Description
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID @ TC = 25°C</td>
<td>-31</td>
<td>A</td>
</tr>
<tr>
<td>ID @ TC = 100°C</td>
<td>-22</td>
<td>A</td>
</tr>
<tr>
<td>IMD</td>
<td>-110</td>
<td></td>
</tr>
<tr>
<td>PD @ TC = 25°C</td>
<td>110</td>
<td>W</td>
</tr>
<tr>
<td>VGS</td>
<td>0.71</td>
<td>W/C</td>
</tr>
<tr>
<td>EAS</td>
<td>280</td>
<td>mJ</td>
</tr>
<tr>
<td>IAR</td>
<td>-16</td>
<td>A</td>
</tr>
<tr>
<td>EAR</td>
<td>11</td>
<td>mJ</td>
</tr>
<tr>
<td>dv/dt</td>
<td>-5.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>TJ</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldering Temperature, for 10 seconds</td>
<td>300 (1.6mm from case)</td>
</tr>
<tr>
<td></td>
<td>Mounting torque, 6-32 or M3 screw</td>
<td>10 lb•in (1.1N•m)</td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RθJC</td>
<td></td>
<td>1.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>RθJA</td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>RθJA</td>
<td></td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>
Source-Drain Ratings and Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S (Body Diode)</td>
<td></td>
<td></td>
<td>-31</td>
<td>A</td>
<td>MOSFET symbol showing the</td>
</tr>
<tr>
<td>I_{SM} (Body Diode)</td>
<td></td>
<td></td>
<td>-110</td>
<td></td>
<td>integral reverse p-n junction diode.</td>
</tr>
<tr>
<td>V_{DS}</td>
<td></td>
<td></td>
<td>-1.3</td>
<td>V</td>
<td>$T_J = 25^\circ C, I_S = -16A, V_{GS} = 0V$</td>
</tr>
<tr>
<td>Q_{tr}</td>
<td>71</td>
<td>110</td>
<td></td>
<td>ns</td>
<td>$T_J = 25^\circ C, f = 1.0MHz$</td>
</tr>
<tr>
<td>Q_{dr}</td>
<td></td>
<td></td>
<td>250</td>
<td>nC</td>
<td>$di/dt = -100A/\mu s$</td>
</tr>
</tbody>
</table>

Notes:

1. Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
2. $V_{DD} = -25V$, starting $T_J = 25^\circ C$, $L = 2.1mH$, $R_D = 25\Omega$, $I_{AS} = -16A$. (See Figure 12)
3. $I_{SD} = -16A$, $di/dt \leq -280A/\mu s$, $V_{DD} \leq V_{BRDSS}$, $T_J \leq 175^\circ C$

* When mounted on 1" square PCB (FR-4 or G-10 Material).
+ For recommended footprint and soldering techniques refer to application note #AN-994.
+ Uses typical socket mount.
Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRFR/U5305PbF

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit
Peak Diode Recovery dv/dt Test Circuit

- D.U.T. - Device Under Test
- dv/dt controlled by R_G
- I_{SD} controlled by Duty Factor "D"
- $V_{GS} = 10V$

Circuit Layout Considerations
- Low Stray Inductance
- Ground Plane
- Low Leakage Inductance
- Current Transformer

Driver Gate Drive
- $D = P.W.$ Period

D.U.T. I_{SD} Waveform

Reverse Recovery Current

D.U.T. V_{DS} Waveform

Re-Applied Voltage

Inductor Current

ΔV_{DS}

ΔI_{SD}

Ripple $\leq 5\%$

*** $V_{GS} = 5.0V$ for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS
I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

Notes:
2. Dimensions are shown in millimeters (inches).
3. Dimensions D & E do not include mold flash, mold flash shall not exceed 0.005" (0.127 mm). These dimensions are measured at the outermost extremes of the plastic body.
4. Thermal pad contour option within dimension D4, L2, E1 & E4.
5. Lead dimension uncontrolled in L3.

EXAMPLE:
WITH ASSEMBLY
LOT CODE 5678
ASSEMBLED ON WED, 10, 1999
IN THE ASSEMBLY LINE "A"
Note: "P" in assembly line position indicates "Lead-Free"

I-Pak (TO-251AA) Part Marking Information

www.irf.com
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)

NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.