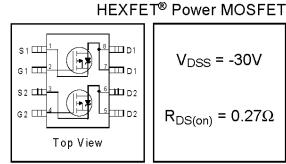
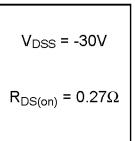
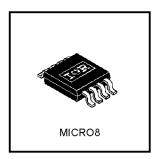
International IOR Rectifier


IRF7506PbF


- Lead-Free
- Generation V Technology
- Ultra Low On-Resistance
- Dual P-Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- Available in Tape & Reel
- Fast Switching


Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The new Micro8 package, with half the footprint area of the standard SO-8, provides the smallest footprint available in an SOIC outline. This makes the Micro8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8 will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA

Absolute Maximum Ratings

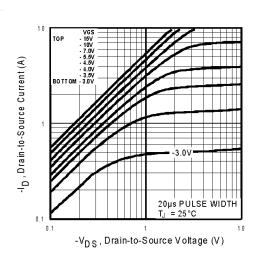
	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-1.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-1.4	Α
I _{DM}	Pulsed Drain Current ①	-9.6	
P _D @T _A = 25°C	Power Dissipation	1.25	W
	Linear Derating Factor	10	mW/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
d∨/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T _{J.} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance Ratings

	Parameter	Тур.	Max.	Units
R _{0JA}	Maximum Junction-to-Ambient®		100	°C/W

All Micro8 Data Sheets reflect improved Thermal Resistance, Power and Current -Handling Ratings- effective only for product marked with Date Code 505 or later .

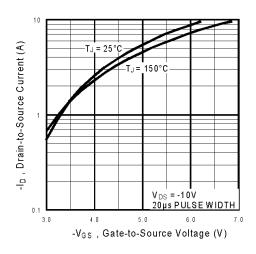
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions
V(BR)DSS	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_{D} = -250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		-0.039		V/°C	Reference to 25°C, I _D = -1mA
R	Static Drain-to-Source On-Resistance			0.27	Ω	V _{GS} = -10V, I _D = -1.2A ③
R _{DS(on)}	State Brain to Godice on Nesistance			0.45	32	$V_{GS} = -4.5V$, $I_{D} = -0.60A$ ③
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g fs	Forward Transconductance	0.92			S	$V_{DS} = -10V$, $I_{D} = -0.60A$
	Drain to Source Lookeds Current			-1.0		V_{DS} = -24V, V_{GS} = 0V
IDSS	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -24V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage			-100	nA -	V _{GS} = -20V
GSS	Gate-to-Source Reverse Leakage			100		V _{GS} = 20V
Qg	Total Gate Charge		7.5	11		I _D = -1.2A
Qgs	Gate-to-Source Charge		1.3	1.9	nC	V _{DS} = -24V
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.5	3.7		V_{GS} = -10V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		9.7			V _{DD} = -15V
tr	Rise Time		12		ns	I _D = -1.2A
t _{d(off)}	Turn-Off Delay Time		19		115	$R_G = 6.2\Omega$
tf	Fall Time		9.3			R_D = 12 Ω , See Fig. 10 ③
Ciss	Input Capacitance		180			V _{GS} = 0V
Coss	Output Capacitance		87		pF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		42]	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.25		MOSFET symbol
	(Body Diode)				A	showing the
Ism	Pulsed Source Current			-9.6	^	integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage	 		-1.2	V	$T_J = 25$ °C, $I_S = -1.2$ A, $V_{GS} = 0$ V ③
trr	Reverse Recovery Time	l	30	45	ns	T _J = 25°C, I _F = -1.2A
Qrr	Reverse RecoveryCharge		37	55	nC	di/dt = -100A/µs ③

Notes:


- ① Repetitive rating pulse width limited by max. junction temperature (see fig. 11)
- $\text{ \ensuremath{$\mathbb{Z}$} } \quad I_{SD} \leq \text{-1.2A, di/dt} \leq \text{-140A/} \mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 150 ^{\circ} C$
- 4 Surface mounted on FR-4 board, $t \le 10 sec.$
- 2

(V) Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

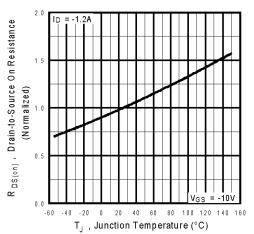
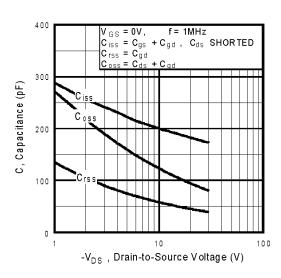
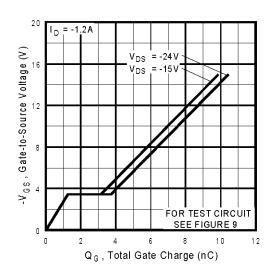




Fig 3. Typical Transfer Characteristics

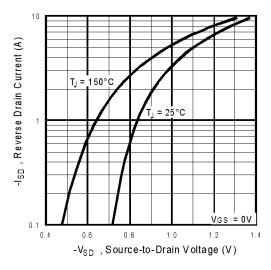

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

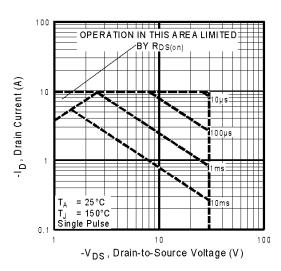


Fig 8. Maximum Safe Operating Area

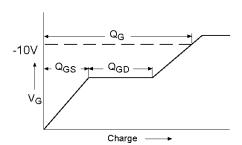


Fig 9a. Basic Gate Charge Waveform

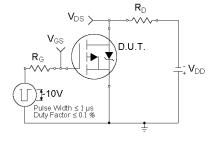


Fig 10a. Switching Time Test Circuit

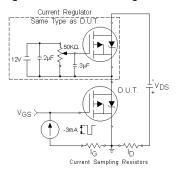


Fig 9b. Gate Charge Test Circuit

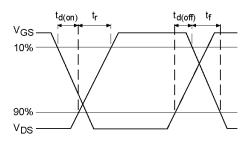


Fig 10b. Switching Time Waveforms

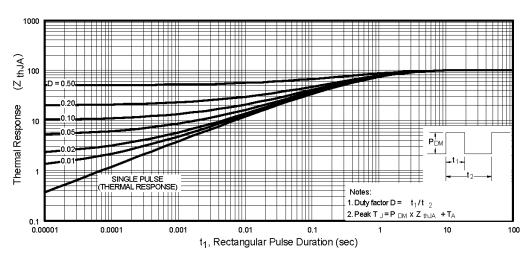
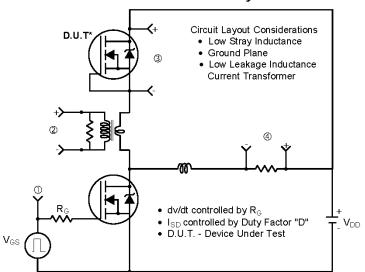
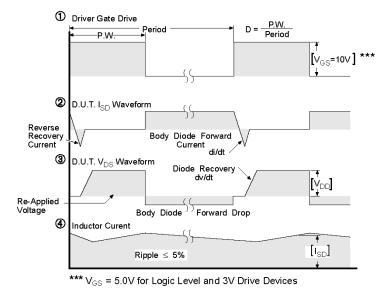
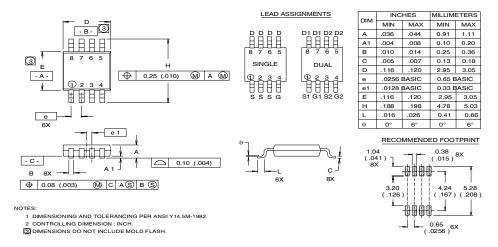
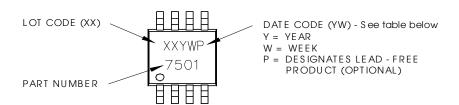



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

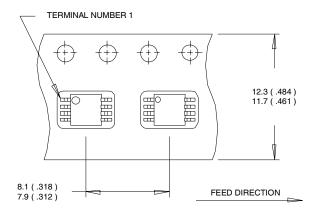

Fig 12. For P-Channel HEXFETS

Micro8 Package Outline

Micro8 Part Marking Information

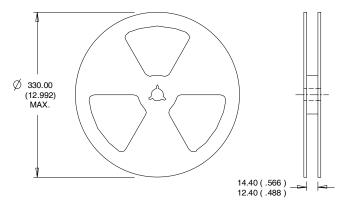
EXAMPLE: THIS IS AN IRF7501

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR


WW = (27-52) IF PRECEDED BY A LETTER

2	Υ	WORK WEEK	W	_	/E AR	Υ	WORK WEEK	
	_				L / (I)		WEEK	
	1	01	Α	2	2001	Α	27	
	2	02	В		2002	В	28	
	3	03	С					
	4	04	D		2003	С	29	
	5	1	1	2	2004	D	30	
	6			2	2005	Е	1	
	7			2	2006	F		
	8	1	1	2	2007	G		
	9	7	7		2008	Н		
	0	24	X		2009	1	•	
		25	Υ			J	50	
		26	Z	2	2010	K	50	
							51	
							52	

International TOR Rectifier


Micro8 Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- OUTLINE CONFORMS TO EIA-481 & EIA-541.
 CONTROLLING DIMENSION: MILLIMETER.

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.