Applications
- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

Benefits
- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free
- Halogen-Free

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D @ $T_J = 25°C$</td>
<td>Continuous Drain Current, $V_{GS} @ 10V$ (Silicon Limited)</td>
<td>210A</td>
<td>A</td>
</tr>
<tr>
<td>I_D @ $T_J = 100°C$</td>
<td>Continuous Drain Current, $V_{GS} @ 10V$ (Silicon Limited)</td>
<td>150A</td>
<td>A</td>
</tr>
<tr>
<td>I_D @ $T_J = 25°C$</td>
<td>Continuous Drain Current, $V_{GS} @ 10V$ (Wire Bond Limited)</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Pulsed Drain Current</td>
<td>840</td>
<td>A</td>
</tr>
<tr>
<td>P_D @ $T_J = 25°C$</td>
<td>Maximum Power Dissipation</td>
<td>300</td>
<td>W</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-to-Source Voltage</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>dV/dt</td>
<td>Peak Diode Recovery</td>
<td>5.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>T_J</td>
<td>Operating Junction Temperature</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Soldering Temperature, for 10 seconds (1.6mm from case)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Mounting torque, 6-32 or M3 screw</td>
<td>10lbf-in (1.1N-m)</td>
<td></td>
</tr>
</tbody>
</table>

Avalanche Characteristics

- Single Pulse Avalanche Energy E_{AS} (Thermal limited) | 170 | mJ |
- Avalanche Current I_{AR} | See Fig. 14, 15, 22a, 22b, | A |
- Repetitive Avalanche Energy E_{AR} | |

Thermal Resistance

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC}</td>
<td>Junction-to-Case</td>
<td></td>
<td>0.50</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JCS}</td>
<td>Case-to-Sink, Flat Greased Surface, TO-220</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Junction-to-Ambient, TO-220</td>
<td></td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

www.irf.com
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

Repetitive rating; pulse width limited by max. junction temperature.

Limited by $T_{j,max}$, starting $T_j = 25^\circ C$, $L = 0.023mH$

$R_G = 25\Omega$, $I_{AS} = 120A$, $V_{GS} = 10V$. Part not recommended for use above this value.

Notes:

1. Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

2. Repetitive rating; pulse width limited by max. junction temperature.

3. Limited by $T_{j,max}$, starting $T_j = 25^\circ C$, $L = 0.023mH$

$R_G = 25\Omega$, $I_{AS} = 120A$, $V_{GS} = 10V$. Part not recommended for use above this value.

\[V_{BSR} \]
\[\Delta V_{BR} \]
\[R_D S_{(on)} \]
\[V_{GS(th)} \]
\[I_{DSS} \]
\[I_{GSS} \]
\[R_I \]

\[V_{\text{DR}S} \]
\[V_{\text{BSR}} \]
\[I_{\text{DSS}} \]
\[I_{\text{GSS}} \]
\[R_I \]

\[I_{\text{DS}} \]
\[I_{\text{MS}} \]
\[V_{\text{SD}} \]
\[I_{\text{R}} \]
\[O_{\text{R}} \]
\[I_{\text{RMM}} \]
\[t_{\text{on}} \]
Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Drain-to-Source Breakdown Voltage

Fig 11. Typical C_{oss} Stored Energy

Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of $T_{j\text{max}}$. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as $T_{j\text{max}}$ is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. $P_{D(\text{ave})}$ = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. I_{av} = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed $T_{j\text{max}}$ (assumed as 25°C in Figure 14, 15).
 t_{av} = Average time in avalanche.
 D = Duty cycle in avalanche = $t_{av} \cdot f$
 $Z_{\text{thJC}}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$P_{D(\text{ave})} = \frac{1}{2} (1.3 \cdot BV \cdot I_{av}) = \frac{\Delta T}{Z_{\text{thJC}}}$

$I_{av} = 2 \frac{\Delta T}{[1.3 \cdot BV \cdot Z_{n}]}$

$E_{AS (AR)} = P_{D(\text{ave})} \cdot t_{av}^2$
IRFB3206GpbF

Fig 16. Threshold Voltage Vs. Temperature

-75 -50 -25 0 25 50 75 100 125 150 175
TJ , Temperature (ºC)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VGS(th) Gate threshold Voltage (V)

ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 150µA

Fig. 17 - Typical Recovery Current vs. di/dt

100 200 300 400 500 600 700 800 900 1000
di/dt - (A / µs)

0 2 4 6 8 10 12 14 16 18
I_RRM - (A)

IF = 30A
VR = 51V
TJ = 125°C
TJ = 25°C

Fig. 18 - Typical Recovery Current vs. di/dt

0 2 4 6 8 10 12 14 16 18
I_RRM - (A)

IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C

Fig. 19 - Typical Stored Charge vs. di/dt

0 50 100 150 200 250 300 350
QRR - (nC)

IF = 30A
VR = 51V
TJ = 125°C
TJ = 25°C

Fig. 20 - Typical Stored Charge vs. di/dt

0 50 100 150 200 250 300 350
QRR - (nC)

IF = 45A
VR = 51V
TJ = 125°C
TJ = 25°C
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23a. Switching Time Test Circuit

Fig 23b. Switching Time Waveforms

Fig 24a. Gate Charge Test Circuit

Fig 24b. Gate Charge Waveform
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRFB4310GPBF

Note: "G" suffix in part number indicates "Halogen - Free"

Note: "P" in assembly line position indicates "Lead - Free"

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.