Silicon Schottky Diode

- General-purpose diode for high-speed switching
- Circuit protection
- Voltage clamping
- High-level detecting and mixing
- BAS70-04S: For orientation in reel see package information below
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

BAS170W BAS70 BAS70-04 BAS70-04S BAS70-05
BAS70-02L BAS70-02W BAS70-02V BAS70-04W BAS70-05W

1BAS70-02L is not qualified according AEC Q101
Maximum Ratings at $T_A = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode reverse voltage</td>
<td>V_R</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>Forward current</td>
<td>I_F</td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td>Non-repetitive peak surge forward current</td>
<td>I_{FSM}</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>$t \leq 10\text{ms}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{tot}</td>
<td>250</td>
<td>mW</td>
</tr>
<tr>
<td>BAS70, BAS70-07, $T_S \leq 72 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS70-02L, $T_S \leq 117 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS70-02W, -02V, $T_S \leq 107 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS70-04, BAS70-06, $T_S \leq 48 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS70-04S/W/-06W, BAS170W, $T_S \leq 97 , ^\circ C$</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>BAS70-05, $T_S \leq 22 , ^\circ C$</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>BAS70-05W, $T_S \leq 90 , ^\circ C$</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>BAS70-07W, $T_S \leq 114 , ^\circ C$</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{op}</td>
<td>-55 ... 125</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{Stg}</td>
<td>-55 ... 150</td>
<td></td>
</tr>
</tbody>
</table>

* Not for new design
Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction - soldering point<sup>1</sup></td>
<td>R_{thJS}</td>
<td>≤ 310</td>
<td>K/W</td>
</tr>
<tr>
<td>BAS70, BAS70-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS70-02L</td>
<td></td>
<td>≤ 130</td>
<td></td>
</tr>
<tr>
<td>BAS70-02W, -02V</td>
<td></td>
<td>≤ 170</td>
<td></td>
</tr>
<tr>
<td>BAS70-04, BAS70-06</td>
<td></td>
<td>≤ 410</td>
<td></td>
</tr>
<tr>
<td>BAS70-04S/W, BAS70-06W</td>
<td></td>
<td>≤ 210</td>
<td></td>
</tr>
<tr>
<td>BAS70-05</td>
<td></td>
<td>≤ 510</td>
<td></td>
</tr>
<tr>
<td>BAS70-05W</td>
<td></td>
<td>≤ 240</td>
<td></td>
</tr>
<tr>
<td>BAS70-07W</td>
<td></td>
<td>≤ 145</td>
<td></td>
</tr>
<tr>
<td>BAS170W</td>
<td></td>
<td>≤ 190</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics at $T_A = 25 \, ^\circ C$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>min.</td>
<td>typ.</td>
</tr>
<tr>
<td>DC Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>$V_{(BR)}$</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>$I_{(BR)} = 10 , \mu A$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse current</td>
<td>I_R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$V_R = 50 , V$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>V_F</td>
<td>300</td>
<td>375</td>
</tr>
<tr>
<td>$I_F = 1 , mA$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_F = 10 , mA$</td>
<td></td>
<td>600</td>
<td>705</td>
</tr>
<tr>
<td>$I_F = 15 , mA$</td>
<td></td>
<td>720</td>
<td>880</td>
</tr>
<tr>
<td>Forward voltage matching<sup>2</sup>)</td>
<td>ΔV_F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$I_F = 10 , mA$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)

² ΔV_F is the difference between lowest and highest V_F in a multiple diode component.
Electrical Characteristics at $T_A = 25 \, ^\circ\text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode capacitance $V_R = 0, f = 1 , \text{MHz}$</td>
<td>C_T</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>Forward resistance $I_F = 10 , \text{mA}, f = 10 , \text{kHz}$</td>
<td>r_f</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>Charge carrier life time $I_F = 25 , \text{mA}$</td>
<td>τ_{rr}</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Diode capacitance $C_T = f(V_R)$
$f = 1\text{MHz}$

Forward resistance $\eta_f = f(I_F)$
$f = 10\text{kHz}$

Reverse current $I_R = f(V_R)$
$T_A = \text{Parameter}$

Forward current $I_F = f(V_F)$
$T_A = \text{Parameter}$
Forward current $I_F = f(T_S)$
BAS70, BAS70-07

Forward current $I_F = f(T_S)$
BAS70-02W, -02V

Forward current $I_F = f(T_S)$
BAS70-04, BAS70-06

Forward current $I_F = f(T_S)$
BAS70-02L
Forward current $I_F = f(T_S)$
BAS70-04S/W, BAS70-06W, BAS170W

Forward current $I_F = f(T_S)$
BAS70-05

Forward current $I_F = f(T_S)$
BAS70-05W

Forward current $I_F = f(T_S)$
BAS70-07W
Forward current $I_F = f(T_S)$

BAS170W

Permissible Puls Load $R_{\text{thJS}} = f(t_p)$

BAS70

Permissible Pulse Load

$\frac{I_{F\text{max}}}{I_{F\text{DC}}} = f(t_p)$

BAS70

Permissible Puls Load $R_{\text{thJS}} = f(t_p)$

BAS70-02L
Permissible Pulse Load

$I_{F_{\text{max}}}/I_{F_{\text{DC}}} = f(t_p)$

BAS70-02L

Permissible Puls Load $R_{\text{thJS}} = f(t_p)$

BAS70-02W, -02V

Permissible Pulse Load

$I_{F_{\text{max}}}/I_{F_{\text{DC}}} = f(t_p)$

BAS70-02W, -02V

Permissible Puls Load $R_{\text{thJS}} = f(t_p)$

BAS70-04, BAS70-06
Permissible Pulse Load

\[\frac{I_{\text{Fmax}}}{I_{\text{FDC}}} = f(t_p) \]

BAS70-04, BAS70-06

Permissible Puls Load

\[R_{\text{thJS}} = f(t_p) \]

BAS70-04S

![Graph showing permissible pulse load and thermal impedance vs. pulse duration for BAS70-04W and BAS70-06W]
Permissible Pulse Load

\[\frac{l_{\text{Fmax}}}{l_{\text{FDC}}} = f(t_p) \]

BAS70-04W, BAS70-06W

Permissible Pulse Load

\[\frac{l_{\text{Fmax}}}{l_{\text{FDC}}} = f(t_p) \]

BAS70-05

Permissible Pulse Load

\[\frac{l_{\text{Fmax}}}{l_{\text{FDC}}} = f(t_p) \]

BAS70-05W

Permissible Puls Load \(R_{\text{thJS}} = f(t_p) \)

BAS70-05
Permissible Pulse Load

\(I_{\text{Fmax}} / I_{\text{FDC}} = f(t_p) \)

BAS70-05W

Permissible Puls Load \(R_{\text{thJS}} = f(t_p) \)

BAS70-07W

Permissible Pulse Load

\(I_{\text{Fmax}} / I_{\text{FDC}} = f(t_p) \)

BAS70-07W

Permissible Puls Load \(R_{\text{thJS}} = f(t_p) \)

BAS170W
Permissible Pulse Load

\[\frac{I_{\text{Fmax}}}{I_{\text{FDC}}} = f(t_p) \]

BAS170W
Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3,000 Pieces/Reel
Reel ø180 mm = 8,000 Pieces/Reel (2 mm Pitch)
Reel ø330 mm = 10,000 Pieces/Reel
Package Outline

- **Cathode marking**
- **Foot Print**
- **Marking Layout (Example)**

Standard Packing

- Reel ø180 mm = 3.000 Pieces/Reel
- Reel ø180 mm = 8.000 Pieces/Reel (2 mm Pitch)
- Reel ø330 mm = 10.000 Pieces/Reel
Date Code marking for discrete packages with one digit (SCD80, SC79, SC75\(^1\)) CES-Code

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>a</td>
<td>p</td>
<td>A</td>
<td>P</td>
<td>a</td>
<td>p</td>
<td>A</td>
<td>P</td>
<td>a</td>
<td>p</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>02</td>
<td>b</td>
<td>q</td>
<td>B</td>
<td>Q</td>
<td>b</td>
<td>q</td>
<td>B</td>
<td>Q</td>
<td>b</td>
<td>q</td>
<td>B</td>
<td>Q</td>
</tr>
<tr>
<td>03</td>
<td>c</td>
<td>r</td>
<td>C</td>
<td>R</td>
<td>c</td>
<td>r</td>
<td>C</td>
<td>R</td>
<td>c</td>
<td>r</td>
<td>C</td>
<td>R</td>
</tr>
<tr>
<td>04</td>
<td>d</td>
<td>s</td>
<td>D</td>
<td>S</td>
<td>d</td>
<td>s</td>
<td>D</td>
<td>S</td>
<td>d</td>
<td>s</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>05</td>
<td>e</td>
<td>t</td>
<td>E</td>
<td>T</td>
<td>e</td>
<td>t</td>
<td>E</td>
<td>T</td>
<td>e</td>
<td>t</td>
<td>E</td>
<td>T</td>
</tr>
<tr>
<td>06</td>
<td>f</td>
<td>u</td>
<td>F</td>
<td>U</td>
<td>f</td>
<td>u</td>
<td>F</td>
<td>U</td>
<td>f</td>
<td>u</td>
<td>F</td>
<td>U</td>
</tr>
<tr>
<td>07</td>
<td>g</td>
<td>v</td>
<td>G</td>
<td>V</td>
<td>g</td>
<td>v</td>
<td>G</td>
<td>V</td>
<td>g</td>
<td>v</td>
<td>G</td>
<td>V</td>
</tr>
<tr>
<td>08</td>
<td>h</td>
<td>x</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>09</td>
<td>j</td>
<td>y</td>
<td>J</td>
<td>Y</td>
<td>j</td>
<td>y</td>
<td>J</td>
<td>Y</td>
<td>j</td>
<td>y</td>
<td>J</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>k</td>
<td>z</td>
<td>K</td>
<td>Z</td>
<td>k</td>
<td>z</td>
<td>K</td>
<td>Z</td>
<td>k</td>
<td>z</td>
<td>K</td>
<td>Z</td>
</tr>
<tr>
<td>11</td>
<td>l</td>
<td>2</td>
<td>L</td>
<td>4</td>
<td>l</td>
<td>2</td>
<td>L</td>
<td>4</td>
<td>l</td>
<td>2</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td>n</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td>n</td>
<td>3</td>
<td>N</td>
<td>5</td>
</tr>
</tbody>
</table>

\(^1\) New Marking Layout for SC75, implemented at October 2005.
Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel Ø180 mm = 3,000 Pieces/Reel
Reel Ø330 mm = 10,000 Pieces/Reel
Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
Package Outline

Foot Print

Marking Layout

Standard Packing

Reel ø 180 mm: 3,000 Pieces / Reel
Reel ø 330 mm = 10,000 Pieces / Reel
Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel Ø180 mm = 3,000 Pieces/Reel
Reel Ø330 mm = 10,000 Pieces/Reel
Package Outline

Foot Print

Marking Layout (Example)
Small variations in positioning of Date code, Type code and Manufacture are possible.

Standard Packing
Reel ø180 mm = 3,000 Pieces/Reel
Reel ø330 mm = 10,000 Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.
Package Outline

Top view

Bottom view

1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"

Marking Layout (Example)

Standard Packing

Reel ø180 mm – 15,000 Pieces/Reel
Reel ø330 mm – 50,000 Pieces/Reel (optional)
Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.