P_{drive} + P_{output}$$

This can be expanded and approximated by;

$$P_{loss} = \left(I_{rms} \times R_{d_{ss(on)}} \right) + \left(I \times \frac{Q_{gss}}{i_g} \times V_{in} \times f \right) + \left(I \times \frac{Q_{gss}}{i_g} \times V_{in} \times f \right) + \left(Q_g \times V_{in} \times f \right) + \left(Q_{dss} \times V_{in} \times f \right)$$

This simplified loss equation includes the terms Q_{gss} and Q_{dss} which are new to Power MOSFET data sheets. Q_{gss} is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q_{gss} and $Q_{gss'}$, can be seen from Fig 16. $Q_{gss'}$ indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I_{max}, at which time the drain voltage begins to change. Minimizing $Q_{gss'}$ is a critical factor in reducing switching losses in Q1.

Q_{dss} is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q_{dss} is formed by the parallel combination of the voltage dependant (non-linear) capacitance's C_{oss} and C_{dss} when multiplied by the power supply input buss voltage.

Synchronous FET

The power loss equation for Q2 is approximated by;

$$P_{loss} = P_{conduction} + P_{drive} + P^*$$

$$P_{loss} = \left(I_{rms} \times R_{d_{ss(on)}} \right) + \left(Q_g \times V \times f \right) + \left(\frac{Q_{dss}}{2} \times V \times f \right) + \left(Q_{r} \times V \times f \right)$$

$dissipated$ $primarily$ in $Q1$.

For the synchronous MOSFET Q2, $R_{d_{ss(on)}}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q_{dss} and reverse recovery charge Q_r both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on.

The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V_{in}. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q_{dss}/Q_{gss} must be minimized to reduce the potential for Cdv/dt turn on.

![Figure A: Q_{dss} Characteristic](www.irf.com)
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)

NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION: INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"
D²Pak Part Marking Information

EXAMPLE:

THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L".

Note: "P" in assembly line position indicates "Lead-Free"

INTERNATIONAL RECTIFIER LOGO
ASSEMBLY LOT CODE
PART NUMBER
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L

OR

INTERNATIONAL RECTIFIER LOGO
ASSEMBLY LOT CODE
PART NUMBER
DATE CODE
P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL)
YEAR 0 = 2000
WEEK 02
A = ASSEMBLY SITE CODE
TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

INTERNATIONAL RECTIFIER
LOGO
ASSEMBLY LOT CODE
PART NUMBER
DATE CODE
YEAR = 1997
WEEK 19
LINE C

OR

INTERNATIONAL RECTIFIER
LOGO
ASSEMBLY LOT CODE
PART NUMBER
DATE CODE
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR = 1997
WEEK 19
A = ASSEMBLY SITE CODE

www.irf.com
IRL7833/S/LPbF

D²Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)

Notes:
① Repetitive rating; pulse width limited by max. junction temperature.
② Starting $T_J = 25°C, L = 1.3mH, R_G = 25Ω, I_{AS} = 30A$.
③ Pulse width $\leq 400µs$; duty cycle $\leq 2%$.
④ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
⑤ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
⑥ This is only applied to TO-220AB package.

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/04
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/