

 1 V1.2, 2014-10

Scope and purpose

This application note describes how to use the Infineon DAVE™ in conjuction with the tool chain
CrossWorks™ for ARM from Rowley Associates Limited, UK. While DAVE is used for configuring the micro

controller and the DAVE Apps are applied to provide peripheral drivers and other, CrossWorks is used for the

build process and debugging.

The following is covered within the Application Note:

 Installation requirements for both tools

 How to use DAVE™ in parallel with CrossWorks™ for ARM tools

 Get started with project development based on evaluation kits

 Tips and Tricks

Applicable Products

 XMC1000 Microcontroller Family

 XMC4000 Microcontroller Family

References

Infineon: DAVE™, http://www.infineon.com/DAVE

Rowley: CrossWorks™ for ARM, http://www.rowley.co.uk

XMC 1000, XMC 4000
32-bit Microcontroller Series for Industrial Applications

Us i ng D AVE™ wi th Ro wle y C ros s Works for
ARM®
AP32220

Application Note

http://www.infineon.com/DAVE
http://www.rowley.co.uk/

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Table of Contents

Application Note 2 V1.2, 2014-10

Table of Contents

1 Introduction ... 3

1.1 Audience ... 3

1.2 Overview... 3

2 Tools, Installation and Setup .. 4

3 Auto Code Generation with DAVE™ .. 5

4 Rowley CrossWorks™ for ARM ... 6

5 Usage and Test ... 11

6 XMC4000 Evaluation Kits.. 13

7 XMC1000 Evaluation Kits.. 14

8 Tips and Tricks .. 15

8.1 Using Cached and Non-cached Flash (XMC4000) .. 15
8.2 PSRAM, DSRAM1, DSRAM2 (XMC4000) ... 17

8.3 PSRAM vs. (non) cached Flash (XMC4000) .. 17

8.4 SRAM vs. Flash (XMC1000) .. 18
8.5 Clang vs. GCC ... 18

8.6 Newlib vs. CrossWorks C Library.. 18
8.7 Choice of RTOS .. 19

8.8 Debugging Hard Fault & Other Exceptions ... 19

8.9 Linker script generation ... 19

9 Appendix .. 20

9.1 Tool and Kit Information .. 20

9.2 References .. 21
9.3 Revision History ... 21

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Introduction

Application Note 3 V1.2, 2014-10

1 Introduction

1.1 Audience

It is assumed that the reader either already has some basic knowledge of how to work with the free
DAVE™ code generation tool from Infineon, and/or the Rowley CrossWorks™ for ARM tool, or that they have

sufficient technical knowledge to learn how to use these tools with the setup and integration guidance

provided in this document.

1.2 Overview

The XMC microcontroller family based on ARM® Cortex™-M cores, is dedicated to applications in the field of
renewable energy, factory and building automation, transportation, logistics and medical equipment,
lighting and home appliances.

With the highest quality standards and long product family life times, the XMCs combine Infineon’s powerful

peripheral set, configurable to specific application requirements, with a fast embedded Flash, and the
ability to support high ambient temperature ranges.

The XMC microcontroller portfolio features a wide range of products from low-end, low-pin-count devices
up to advanced solutions for industrial applications. The XMC1000 integrates the ARM® Cortex™-M0 to a

leading-edge 65nm manufacturing process to overcome the limitations of today’s 8-bit designs. [2] The

XMC4000 combines Infineon’s leading-edge peripheral set with an industry-standard ARM® Cortex™-M4 core.
[1]

With the XMC family being based on the ARM® Cortex™-M microcontroller core, it is possible to choose from

any of the wide variety of development tools and software solutions available on the market today.

The traditional approach to enable support for a specific microcontroller family is to integrate a driver
library into the respective tool chain. Infineon have taken a different approach by providing the free, flexible

code generator DAVE™.

DAVE™ provides a graphical user interface to access application descriptions – ‘Apps’. These Apps can be
included into the project, individually configured, combined and linked to each other in order to create a
system of peripheral drivers and/or middle-ware type communication stacks. DAVE™ will map the

application requirements to the resources of the chosen microcontroller and generate standard C code with

a well-documented API. [3]

With the current release of DAVE™ the code generation is integrated with a complete Eclipse based IDE and a
tool chain that uses the GNU Compiler Collection GCC. A debugger and flash loader are also part of the
package. Although this gives a complete set of development tools, customers are still free to use more

sophisticated development environments. One such software development tool is CrossWorks™ for ARM

offered by Rowley Associates Ltd.

CrossWorks™ for ARM is a complete C/C++ and assembly code development system for ARM7, ARM9, XScale,
and Cortex™ microcontrollers. Because it is based on the GNU Compiler Collection, and offers a board
support package for the XMC family of microcontrollers from Infineon, it can, as we shall describe, easily

work together with the DAVE™ code generation tool.[4]

http://www.infineon.com/DAVE
http://www.rowley.co.uk/

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Tools, Installation and Setup

Application Note 4 V1.2, 2014-10

2 Tools, Installation and Setup

The descriptions in this document are based on the following tools and revisions being installed and
working correctly:

 DAVE™, rev. 3.1.10 [3]

 CrossWorks™ for ARM, rev. 3.2 [4]

 General Purpose Application Kit [5]

Note: A more detailed overview about revisions is given in the Appendix.

DAVE™ is integrated into the Eclipse environment, and the full package is available for download for free
from the Infineon website. The user has the possibility to either integrate the code generation tool directly
into an existing Eclipse IDE, or to add professional tools such as a compiler, debugger or code management

in to the DAVE™ environment.

CrossWorks™ for ARM is not based on Eclipse so it cannot be directly integrated into the DAVE™
environment.

The setup described here will show how to create a common project and work with both development tools
in parallel by combining:

 the Apps library and code generator part of the DAVE™ package with

 CrossWorks™ for ARM for the project management, adding application code and for the compile, link &
debug steps.

Attention: For additional information on using DAVE™ or the CrossWorks™ for ARM tools, please read
the respective User Manuals or refer to the online help. In case of any inconsistency, the
User Manuals take precedence.

Installation

There are no specific requirements regarding the installation. Both tools can be setup to use independent
directories, and the files generated by the DAVE™ code generator will only be included by reference into the

respective CrossWorks project.

Licensing

While DAVE™ is free and does not need any activation to begin using it, CrossWorks™ requires a license for
compiling and debugging. Rowley Associates Ltd. offers a 30-day evaluation license.

http://www.infineon.com/DAVE

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Auto Code Generation with DAVE™

Application Note 5 V1.2, 2014-10

3 Auto Code Generation with DAVE™

The first step is to create a new project in DAVE™. We will choose one of the example projects,
PWMSP001_CNT001_Example1 which is available for all XMC microcontrollers.

Figure 1 PWMSP001_CNT001_Example1

This example uses a CCU4 timer in PWM output mode to drive the on-board LED and control its brightness.

NVIC handlers are used to continuously change the brightness by modifying the PWM pulse width and also
to change the dimming direction.

The project is setup and configured in DAVE™, and then the Apps are chosen, connected and configured. In
the last stage the App requirements are mapped on to the microcontroller resources and the C code is

generated.

Note: DAVE 3.1.10 and newer provide migration support for both XMC microcontroller and DAVE Apps making

it possible to update projects.

Figure 2 DAVE™ Code Generation

Attention: Generated code is placed into the sub-directories inc and src under .\Dave\Generated. This
code is always overwritten, so modifications or additional code must never be placed
there.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Rowley CrossWorks™ for ARM

Application Note 6 V1.2, 2014-10

4 Rowley CrossWorks™ for ARM

CrossWorks™ for ARM provides support for individual microcontrollers via Board Support Packages (BSP)
which can be individually installed.

The BSPs for the XMC series contain the definition for the memory maps of the individual devices and the

flash loader. Instead of using a traditional driver library for BSP integration, we describe instead how to
work with the DAVE™ generated code.

Global Macros

It is recommended to define the path to the DAVE™ workspace as well as include directories as global
macros instead of using absolute paths. This only has to be done once for all future solutions and projects,
and makes it easier to move the DAVE™ workspace or installation directory to a different location later on.

Use Project => Macros, as shown in the Figure 3.

Figure 3 DAVE™ Workspace macro

Include and Header Files

The search path for the include files within a project has to be extended as follows. (configuration
‘Common’)

First CMSIS does not define a way to differentiate between individual devices and/or device steps. Infineon

has implemented this into DAVE™ via the definition of a unique type id UC_ID. A header file uc_id.h is used
to define symbols for the specific type, package and step. These symbols are than in turn referred to by the

code generated from the DAVE™ Apps.

A project has to define the UC_ID and set the path to the file uc_id.h by using the macro defined above:

$(DAVEtools)/CMSIS/Infineon/Include

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Rowley CrossWorks™ for ARM

Application Note 7 V1.2, 2014-10

The individual header files for the code generated from DAVE™ Apps are referenced from the central
DAVE3.h with a relative path, so only the path to the top level DAVE3.h file has to be added to the user

includes of the project/solution.

This is done using the predefined DAVE™ workspace macro.

$(DAVEworkspace)/PWMSP001_CNT001_Example1/Dave/Generated/inc/DAVESupport

Depending upon the Apps and libraries used it might be necessary to insert additional search paths.

For DAVE™ Apps and libraries this can easily be copied over from the Include directory in the DAVE™ project
view. (ref. to Figure 4 and Figure 5)

In general it is recommended to use macros instead of absolute path names.

Figure 4 Include Search Path for DAVE3.h and uc_id.h

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Rowley CrossWorks™ for ARM

Application Note 8 V1.2, 2014-10

Preprocessor Definitions

As describe in the section above the UC_ID of the device used for a project has to be defined. This UC_ID can
be taken from the file uc_id.h in the respective DAVE™ project. As DAVE™ color codes the respective
section, it is easily found by opening uc_id.h.

Figure 5 UC_ID in uc_id.h in DAVE™

In addition to the UC_ID the symbol DAVE_CE has to be defined as this is used within the DAVE™ code to
decide on the inclusion of some additional header files.

Figure 6 Preprocessor Definitions in CrossWorks

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Rowley CrossWorks™ for ARM

Application Note 9 V1.2, 2014-10

Dynamic Folder

A new project is created in CrossWorks with the same XMC device as chosen in the respective DAVE™ project.

In order to integrate the code generated by DAVE™, we use the Dynamic Folder feature provided by
CrossWorks™. CrossWorks™ allows the folder to specify a dynamic folder upon creation. The macro defined

above is used to point to the DAVE generated files, as shown below.

The file filter should be set for the *.c;*h files and ‘Recurse into subdirectories’ activated.

Select ‘OK’ and CrossWorks™ will show the source files that were generated by DAVE™.

It is also possible to add a dynamic folder using drag & drop simply dropping the respective DAVE™ folder
into the project. In this case CrossWorks™ will use the absolute path and only add the files in the root folder.

With the Setup command the absolute path can be changed to the macro as described above and the
option ‘Recurse into subdirectories’ has to be set.

Figure 7 Setting up the Dynamic Folder

The project is now setup and ready for the addition of the actual application code.

As a starting point the main.c generated by DAVE™ can be imported into the project by using:

Add Existing File -> Import

At this point the project should build without errors and now can be modified and extended as needed.

CrossWorks™ monitors the ‘Dynamic Folder’ in the background, automatically adds newly generated files to

the project and notifies the user if files have been changed. This also applies to files that are currently open
in the IDE or the debugger.

It is also possible to manually refresh the folder content as shown below.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Rowley CrossWorks™ for ARM

Application Note 10 V1.2, 2014-10

Figure 8 Reloading the Dynamic Folder

Interrupts

DAVE™ implements the standard method of weakly defined symbols to populate the NVIC interrupt table. If
interrupts are given customized names in the GUI of the NVIC App like PWM_Period_Handler DAVE™ will

redefine the symbol for the NVIC interrupt but it will not create the function body.

This has to be done by the user.

NVIC002_Conf.h: #define PWM_Period_Handler IRQ_Hdlr_49

XMC4500.h: #define IRQ_Hdlr_49 CCU41_1_IRQHandler

Startup_XMC45600.s: Entry CCU41_1_IRQHandler

The following table summarizes the most important settings.

Table 1 Summary of Settings in CrossWorks

Global Macros

 DAVEworkspace=C:/_path_/_to_/_DAVE_/workspace

 DAVEtools=C:/_path_/_to_/_DAVE_/tools

Include Search Paths

 $(DAVEtools)/CMSIS/Infineon/Include

 $(DAVEworkspace)/_project_/Dave/Generated/inc/DAVESupport

Preprocessor definitions

 UC_ID=4502002 (UC_ID of target processor)

 DAVE_CE

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Usage and Test

Application Note 11 V1.2, 2014-10

5 Usage and Test

Once all of the described setup steps have been completed, both tools can be used in parallel and
independently of each other.

Within DAVE™ the code generation is used to generate the *.c and *.h files as required. On the application

level they can be seen to form of a project specific driver library.

Figure 9 Tools and Project Setup

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Usage and Test

Application Note 12 V1.2, 2014-10

If the project is setup as described here, the CE perspective of DAVE™ is used to add Apps for additional
peripherals, middleware and communication stacks, or to change the configuration settings for the Apps

that are already in the project.

The integrated help for the individual Apps provides the API calls to control the Apps from the
customer/application code. These API function calls itself can be copied from the help into the CrossWorks™

environment.

The CrossWorks™ tool can be used as normal; application code can be added, compiled and debugged.

The code completion feature available in CrossWorks™ can be used to assist in entering the API function
calls for the Apps API.

Note: Keep in mind that the DAVE™ generated files in the Dynamic folder are included by reference and will
be overwritten upon the next code generation.

By using both tools in parallel it is now possible to start with the basic ‘kernel’ of the application, bring it up,
and then add modules and functionality by repetitively going through the following steps:

1. add and configure Apps for peripheral drivers or functions such as middle-ware in DAVE™

2. solve and generate the respective C code in DAVE™

3. switch to CrossWorks™ and add/modify the actual application code modules

4. download and debug the code in CrossWorks™

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

XMC4000 Evaluation Kits

Application Note 13 V1.2, 2014-10

6 XMC4000 Evaluation Kits

The final step is to setup the debugger to the XMC4000 Evaluation Kit. [1]

Figure 10 XMC4500 Application Kit and XMC4500 Relax Kit

All XMC4000 Application Kits (except the very first revision of the XMC4500 kit) have the debugger on board.

The debugger interface is a J-Link Lite CortexM and is supported by CrossWorks™ as SEGGER J-Link.

Because there are several versions of the respective driver DLL, we recommend selecting the debugger DLL
supplied by Infineon and installed with DAVE™. To do this the respective target property called ‘J-Link DLL

File’ in CrossWorks™ must be set pointing to the DLL.

Figure 11 Segger J-Link settings

If the Application Kit is powered up and the debugger connected, it is possible to connect to the target,
download the code, and start debugging.

Instead of the J-Link Lite CortexM, any JTAG Interface which is supported by CrossWorks™ can be used. The

connector on the CPU Board complies with the standard pinning as defined by ARM®.

The XMC Application Boards are designed to use “Serial Wire Debug” as the debug interface. Please refer to
the manual for more information. [5]

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

XMC1000 Evaluation Kits

Application Note 14 V1.2, 2014-10

7 XMC1000 Evaluation Kits

For the XMC1000 family of ARM® Cortex™-M0 microcontrollers several development boards are available
ranging from development boards with ARDUINO™ compatible footprint to boards with a dedicated

extension interface for lighting or motor control applications.

The XMC 2Go kit is one of the worlds smallest, fully featured microcontroller evaluation kits.

All boards are supported by CrossWorks™ with a respective board support package.

Figure 12 XMC1000 Boot Kit and XMC2Go Kit

As with the XMC4000 Kits the development boards always have the debugger on board and the debugger
interface is a J-Link Lite CortexM and is supported by CrossWorks™ as SEGGER J-Link.

As a starting point either the examples provided with CrossWorks™ can be used, or CrossWorks™ can be set
up as described above to use DAVE™ projects.

The example for the XMC2Go that is provided on the Infineon web site does not use DAVE™ Apps and can be
used ‘stand-alone’. The header file GPIO.h defines the IO pins required as well as inline functions to access

the respective registers.

The example implements the SysTick_Handler to blink the LEDs and send out messages via the UART of
USIC Channel 0. Since the UART is routed via the debugger to a virtual serial port on the PC the terminal

window in CrossWorks can be used to show these messages. Initially the port setting is 115.2kbps/8N1.

Examples for the XMC1000 Boot Kits including the application kit boards are provided within DAVE™. All of
them can be used within CrossWorks™ if the projects are setup as described above for the XMC4000.

Note: The XMC1000 family supports several different boot modes. It should be noted that the devices used on

the kits are programmed to ‘User Mode Debug’ while productive devices are programmed to ‘UART-

Bootstrap Loader’. Productive devices therefore have to be reprogrammed by changing the ‘Boot Mode
Index - BMI’ before the SWD debugger can be used.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Tips and Tricks

Application Note 15 V1.2, 2014-10

8 Tips and Tricks

8.1 Using Cached and Non-cached Flash (XMC4000)

The XMC4000 series of microcontrollers include instruction and data caches in order to allow code execution
and data access with a minimum latency, even at higher core clock rates. As there might be applications

which need fully deterministic timing behavior and therefore cannot use the cache, the implementation is

such that the actual flash memory is accessible via two distinct memory regions:

 0x08000000 for cached access

 0x0C000000 for non-cached access

From revision 1.2 onwards, the board support packages for the XMC4000 implement full support for the
cache. In the default build configuration the code and data sections are placed into the 0x08000000 region,

resulting in cached accesses during run-time.

A special section .uncached is defined which can be used to place dedicated portions of code and/or data
into the non-cached region.

Placing code or data into that section is done according to the standard CrossWorks™ methods by either
setting the respective section properties on directories or files or by using the GCC section attribute on

individual functions or data.

void foo_uncached (void) __attribute__ ((section (".uncached")))

unsigned int var_uncached __attribute__ ((section (".uncached")))

Within the actual flash module the .uncached code and data is placed behind the cached code and data.
The .uncached section can easily be aligned; e.g. at a 256 Byte boundary by setting the respective
alignment value.

 ... alignment="0x100" ...

In that way cached and non-cached code can be easily mixed within one project giving maximum flexibility.

Functions linked into the project from a library still remain within their original section (e.g. .text) which is
per default placed into the cached flash area.

Note: Some early chip revisions of the XMC4000 family e.g. XMC4500 step A’ or XMC4400 step AA, showed an

errata where two consecutive instruction fetch accesses, the first to the non-cacheable and the second

to the cacheable address space, may cause a corruption of the program flow (PMU_CM.001). This is
corrected in present revisions but some kits may still contain the old chip revision. Please refer to the

respective errata sheets for further details.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Tips and Tricks

Application Note 16 V1.2, 2014-10

The full project can be placed into the 0x0C memory segment resulting in the application running without
cache by changing the respective Section Placement property. This will result in using a dedicated
section placement file which is part of the board support packages. With this method all code including

library functions and the vector table are placed into the non-cached region.

Figure 13 Running from uncached flash

Note: By default the Section Placement property is set to ‘Flash’ in the Flash build configuration. Accordingly

the setting to ‘Uncached Flash’ must be done in the ‘Flash’ build configuration. Alternatively it can be

set back to ‘Inherited’ here and then the property can be defined in the configuration ‘Common’.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Tips and Tricks

Application Note 17 V1.2, 2014-10

8.2 PSRAM, DSRAM1, DSRAM2 (XMC4000)

The XMC4000 series provides three different SRAM blocks with the following usage recommendation:

 PSRAM => for use as fast program SRAM for code,

 DSRAM1 => data SRAM to be used by the system e.g. for variables,

 DSRAM2 => communication SRAM primarily for use by USB and Ethernet

It would be possible to place code and data differently, but this might cause delays; e.g. if code has to be
fetched from the DSRAMs via the system bus.

Starting with revision 1.2 the board support packages for XMC4000 make full use of this concept and place
the sections accordingly.

8.3 PSRAM vs. (non) cached Flash (XMC4000)

The XMC4000 Board Support Package includes some examples using the ARM® DSP code for the Cortex™-M4.
Some of these examples have been used to compare the execution speed for code running from the

different memory regions.

The system timer has been used to measure system ticks required for the main code. The main clock is set to
120MHz and flash wait states are set to 3. The examples use the internal FPU and the values are therefore
not comparable to the first version of this Application Note.

The non-cached values are measured with the complete sections .init, .text and .rodata in the

memory segment 0x0C by using the ‘uncached Flash’ setting as described above.

Table 2 Comparison of code execution speed

 non cached Flash cached Flash PSRAM

arm_class_marks_example 7.996 4.493 3.117

arm_convolution_example 80.362 39.135 35.736

arm_dotproduct_example 4.873 2.087 2.004

arm_linear_interp_example 26.397 10.962 n.a. see below

arm_fir_example 134.964 80.007 77.724

Executing code using the cached memory segment gives a clear advantage compared to non-cached flash,
and almost reaches the execution speed of the program SRAM.

The linear interpolation example uses approximately 740 Kbyte of read only data which does not fit into the
SRAM, and must be placed into flash.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Tips and Tricks

Application Note 18 V1.2, 2014-10

8.4 SRAM vs. Flash (XMC1000)

The XMC1000 Board Support Package includes the same examples as used above for the XMC4000. Again
some of these examples have been used to compare the execution speed for code running from the different

memory regions.

The system timer has been used to measure system ticks required for the main code. The clock is set to
32MHz

Table 3 Comparison of code execution speed

 Flash SRAM

arm_class_marks_example 37.384 27.051

arm_dotproduct_example 9.794 7.475

arm_fir_example 1.931.179 1.393.614

As the XMC1000 provides 16Kbytes of SRAM it can be used for timing critical section like interrupts, giving an

advantage in execution speed compared to the flash.

8.5 Clang vs. GCC

The latest versions of CrossWorks™ not only come with the integrated GCC tool chain but additionally
provide the clang Compiler from the LLVM project. [6]

Clang is a ‘C only’ compiler frontend and has been written from scratch. It therefore claims to “..deliver
amazingly fast compiles .. and low memory use “.

The Default Compiler Variant to be used can be set in the Environment Settings. It should be noted
that clang only provides the frontend compiler and the backend used is still GNU as.

While this is heavily depending on the concrete code of the project clang tends to generate slightly smaller
code sizes compared to GCC. Since clang has been developed specifically for C/C++ it also gives better error

descriptions and hints.

It should be noted that the examples in DAVE™ have only been tested with GCC.

8.6 Newlib vs. CrossWorks C Library

The C library provided within DAVE™ and used throughout the examples is the open source implementation
newlib.

In contrast CrossWorks™ provides its “..own royalty-free ANSI and ISO C compliant C library that has been
specifically designed for use within embedded systems”.

While in theory both implementations should be fully compatible it should be kept in mind that there might
be slight differences in the implementation. In addition CrossWorks™ provides ways to configure the content

of the library linked into the individual project in order to further optimize code size (e.g. regarding type

support in printf/scanf). Namely when using example projects from DAVE™ it should be assured that the
functions used by the DAVE™ project are available and fully compatible.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Tips and Tricks

Application Note 19 V1.2, 2014-10

8.7 Choice of RTOS

For more demanding solutions it might be advisable to use a RTOS. The tools described here offer three
choices out of the box:

 CrossWorks™ Tasking Library CTL

 RTX-RTOS integrated in DAVE

 FreeRTOS™ [7]

Both XMC1000 and XMC4000 are officially supported by FreeRTOS™.

For the CTL as well as for FreeRTOS™ there are example solutions available within CrossWorks™. They can be

found in the samples directory together with the ARM DSP library examples used above.

(defined as makro SampleDir)

In addition both RTOS are supported with a respective debug script to populate the thread view.

For the documentation of the RTX-RTOS please refer to the DAVE App RTOS001.

If DAVE Apps are used for peripheral functions, the RTOS aware version providing reentrant APIs should be

used where available, e.g. UART002 instead of UART001.

Since the examples provided for DAVE are based on the RTX-RTOS from Keil some modifications may be
required in order to combine the Apps with one of the other two RTOS.

8.8 Debugging Hard Fault & Other Exceptions

The ARM® Cortex™-M4 core implements a set of fault exceptions where each exception relates to an error
condition in the hardware.

The standard implementation of the fault handlers do not provide any means to analyze the root cause of
the fault, and since there is an escalation scheme implemented between the individual faults typically all of

the exceptions end up in the HardFault_Handler().

The FreeRTOS™ web site provides a good introduction and tips on implementing the individual handlers in
order to be able to track down the root cause. [8]

8.9 Linker script generation

CrossWorks™ manages placement of code and data at dedicated memory locations via two xml files called
memory map and section placement. The memory map defines the memory map of the device chosen

and should normally not be changed.

The section placement file can be imported into the project and edited locally giving maximum flexibility
also for more ‘exotic’ memory configurations. This might be necessary when integrating pre-compiled code

which does use non-standard sections.

A linker script generator than creates a linker script for the GNU linker. As this is a standard GNU linker script
it can also be used for the build process within DAVE™.

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Appendix

Application Note 20 V1.2, 2014-10

9 Appendix

9.1 Tool and Kit Information

The following tools and kits with the revisions given have been used.

Table 4 Tools and Revisions

DAVE™ rev. 3.1.10 [3]

DAVEAppsLibrary001 v1.0.66

DAVEAppsMotorControlLibrary001 v1.0.28

DAVEApps_Lighting_Library_001 v1.0.18

DAVEApps_HMI_Library_001 v1.0.6

CrossWorks™ for ARM, rev. 3.2 [4]

XMC1000 CPU Support Package v1.1

XMC1100 Boot Kit BSP v1.0

XMC1200 Boot Kit BSP v1.0

XMC1300 Boot Kit BSP v1.0

XMC4000 CPU Support Package v1.4

XMC4200 Actuator Application Kit BSP v1.2

XMC4400 General Purpose Application Kit BSP v1.2

XMC4500 General Purpose Application Kit BSP v1.3

XMC4500 Relax Kit BSP v1.2

XMC4500 SDRAM Application Kit BSP v1.0

Table 5 Evaluation & Application Kits [5]

XMC4500 Enterprise Kit

XMC4500 Relax Kit

XMC1300 Boot Kit

XMC2Go Kit

Using DAVE™ with Rowley CrossWorks for ARM®

AP32220

Appendix

Application Note 21 V1.2, 2014-10

9.2 References

[1] Infineon: XMC4000 Microcontroller Family, http://www.infineon.com/xmc4000

[2] Infineon: XMC1000 Microcontroller Family, http://www.infineon.com/xmc1000

[3] Infineon: DAVE™, http://www.infineon.com/DAVE

[4] Rowley: CrossWorks™ for ARM, http://www.rowley.co.uk

[5] Infineon: XMC Development Kits, http://www.infineon.com/xmc-dev

[6] The LLVM Compiler Infrastructure, http://llvm.org/

[7] FreeRTOS™, http://www.freertos.org/

[8] FreeRTOS™: Debugging Hard Fault & Other Exceptions,

 http://www.freertos.org/Debugging-Hard-Faults-On-Cortex-M-Microcontrollers.html

9.3 Revision History

Major changes since the last revision

Page or Reference Description of change

V1.0, 2012-10

 Initial version

V1.1, 2013-04

Tools New tool revisions

V1.2, 2014-10

Tools New tool revisions, XMC1000 boards added

XMC1000 Added XMC1000 Evaluation Kits, runtime comparison

Tips & Tricks Added sections Clang, Clib, RTOS, Hard Faults, Linker Script

http://www.infineon.com/xmc4000
http://www.infineon.com/xmc1000
http://www.infineon.com/DAVE
http://www.rowley.co.uk/
http://www.infineon.com/xmc-dev
http://llvm.org/
http://www.freertos.org/
http://www.freertos.org/Debugging-Hard-Faults-On-Cortex-M-Microcontrollers.html

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2014 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.

Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.

www.infineon.com

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI -POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-
iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Inte rnationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Tech nologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radi o Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CE VA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of C adence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2014-07-17

Edition 2014-10

AP32220

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/
www.infineon.com

	Table of Contents
	1 Introduction
	1.1 Audience
	1.2 Overview

	2 Tools, Installation and Setup
	3 Auto Code Generation with DAVE™
	4 Rowley CrossWorks™ for ARM
	5 Usage and Test
	6 XMC4000 Evaluation Kits
	7 XMC1000 Evaluation Kits
	8 Tips and Tricks
	8.1 Using Cached and Non-cached Flash (XMC4000)
	8.2 PSRAM, DSRAM1, DSRAM2 (XMC4000)
	8.3 PSRAM vs. (non) cached Flash (XMC4000)
	8.4 SRAM vs. Flash (XMC1000)
	8.5 Clang vs. GCC
	8.6 Newlib vs. CrossWorks C Library
	8.7 Choice of RTOS
	8.8 Debugging Hard Fault & Other Exceptions
	8.9 Linker script generation

	9 Appendix
	9.1 Tool and Kit Information
	9.2 References
	9.3 Revision History

