
Appl icat ion Note, V 1.1, Sept. 2001

Tr iCore
Viterbi Deco
standard

Microcontro

32018
AP
ding for V.32

l lers

N e v e r s t o p t h i n k i n g .

Revision History: S e p t . 20 01 V 1 . 1
Previous Version: Feb. 1999 V 1.0
Page Subjects (major changes since last revision)
all Changed layout to Infineon Corporate Design

Controller Area Network (CAN): Licence of Robert Bosch GmbH

TriCore

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

AP32018
Viterbi Decoding for V.32 standard

Abstract

Application Note 3 V 1.1, Sept. 2001

1 Abstract

In most wireless communications systems, convolutional coding is the preferred
method of error-correction coding to overcome transmission distortions.

Practical applications of convolutional encoding became possible when Viterbi
proposed a maximum-likelihood method for decoding convolutional codes in 1967.

This application note deals with encoding and decoding algorithms as required for the
V.32 standard. The basic encoding algorithm is known as a convolutional encoding
scheme and the decoding algorithm scheme is based on the Viterbi algorithm.

In a first part the theoretical context is outlined:

• Encoder / decoder schematic block diagram
• Differential coding and decoding
• Convolutional encoding and decoding

Then the present implementation of both encoding and decoding algorithms is
introduced in a second part.

Appendix contains both the C code implementation of the V.32 encoding and decoding
algorithms and the benchmark for the complete decoding algorithm.

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note 4 V 1.1, Sept. 2001

2 Theoretical Context

Figure 1 Encoder / Decoder Schematic Block Diagram

The V.32 encoder is divided into 2 functional blocks:

• Differential encoder
• Convolutional encoder also called Viterbi encoder

Decoding must be done by performing each decoder function in the reverse order in
which it was encoded. Therefore, we have 2 functional blocks for decoding:

• Differential decoder
• Convolutional decoder also called Viterbi decoder

2.1 Differential Coding and Decoding Overview

Algorithms used both for differential encoding and decoding can be described by the
following equations:

• Differential Encoder: Y1n = Q1n ^ Y1n-1

Y2n = (Q1n • Y1n-1) ^ Y2n-1 ^ Q2n

• Differential Decoder: Q1n = Y1n ^ Y1n-1

Q2n = (Q1n • Y1n-1) ^ Y2n-1 ^ Y2n

Note: (^) means EXCLUSIVE OR function.
(•) means AND function.

Refer to the parts called ”Differential Encoder Implementation” (chapter 4.1) and
”Differential Decoding Implementation” (chapter 7) for more details.

2.2 Convolutional Encoding and Decoding Overview

If convolutional encoding is easy to implement, however convolutional decoding is
more complex.

Differential
Encoder

Differential
Decoder

Viterbi
Encoder

Transmission
Channel

Viterbi
Decoder

Q1

Q2

Y0

Y2

Y1
Y1

Y2

Y1

Y2

Q1

Q2

Y0

Y1

Y2

Noise

Encoder Decoder

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note

2.2.1 Viterbi Encoding

The encoding method is referred to as convolutional coding. The outputs [Y0 Y1 Y2]
are generated by convolving a signal [Y1 Y2] with itself, which adds a level of
dependence on past values.

Convolutional encoder error-correction capabilities result from outputs that depend
on a sequence of past symbol values.

A simplified diagram of the Viterbi convolutional encoder is shown on the following
figure:

Figure 2 Viterb

Definitions

• The 3 bits [S0 S1
• The 3 bits [Y0 Y1

that are output f
disturbed by the c

• Since the convolu
the constraint len

• The rate of this c
bit transition [Y0 Y

Note: Refer to the p
more informa

Constraint conditio

Given a particular s
time interval. For
transitions [0 0 0], [0
trellis diagram, Figu

Y1

Y2

from
Differential
Encoder
5 V 1.1, Sept. 2001

i Encoder

 S2] are called delay states and represent the state of the encoder.
 Y2] are known as transitions and represent the encoded symbols
rom the encoder. These 3-bit encoded symbols are transmitted,
hannel noise and then received by the decoder.
tional encoder is made of M = 3 bits of memory for V.32 standard,

gth K of the code is K = M + 1 = 4.
onvolutional encoder is 2/3: 2 input bits [Y1 Y2] are encoded in a 3
1 Y2].

art following the trellis diagram called ”Vocabulary conventions” for
tion about these concepts.

n

et of delay states [S0 S1 S2], not all transitions are possible in that
instance, given a delay state [0 0 1] for the encoder, only 4
 1 0], [1 0 0], and [1 1 0] are allowed in next time interval (see the

re 3).

S0 S1
Y0 (Redundant Bit

S2

3 Bits of Memory

Y1

Y2

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note 6 V 1.1, Sept. 2001

This leads to the concept of trellis structure. Since the encoder is essentially a finite-
state machine, a finite-state diagram may be used to represent it.

The following trellis diagram concisely illustrates possible transformations from one
delay state to another, along with their corresponding transition:

Figure 3 V.32 Modem Trellis Diagram

Note: Each column of delay states on the trellis diagram indicates one symbol interval.

 000

 01
0

 .

 0
01

 01

1

 .

10
0

.

11
1

 .

 1
10

 1
01

 111

 .

 10

0

.

 1
01

.

 1
10

.

 101

 101

 .

 110

 11

1

 .

 10
0

.

 111

 100

 .

 110

 .

 010

 .

 011

 .

 001

 000

 001

 .

 011

 .

 001 000

 .

 010

 .

 000

 .

 010

 .

 01

1

[0] 000

[1] 001

[2] 010

[3] 011

[4] 100

[5] 101

[6] 110

[7] 111

000 [0]

001 [1]

010 [2]

011 [3]

100 [4]

101 [5]

110 [6]

111 [7]

Transitions
[Y0 Y1 Y2]

N
e
w

D
e
l
a
y

S
t
a
t
e

[
S
0

S
1

S
2
]

P
a
s
t

D
e
l
a
y

S
t
a
t
e

[
S
0

S
1

S
2
]

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note 7 V 1.1, Sept. 2001

2.2.2 Vocabulary conventions

Symbol

A symbol is a 2-bit value [Q1 Q2] and denotes a data that has to be sent. To protect it
against channel distorsions, this data has to be encoded in a 3-bit transition [Y0Y1Y2]
before it is sent. The aim of the decoder is then to decode the received transition so as
to retrieve the transmitted symbol.

Delay State

the 3 bits [S0 S1 S2] in the encoder memory are called delay states since they
represent the state of the 3 delays composing the convolutional encoder. For the 2/3
rate Viterbi encoder, there are 8 possible delay states, numbered from 0 to 7.
[see figure 2]

Branch

A branch is a link between 2 delay states. We have 32 different branches at each time
period, divided in 8 groups of 4 branches: each group starts from one of the 8 delay
states.
[see figure 3]

Note: A branch is just a physical support to draw a transition in the trellis diagram. Its
aim is especially to identify the transition it represents.

Transition

the 3 bits [Y0 Y1 Y2] are known as transitions and represent the encoded symbols
that are output from the encoder. A transition represents a sample transmitted by the
encoder, disturbed in the channel, and received by the decoder.
There are 8 possible transitions numbered from 0 to 7.
[see figure 3]

Note: There are only 8 possible transitions for 32 branches: a transition identifies 4
differentbranches in the trellis diagram.

Note: Knowing the transition and the past delay state it comes from, the branch
identified is unique.

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note 8 V 1.1, Sept. 2001

Path

A path consists in a succession of linked branches, one branch for each time period.
2 successive branches of a path are connected by a delay state.
On the figure 4, 8 different paths have been drawn.
[see figure 4]

2.2.3 Convolutional Decoding Process

Convolutionally encoded data is decoded through knowledge of the possible state
transitions (represented by the trellis diagram), created from the dependence of the
current transition on past transitions. The decoding scheme makes use of past history
and reliability information to decode incoming transitions.

2.2.4 Viterbi algorithm

This algorithm is based on a maximum-likelihood decoding technique and was
devised by A. J. Viterbi in 1967: the decoder uses the trellis structure and continually
calculates the distance between received and valid transitions.The purpose is to
identify the transition sequence with the highest probability of matching the transmitted
sequence based on the received sequence.

The encoder may attain only one delay state at any given time, but the decoder keeps
track of all the possible delay states until it decides which one to select. This is the
essence of this algorithm in which the actual decision is delayed until more
information is available.

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note 9 V 1.1, Sept. 2001

Figure 4 Dynamic Programming

Figure 4 shows an expanded trellis diagram over several transition time intervals with
the x axis representing time and the y axis representing the eight possible delay states
of the encoder.

In relation with the trellis diagram on figure 3, note that there are only 8 surviving
branches for each time period instead of 32. In fact, considering the trellis diagram
shows that 4 branches lead to every new delay state.

As proposed by Viterbi, the decision is performed at each time increment which
is the branch belonging to the most likely path leading to the considered delay
state. Only this branch is stored whereas the 3 others are discarded. Thus, the
number of branches to store at each time period is reduced to 8, one for each delay
state and only 8 paths are stored in memory after several time period as shown on
figure 4.

Ideally, the maximum-likelihood method looks at the entire sequence of input
transitions before making any decision about the output transitions. Clearly, this
approach is not feasible for real-time applications due to two factors:

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8

D
e
l
a
y

S
t
a
t
e
s

[
S
0

S
1

S
2
]

Current
Time Period
 (TCurr)

0 1 2 3 4 5

[000]

[010]

[011]
[

0
0
1

]

Transitions
[Y0 Y1 Y2]

AP32018
Viterbi Decoding for V.32 standard

Theoretical Context

Application Note 10 V 1.1, Sept. 2001

• Prohibitive memory requirements, even for relatively small blocks of data
• Inherent time delay before the decoder selects an output

A more practical approach is to consider only a finite length of input transitions before
making a decision about the output. This length will be called LENGTH_TB in this
application note.

Note: This length LENGTH_TB must be great enough to avoid deciding on a wrong
path. This parameter value is determined by the constraint length K of the code
(in our case, K = 4) and for near-optimum decoding should be chosen four or
five times the constraint length. Since four times the constraint length in this
case is 16 (4 x K), this makes modulo addressing easier than using 20 (5 x K)
because 16 is a power of two.
So LENTH_TB = 16 is suitable for our application.

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Application Note 11 V 1.1, Sept. 2001

3 Implementation Overview

3.1 Data Flow Diagrams

Figure 5 General Data Flow Diagram

Conv Encoding

Y1Y2In

Convolutional
Encoder State

S0S1S2

Diff Encoding

Input Buffer
TabQ1Q2In

Input Symbol
Q1Q2In

Differential Encoder
Past Output
PastY1Y2In

Init Encoder

Add Noise

Transmitted Transition
Y0Y1Y2transmitted

Noise

Viterbi
Decoding

Delay States Buffer
DS

Current Time Pointer
TCurr

Path Accumulated
Distances Buffer
PathAccDist

Transitions Buffer
Tr

Init Metric

Diff Decoding

Y1Y2Out

Differential Decoder
Past Input

PastY1Y2Out
Init Decoder

Differential
 Decoding Table
DiffDecod

Differential
 Encoding Table
DiffEncod

Output Buffer
TabQ1Q2Out

Output Symbol
Q1Q2Out

Received Transition
Y0Y1Y2received

TabNoise

Increment
Time Period

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Application Note 12 V 1.1, Sept. 2001

Figure 6 Viterbi Decoding Data Flow Diagram

Metric
Update

Trace Back

Received Transition
Y0Y1Y2received

Current Time Pointer
TCurr

Path Accumulated
Distances Buffer
PathAccDist

Transitions Buffer
Tr

New Path Acc.
Distances Buffer
NewPathAccDist

Update
Acc Distances

Branch Distances
Buffer

BranchDist

Delay States Buffer
DS

Y1Y2Out

Trace Back Start Point
StartDS

Transition Selected
Y0Y1Y2selected

Discard Y0

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Application Note 13 V 1.1, Sept. 2001

3.2 Memory resources needed

Note: Note: As the smallest possible data type in C language, a char variable (coded
with 8 bits) has been chosen to store a 2-bit symbol [Q1Q2], a 3-bit delay state
[S0 S1 S2] as well as a 3-bit transition [Y0 Y1 Y2].

Input buffer (TabQ1Q2In)

This input buffer contains the successive input symbols [Q1 Q2]In that have to be sent.
The size for this linear buffer is defined by the parameter LENGTH_INPUT and can
easily be modified.

Size: LENGTH_TB * 8 bits

Output buffer (TabQ1Q2Out)

The decoded output symbols [Q1 Q2]Out calculated by the decoder are stored in this
output buffer TabQ1Q2Out. It is a linear buffer and its size is the same than the one of
the input buffer, since for each time period one input symbol is read and one output
symbol is found and stored as well.

Size: LENGTH_TB * 8 bits

Differential Encoding Table (DiffEncod)

Knowing the past output [Y1n-1Y2n-1] and the current input [Q1nQ2n] of the differential
encoder, this look-up table allows to compute the current output [Y1nY2n] of the
differential encoder, and thus to perform the differential coding.

Note: Please refer to the part 4.1 for more details about how to use this look-up table.

Size: 16 * 8 bits

Differential Decoding Table (DiffDecod)

Knowing the past input [Y1n-1Y2n-1] and the current input [Y1nY2n] of the differential
decoder, this look-up table allows to compute the current output [Q1nQ2n] of the
differential decoder, and thus to perform the differential decoding.

Note: Please refer to the part 4.2 for more details about how to use this look-up table.

Size: 16 * 8 bits

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Application Note 14 V 1.1, Sept. 2001

Branch Distances buffer (BranchDist)

Since the received transitions [Y0 Y1 Y2]received an have been disturbed by channel
noise, each transition value is considered as a possible representation of the received
transition. Each one of the 8 possible transitions is a more or less likely representation
of the received transition regarding its Hamming distance to it. This buffer contains the
8 distance values between the received transition [Y0 Y1 Y2]received and the 8 possible
transitions [Y0 Y1 Y2].

Size: 32 * 8 bits

Path Accumulated Distances Buffers (PathAccDist and NewPathAccDist)

Since only one path, the most likely, is selected to lead to each delay state, only 8
paths have to be stored. Each path is identified by its accumulated distance which is
the sum of the branch distances for each branch constituting the path. Since a new
branch is added to each path at each symbol period, these accumulated path
distances have to be updated each time interval.

Note: The previous accumulated path distances are needed until a new branch has
been selected for all paths. Hence, it is not possible to directly replace the old
accumulated path distances by the new ones. Therefore 2 buffers are required,
PathAccDist and NewPathAccDist.

Size: The size of these 2 buffers depends on how many symbols are transmitted, i.e.
on the parameter LENGTH_INPUT. In the worst case, one of the 8 paths stored
is constituted of branches that have all a maximum cost of 3, and an initial cost
of 16.

After LENGTH_INPUT time periods, the maximum accumulated distance is:

AccDistMax = 16 + LENGTH_INPUT * 3

• Currently: LENGTH_INPUT = 32

AccDistMax = 112, which can be represented on 7 bits.

We use 8 *8 bits to store the 8 accumulated distances for all paths.

• Best: Let us assume n is the number of bits necessary to represent the accumulate
distance. Knowing the maximum path accumulated distance AccDistMax, n must
confirm the following equation:

2 n ≥ AccDistMax = 16 + LENGTH_INPUT * 3 and then:

n ≥≥≥≥ Log (16 + 3* LENGTH_INPUT) / Log (2) (n ∈∈∈∈ N)

8*n bits would be necessary, if the parameter LENGTH_INPUT is modified.

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Metric Storage Circular Buffers (DS and Tr)

The decision which symbol has been transmitted after all symbols have been received.
Therefore the whole path history has to be stored. Unfortunately, this can be very
memory consuming. In addition, this leads often to an unacceptable delay of the
decision. In practice, the path history is truncated to a smaller value, called
LENGTH_TB in our application.

Since the decoder bases its decision on the path history of the previous LENGTH_TB-
1 time periods, the metric storage buffers span LENGTH_TB time periods (including
the current time period).

They are set up as circular buffers so that new branch information overwrites the
oldest one at each time period.

To enable reconstruction of the 8 entire paths, 2 pieces of information have to be
stored with respect to each selected branch at each time period:

• The transition that identify the branch is stored in the Tr circular buffer.
• The previous delay state from which the branch originates is stored in the DS

circular buffer.

The format of these metric storage buffers is shown below, assuming the parameter
LENGTH_TB is equal to 8 for instance:
Application Note 15 V 1.1, Sept. 2001

Figure 7 Metric Storage Buffers

TCurr = 3

DS [TCurr] [0]
DS [TCurr] [1]
DS [TCurr] [2]
DS [TCurr] [3]
DS [TCurr] [4]
DS [TCurr] [5]
DS [TCurr] [6]
DS [TCurr] [7]

LENGTH_TB = 8

0
1
2
3
4

7

5
6

D
e
l
a
y

S
t
a
t
e

N
u
m
b
e
r DS Buffer

TCurr = 3

Tr [TCurr] [0]
Tr [TCurr] [1]
Tr [TCurr] [2]
Tr [TCurr] [3]
Tr [TCurr] [4]
Tr [TCurr] [5]
Tr [TCurr] [6]
Tr [TCurr] [7]

0
1
2
3
4

7

5
6

D
e
l
a
y

S
t
a
t
e

N
u
m
b
e
r Tr Buffer

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Application Note 16 V 1.1, Sept. 2001

Example: Referring to the expanded trellis diagram on figure 4, let us assume the
current time period (identified by the pointer Tcurr) is 3 and that the current delay state
is number 0 (called NewDS).

The Viterbi algorithm calculates the most likely branch leading to that delay state and
finds for instance that this most likely branch is originating from the previous delay
state [S0 S1 S2] number 2 (called PastDS), with a transition [Y0 Y1 Y2] equal to 3
(called Transition).

Then these 2 pieces of information are stored as follows:

DS [Tcurr] [NewDS] =PastDSi.e.DS [3] [0] = 2

Tr [Tcurr] [NewDS] = Transitioni.e.Tr [3] [0] = 3

Both buffers are set up as 8*LENGTH_TB symbol circular buffers, containing
LENGTH_TB columns to represent a history of LENGTH_TB passes of the Viterbi
algorithm. Each element of these 2 buffers is 3 bit wide.

Size: 8 * LENGTH_TB * 8 bits

AP32018
Viterbi Decoding for V.32 standard

Encoder Implementation

Application Note 17 V 1.1, Sept. 2001

4 Encoder Implementation

4.1 Differential Encoder

Figure 8 Differential Encoder Schematic

Implementing this differential encoder consists in storing the previous outputs of the
differential encoder and then performing the appropriate EXCLUSIVE OR (^) and AND
(•) functions defined by:

Y1n = Q1n ^ Y1n-1

Y2n = (Q1n • Y1n-1) ^ Y2n-1 ^ Q2n

Chosen Implementation

Function Name: DiffEncoding

A table look up approach is taken to decrease the execution time of this routine. A 16-
char table called DiffEncod is set up in memory. Each element of this table
corresponds to a unique combination of bits [[Y1n-1Y2n-1] [Q1nQ2n]] and contains
resulting differential encoding bits [Y1nY2n].

Input Symbol
Q1Q2In

Q1n

Q2n

Y1n-1 Y2n-1

Differential Encoder
Past Output
PastY1Y2In

Y1n

Y2n

Y1Y2In
 to Convolutional Enco

AP32018
Viterbi Decoding for V.32 standard

Encoder Implementation

Application Note 18 V 1.1, Sept. 2001

Figure 9 Differential Encoding look up table

Size of the table: 16 * 8 bits

Using: Knowing the past output [Y1n-1Y2n-1] and the current input [Q1nQ2n] of the
encoder, the current output [Y1nY2n] can easily be determined using the DiffEncod
table and the following formula:

[Y1nY2n] = DiffEncod [Y1n-1Y2n-1] [Q1nQ2n]

Ex: Let us consider that:

• the past output is [Y1n-1Y2n-1] = 2 <=> Y1n-1 = 1 and Y2n-1 = 0
• the current input is [Q1nQ2n] = 1 <=> Q1n = 0 and Q2n =1

Considering the logic formules leads to:

Y1n = Q1n ^ Y1n-1 = 0 ^ 1 = 1

Y2n = (Q1n • Y1n-1) ^ Y2n-1 ^ Q2n= (0 • 1) ^ 0 ^ 1 = 0 ^ 0 ^ 1 = 1

thus, [Y1nY2n] = 3

Using the DiffEncod table allows to come with this result too:

[Y1nY2n] = DiffEncod [Y1n-1Y2n-1] [Q1nQ2n] = DiffEncod [2] [1] = 3

4.2 Convolutional Encoder

The 3 delays which compose the convolutional encoder are called S0, S1 and S2. The
convolutional encoder takes the 2 differentially encoded bits [Y1nY2n] and generates an
output bit Y0. Y0 is often called the redundant bit because it carries only the forward
error-correction information.

(Q1Q2)n = 3

(Y1Y2)n-1 = 1
DiffEncod [4] [4] =

(Y1Y2)n = 2

0 1 2 3

1 0 3 2

2 3 1 0

3 2 0 1

AP32018
Viterbi Decoding for V.32 standard

Encoder Implementation

Application Note 19 V 1.1, Sept. 2001

Detailled View

Functionally, the convolutional encoder is a 3-bit shift register interconnected by AND
and XOR logic.

These 3 delays are referrred to as S0, S1 and S2 and represent the state of the
encoder. Hence, the name of delay states to denote the state of the convolutional
encoder.

Figure 10 Convolutional Encoder

Chosen Implementation

Function Name: ConvEncoding

The convolutional encoder is implemented in the following way:

the content of the 3 delays - S0, S1 and S2 - is stored in a unique global variable
called S0S1S2. Based on the configuration of the figure 10, the piece of information
contained in each delay is used for each new symbol to determine the redundant bit
Y0, and must be updated then. The output bit Y0n at each time period is the value of
the delay 0 (S0) before it is updated.

4.3 Encoder Initialization

Function name: InitEncoder

This function is called to initialize both differential and convolutional encoders. To
ensure that the encoding process begin with the null path - only composed of null

S2
Delay

S0
Delay

S1
Delay

XOR

Y1n

Y2n
XOR

XOR

A
N
D

XOR
XOR

A
N
D

Y2n

Alpha

Y1n

Y1n.Y0n

Y0n

Y0n.Alpha

AP32018
Viterbi Decoding for V.32 standard

Encoder Implementation

Application Note 20 V 1.1, Sept. 2001

transitions and always staying in the delay state number 0 -, following initializations
have to be performed:

• The latest output of the differential encoder (called PastY1Y2In) must be set up on
0, otherwise it means that the preceding transmitted transition [Y0 Y1 Y2]
(composed of the 2-bit signal PastY1Y2In plus a redundant bit Y0 added by the
convolutional encoder) was not 0 and so did not belong to the null path.

• The initial state of the convolutional encoder - stored in the global variable called
S0S1S2 - must be set up on 0, because staying in the null path means that the
convolutional encoder stays in the delay state 0.

AP32018
Viterbi Decoding for V.32 standard

Channel Modelisation

Application Note 21 V 1.1, Sept. 2001

5 Channel Modelisation

The transmitted symbols [Y0Y1Y2]transmited are disturbed by a noise while transmitted
over the channel. As a result, the received symbols [Y0Y1Y2]received can contain binary
errors. The task of the decoder is then to correct the maximum of the disturbed bits.

This addition of noise is essential to test how resistant the decoder is when the
channel disturbes the transmitted symbols.

Note: No assumption are made about any characteristic of the noise in this
implementation.

Chosen implementation

Function Name: AddNoise

A relative simple approach is taken here. Each received symbol [Y0Y1Y2]received consists
in an addition of one transmitted symbol [Y0Y1Y2]transmitted and a noise sample. The
noise values are stored in the array called TabNoise, one noise value for each
transmitted symbol.

Note: An ideal transmission without noise can be simulated by setting all the noise
samples to the value zero.

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 22 V 1.1, Sept. 2001

6 Viterbi Decoding Implementation

6.1 Metric Initialization

Function name: InitMetric

This function is called to set up global metric variables.

In practice, it is important to assume that the 8 paths stored start from the delay state
number 0. Therefore, DS and Tr arrays are reseted to zeros so that the "null path" is
always chosen as the maximum-likelihood path at the beginning.

To ensure that the decoder always chooses branches that originate from delay state
number 0 in the first time interval, the initial cost of the path originating from delay state
number 0 is set to 0 whereas the rest of the paths are set to a greater cost, 16 for
instance.

Then PathAccDist is initialized to the following array:

0

16

16

16

16

16

16

16

6.2 Viterbi Decoding – Dynamic Programming

Note: Each of the 5 following steps (from 6.2.1 to 6.2.5) must be performed for each
time period.

6.2.1 Transition Receiving

The input to the Viterbi decoder is the 3 bit data stream [Y0 Y1 Y2]received, which
corresponds to a received transition (encoded symbol).

A new input transition is read every time period (or symbol period).

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 23 V 1.1, Sept. 2001

Note: A decision on the integrity of the input encoded symbol read will only be made
by the decoder LENGTH_TB time periods later. This is the essence of Viterbi
algorithm in which the actual decision is delayed until more information is
available.

Note: A symbol input data is read from the array called TabInput defined in the main
function. The size for this array is defined as parameter LENGTH_INPUT and
can easily be modified. This symbol is then differential and convolutional
encoded, and can be transmitted as a 3-bit transition at that time.

6.2.2 Hamming Branch Distance Calculation

Function Name: ComputeBranchDistances

The next step is to compute distance between the received transition and each of the 8
possible transitions [Y0 Y1 Y2].

The cost function is either Euclidean or Hamming distance, this application used the
Hamming distance between the received encoded symbol and each possible
transition, which is suitable for binary signals.

For each encoded symbol received, 8 distances to each transition are generated by
the cost function, and stored in the array called BranchDist (means branch distances),
as shown by the following example:

Example: SymbolIn = (011)

Distance { SymbolIn, (000) } = 2 2

Distance { SymbolIn, (001) } = 1 1

Distance { SymbolIn, (010) } = 1 1

Distance { SymbolIn, (011) } = 0 � BranchDist = 0

Distance { SymbolIn, (100) } = 3 3

Distance { SymbolIn, (101) } = 2 2

Distance { SymbolIn, (110) } = 2 2

Distance { SymbolIn, (111) } = 1 1

6.2.3 Metric Update or Add–Compare–Select (ACS)

Function Name: MetricUpdate

The aim of this step is to find the current most likely branch to extend each path, and
to compute the new accumulated cost for each path as following:

• Determine the 4 past delay states reaching the current delay state

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

• Add current branch distances to the path accumulated distances for each transition
• Comparison of the 4 input branches and selection of the survivor path
• Find the beginning point for the trace back

Note: Each of these 4 steps must be performed for each delay state.

Note: Each path can be identified by the current delay state it leads to. That is why we
speak of accumulated cost for a delay state as well as a cost for a path.

Note: Most of calculation time is spent in this MetricUpdate procedure. This
implementation is written with the aim of optimized speed while the code length
is not so important. Efforts have to be made here to find the best solution
regarding CPU cycles consuming. (see section 6.2.3.5)

6.2.3.1 Determine the 4 Past Delay States reaching the current Delay
State

Close analysis of the V.32 trellis in Figure 4 reveals that there are a limited number of
transitions (four) leading to each new delay state from the previous time period. The
following table identifies the combination of previous delay states and transitions to
reach each delay state for the current time period.

 New Even DS Past DS Transition New Odd DS Past DS Transition
Application Note 24 V 1.1, Sept. 2001

Figure 11 Trellis singularities

Notice that all even-numbered delay states of the current time interval have links to the
first 4 delay states of the previous time interval, whereas all odd-numbered new delay
states have links to the last 4 past delay states.
So it is relatively simple to process even- and odd-numbered delay states in two
groups.

[S0 S1 S2] [S0 S1 S2] [Y0 Y1 Y2]

0 0
1 2
2 3
3 1
0 2
1 0
2 1
3 3
0 3
1 1
2 0
3 2
0 1
1 3
2 2
3 0

0

2

4

6

[S0 S1 S2] [S0 S1 S2] [Y0 Y1 Y2]

4 4
5 7
6 6
7 5
4 7
5 4
6 5
7 6
4 5
5 6
6 7
7 4
4 6
5 5
6 4
7 7

1

3

5

7

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 25 V 1.1, Sept. 2001

Furthermore even-numbered delay states can be reached only by the first 4
transitions, whereas odd-numbered delay states can be reached only by the last 4
transitions.

All these trellis singularities can lead to an implementation with a look-up table to
determinate the 4 possible previous delay states reaching the current delay state
(NewDS).

So to favour the speed of the algorithm, trellis singularities have not been used in this
implementation. Indeed, determining the 4 past delay states reaching the current delay
state is time consuming and can be disregard by using a loop-unrolling. (See section
6.2.3.5)

6.2.3.2 Add current Branch Distances to the Path Accumulated
Distances for each possible Transition

As shown before, each current delay state is linked to 4 previous delay states by 4
different branches. Because each current delay state is the target of 4 different paths
origin from 4 previous delay states, the accumulated distance must be calculated for
each of these 4 paths.

Each delay state is considered sequentially and the total metrics for each of the 4
possible paths leading to the current delay state are being calculated.

The following figure shows the possible transitions leading to delay state 0 for the V.32
trellis:

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note

Figure 12

• Branch Distance

(an), (bn), (cn), (dn) re
the input symbol an

These branch distan

• Old Path Accum

Accumulated distan
path stored) are sto

In this example, the

• Total Distances:

On the preceding e
lead to these 4 total

{An + an}, {Bn + bn}, {C

Note: Overflow prob

00

00

01

01

An

Bn

Cn

Dn

Old Path
Accumulated
Distance

Pa
Dela
(S0S
26 V 1.1, Sept. 2001

s:

present the branch distances, i.e. the Hamming distances between
d the different possible transitions.

ces are being stored in the array called BranchDist.

ulated Distances:

ces for each delay state till the current time period (i.e. for each
red in the array PathAccDist.

 4 first values in this array are An, Bn, Cn and Dn.

xample, accumulating the total distance for each possible path will
 distance values:

n + cn}, {Dn + dn}

lem

0

1

0

1

000 (a n)

010
(b n)

01
1
(c
 n)

00
1
(d
 n)

Time

Tn Tn+1

000

001

010

011

An+1

Bn+1

Cn+1

Dn+1

st
y State
1S2) n

Current
Delay State
(S0S1S2) n+1

New Path
Accumulated
Distance

Transition
(Y0Y1Y2) n

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 27 V 1.1, Sept. 2001

As underlined when presenting the buffers PathAccDist and NewAccDist, it is
impossible to continue to accumulate these distances without running into an overflow
problem.

In this implementation, path accumulated distances are stored in the buffer
PathAccDist composed of int variables, coded on 16 bits. It means that accumulated
distance values stored must not exceed 65535.

The worst case would appear with a path whose transitions have always a maximum
cost of 3 and which originates from a delay state whose initial cost is set up to 16. After
(65535 – 16) / 3 < 21840 time periods, an overflow problem may occur.

Thus, the number of input symbols to process must be lower than 21840.

LENGTH_INPUT < 21840 to avoid overflow

6.2.3.3 Comparison of the 4 Input Branches and Selection of the
Survivor Path

The Viterbi algorithm now chooses the branch belonging to the maximum-likelihood
path leading to the current delay state. It becomes the new fragment of the path
reaching the current delay state.

The branch with the minimum total distance is selected as the most probable one,
whereas the 3 others are discarded.

Note: For each one of the 8 delay states and for each time period, only one branch is
selected and stored. It means that at any time only 8 paths are being stored in
memory, each one leading to a different delay state. These 8 stored paths are
called the survivor paths.

Example: Refering to the preceding example, let us assume {Cn + cn} is the minimum
total distance value, that is to say the new accumulated distance An+1 for delay state
number 0 is {Cn + cn}.

To enable reconstruction of the delay state sequence from a later point, the following
information needs to be stored once the minimum distance branch is found:

• new accumulated distance for the current delay state

This new accumulated distance (An+1 = Cn + cn here) can not be directly stored in the
PathAccDist array, since the old accumulated distances (stored in PathAccDist) are
being used to select the survivor path also for the others delay states till the end of this
step 4.2.3.3.

Hence, the new accumulated distance for each new delay state is temporary stored in
the array called NewPathAccDist.

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 28 V 1.1, Sept. 2001

• delay state of the previous time interval linked to the current delay

This past delay state number state (Past DS number 2 in the example) is being stored
in the array DS, in the column pointed to by the current time pointer (Tcurr) and in the
row corresponding to the current delay state (New DS number 0).

Hence the following formula:DS [TCurr] [NewDS] = Past DS

• transition that identify the branch selected

This transition (011 in our example) is being stored in the array Tr, in the column
pointed to by the current time pointer (Tcurr) and in the row corresponding to the
current delay state (New DS number 0 in the example).

Hence the following formula:Tr [TCurr] [NewDS] = Transition

This is the metric update that is repeated for each delay state, and for each time
period. It is also called the add – compare – select (ACS) operation: accumulation of
distance data, comparison of input branches, and selection of the maximum likelihood
path.

6.2.3.4 Find the begining point for the Trace Back

The smallest path accumulated distance must be found and stored in the variable
PathAccDistMin first.

Then, the path reaching the delay state associated with this smallest accumulated
distance is considered as the most likely one and selected to receive output at the
current time period. This minimum accumulated distance delay state is stored in the
variable NewDS and will be used as the initial point to perform the trace back
operation.

6.2.3.5 Chosen implementation for the Metric Update

The chosen implementation is optimized in relation to CPU cycles consumption. Delay
states are processed one after each other without any loop, each delay state
described by its own C code so as to avoid related calculations that are really time
consuming (adress calculations for example) and encountered when using a loop.

Therefore, the C code is less dense (calculation for a path total distance is written 32
times, one calculation per existing branch in the trellis) but the generated assembler
code is clearly faster.

6.2.4 Update Path Accumulated Distance Values

Function Name: UpdateAccDistances

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 29 V 1.1, Sept. 2001

Once the least-cost branches to the 8 delay states are identified and stored in
appropriate tables, the path accumulated distance buffer PathAccDist can be updated
with new accumulated distances (temporary saved in the NewPathAccDist array).

Note: this update routine is written directly in TriCore Assembler for a minimal time
consumption. TriCore assembler commands are used and enable to load and store 32
bit-data in only one CPU cycle (optimal using of the TriCore 32 bit Architecture).

6.2.5 Trace back

Function Name: TraceBack

The purpose of the trace back routine is to determine the most likely transmitted
transition by tracing back the maximum-likelihood path through the trellis once it has
been identified. For every time period, accumulated distances to each delay state have
been calculated (6.2.3.2).

Furthermore, the minimum-distance branch (identified by a transition [Y0 Y1 Y2]) to
each delay state has been stored as well as the delay state it came from [S0 S1 S2] in
metric storage buffers DS and Tr respectively (6.2.3.3). Storing this data during the last
LENGTH_TB time periods creates a history, making it possible to trace back along the
most likely path to get the most likely output of the decoder.

6.2.5.1 Evaluation of the Convolutional Encoder State

A loop is used to trace back history of the path chosen as the most probable one
through LENGTH_TB – 1 time periods.

Each cycle of this loop corresponds to a trace back time period and is identified by the
T_TB pointer (Time period of the trace back). This pointer is initialized to the current
time period value Tcurr and will be decremented at each cycle.

The following processing needs to be performed during one loop cycle:

• Find the delay state from which the current delay state NewDS comes, and store it
in the variable PastDS.

• This preceding delay state (PastDS) becomes the current delay state (NewDS) for
the next loop cycle.

• Trace back time period pointer (T_TB) must also be decremented.
• Remembering the metric storage buffers DS and TR are circular, T_TB pointer can

not be assigned to a negative value. If T_TB value becomes equal to -1 after
decrementing, it must be reseted to the value LENGTH_TB - 1 so that it points to
the preceding entry.

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Application Note 30 V 1.1, Sept. 2001

At the end of the loop iterations, the oldest delay state [S0S1S2] will be found and
stored in the NewDS variable: it determines the most likely state of the convolutional
encoder LENGTH_TB – 1 time periods backward.

6.2.5.2 Find the most probable transition transmitted

By means of the most likely delay state detected at the end of the trace back, we can
retrieve the respective transition [Y0Y1Y2] from the array Tr.

The transition (stored in the buffer Tr) taken to get to that most likely delay state
(stored in the variable NewDS) is selected by the Viterbi convolutional decoder as the
most probable transition transmitted by the encoder.

Note: The output for the current time period (TCurr) reflects a decision made by the
decoder on symbols received up to LENGTH_TB time periods later. This means that
the output symbol is necessarily delayed by LENGTH_TB time periods in
relation with input symbol.

6.2.5.3 Discard YO

The most significant bit (Y0) of the transition [Y0Y1Y2] selected by the decoder can be
stripped off at this point since it is only a redundant bit added during the encoding
process. Then the resulting 2-bit differential encoded symbol Y1Y2Out is the output of
the Viterbi convolutional decoder for the current time period TCurr.

AP32018
Viterbi Decoding for V.32 standard

Differential Decoding Implementation

7 Differential Decoding Implementation
Application Note 31 V 1.1, Sept. 2001

Figure 13 Differential Decoder Schematic

Implementing this differential decoder consists in storing the previous inputs of the
differential decoder and then performing the appropriate EXCLUSIVE OR (^) and AND
(•) functions defined by:

Q1n = Y1n ^ Y1n-1

Q2n = (Q1n • Y1n-1) ^ Y2n-1 ^ Y2n

7.1 Chosen implementation

Function Name: DiffDecoding

A table look up approach is taken to decrease the execution time of this routine. A 16-
char table called DiffDecod is set up in memory. Each element of this table
corresponds to a unique combination of bits [[Y1n-1Y2n-1] [Y1nY2n]] and it contains
resulting differential encoding bits [Q1nQ2n].

Size of the table: 16 * 8 bits

Y1Y2Out
from

Viterbi Decoder

Y1n

Y2n

Y1n-1 Y2n-1

Differential Decoder
Past Input

PastY1Y2Out

Q1n

Q2n

Output Symbol
Q1Q2Out

AP32018
Viterbi Decoding for V.32 standard

Differential Decoding Implementation

Application Note 32 V 1.1, Sept. 2001

Figure 14 Differential Decoding look up table

Using: Knowing the past input [Y1n-1Y2n-1] and the current input [Y1nY2n] of the
differential decoder, the current output [Q1nQ2n] can easily be determined using the
DiffDecod table and the following formula:

[Q1nQ2n] = DiffDecod [Y1n-1Y2n-1] [Y1nY2n]

Example: Let us consider that:

• the past input is [Y1n-1Y2n-1] = 3 ⇔ Y1n-1 = 1 and Y2n-1 = 1
• the current input is [Y1nY2n] = 2 ⇔ Y1n = 1 and Y2n =0

Considering the preceding logic formules leads to:

Q1n = Y1n ^ Y1n-1 = 1 ^ 1 = 0

Q2n = (Q1n • Y1n-1) ^ Y2n-1 ^ Y2n = (0 • 1) ^ 1 ^ 0 = 0 ^ 1 ^ 0 = 1

thus, [Q1nQ2n] = 1

Using the DiffDecod table allows to come with this result too:

[Q1nQ2n] = DiffDecod [Y1n-1Y2n-1] [Y1nY2n] = DiffDecod [3] [2] = 1

7.2 Differential Decoder Initialization

Function name: InitDecoder

This function is called to initialize the differential decoder. The decoder also wait for a
succession of zeros - succession of transitions composing the null path - to begin with
its decoding task. It is therefore assumed that the initial latest input of the differential
decoder (called PastY1Y2Out) is O too.

(Y1Y2)n = 3

(Y1Y2)n-1 = 2

DiffDecod [4] [4] =

(Q1Q2)n = 1

0 1 2 3

1 0 3 2

3 2 0 1

2 3 1 0

AP32018
Viterbi Decoding for V.32 standard

Optimization Strategy

Application Note 33 V 1.1, Sept. 2001

8 Optimization Strategy

The TASKING C cross-compiler (ctri) allows the user to control the special functions of
the TriCore in C with extensions to the C language.

The following C extensions are used in this implementation:

• _near storage type:
Using the _near addressing qualifier, allows the compiler to generate faster access
code for frequently used variables. The data object is directly addressable using the
absolute addressing mode.

• inline C functions:
The _inline keyword is used to signal the compiler to inline the function body instead
of calling the function.

Note: The debugger cannot step-into an inline function.

• inline assembly:
ctri supports inline assembly. Writing a function directly in assembler is especially
useful when the compiler generates non optimized assembler code. In this
implementation, the function UpdateAccDist is written using inline assembler.

• static storage specifier:
using this keyword with a variable that is local to a function allows the last value of
the variable to be preserved between successive calls to that function.

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

Application Note 34 V 1.1, Sept. 2001

9 Results Presentation

A global constant called OUTPUT_FILES is set up to specify if output files must be
generated or not. If OUTPUT_FILES is set up to 1 then two output files containing all
simulation results are generated as decribed further.

9.1 Printing Results to the Screen

If the global constant OUTPUT_FILES is initialized to another value than 1, then
simulations results are only printed to the screen.

Only input symbols (read from the buffer TabInput) and output symbols (stored in the
buffer TabOuput) are both printed to the screen, so as to compare them and to see
how performant the decoder is.

This configuration is used to benchmark the decoding. (no time wasting in opening and
writing into output files).

9.2 Printing Results to Files

This second configuration (OUTPUT_FILES initialized to 1) make use of output text
files to print all the intermediate results from the input symbols to the decoded output
symbols.

Two output text files called ‘ transmission.txt’ and ‘ reception.txt’ are generated.

The aim of this configuration is especially to be able to reconstruct the path selected
by the decoder through the trellis.

Transmission File (transmission.txt)

This file gives information about all the necessary data to show the path taken by the
encoder through the trellis and about the noise disturbing the transmission too.

In this file are stored the following data:

• Current time value: from 0 to 31 since the simulation with the test sequence consists
of 32 symbols.

• Input symbol: read from the buffer TabInput, it represents the data [Q1Q2]In to be
transmitted.

• Encoder State: it represents the current state of the convolutional encoder
[S0S1S2].

• Transition: denotes the transition [Y0Y1Y2]transmitted calculated by the encoder and that
is transmitted over the transmission channel.

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

Application Note 35 V 1.1, Sept. 2001

• Noise: noise sample, read from the buffer TabNoise that disturbs the transmitted
transition in the channel.

• Trans_Disturbed: transition resulting from the superposition of the transmitted
transition and the noise sample. This disturbed transition represents the transition
[Y0Y1Y2]received received by the decoder.

Time Input Encoder Channel

Q1Q2 State S Transition Y Noise Trans_
Disturbed

0 0 0 0 0 0

1 0 0 0 2 2

2 0 0 0 0 0

3 3 4 3 0 3

4 1 7 6 0 6

5 2 1 5 0 5

6 2 6 3 0 3

7 3 3 5 0 5

8 0 0 1 0 1

9 1 0 0 0 0

10 3 4 3 1 2

11 1 7 6 0 6

12 2 1 5 0 5

13 0 4 1 0 1

14 3 7 6 2 4

15 1 7 7 0 7

16 0 7 7 0 7

17 0 7 7 0 7

18 0 7 7 0 7

19 0 7 7 4 3

20 0 7 7 0 7

21 0 7 7 0 7

22 0 7 7 0 7

23 0 7 7 0 7

24 0 7 7 0 7

25 0 7 7 0 7

26 0 7 7 0 7

27 0 7 7 0 7

28 0 7 7 0 7

29 0 7 7 0 7

30 0 7 7 0 7

31 0 7 7 0 7

Figure 15 Transmission File for a test input sequence

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

Application Note 36 V 1.1, Sept. 2001

Reception File (reception.txt)

This file gives information about all the necessary data to reconstruct the path selected
by the decoder through the trellis as the most likely one.

In this file are stored the following data:

• Current time value: from 0 to 31 since the simulation with the test sequence consists
of 32 symbols.

• Output symbol: stored in the buffer TabOutput, it represents the decoded symbol
[Q1Q2]Out .

• Evaluated Encoder State: it represents the state of the convolutional encoder
[S0S1S2] evaluated by the decoder as the most likely one.

• Transition: denotes the transition [Y0Y1Y2]selected chosen by the decoder as the most
probable one.

Time Output Encoder_Evaluation
Q1Q2 State S Transition Y

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 3 4 3

19 1 7 6

20 2 1 5

21 2 6 3

22 3 3 5

23 0 0 1

24 1 0 0

25 3 4 3

26 1 7 6

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

Application Note 37 V 1.1, Sept. 2001

27 2 1 5

28 0 4 1

29 3 7 6

30 1 7 7

31 0 7 7

Figure 16 Reception File for the test input sequence

9.3 Most likely Path selected for the test input sequence

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8

D
e
l
a
y

S
t
a
t
e
s

[
S
0

S
1

S
2
]

0 1 2 3 4 5 6 7 8 9 10 11 1

0

0 0 3 6 5 3 5 1 0 3 6 5
Transition Selected

Y0Y1Y2selected

2 0 3 6 5 3 5 1 0 2 6 5
Transition Received

Y0Y1Y2received

1 1Bits corrected

0

3

3
5

6
5

1

0

3

6

5

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 38 V 1.1, Sept. 2001

10 Appendix A - C Code Implementation for the Viterbi
Algorithm

//**
// @ModuleViterbi Decoder
// @FilenameParameters.h
// @Project V.32 Modem Implementation
//--
// @ControllerTriCore
//
// @CompilerTasking TriCore C Cross-Compiler
//
// @DescriptionThis module contains all specific parameters
// for the V.32 Decoding application
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
//**
// @Defines
//**
#defineLENGTH_INPUT 32
#defineLENGTH_TB 16
#define OUTPUT_FILES 0/* If you want output files to be printed then put
the value of this constant to 1 */

//**
// @ModuleViterbi Decoder
// @FilenamePrototypes.h
// @Project V.32 Modem Implementation
//--
// @ControllerTriCore
//
// @CompilerTASKING TriCore C Cross-Compiler
//
// @Description This file contains all function prototypes for the V.32
Encoding
// and Decoding
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 39 V 1.1, Sept. 2001

//**
// @Prototypes of global functions
//**
void InitEncoder (void);
void InitDecoder (void);
void InitMetric (void);
char DiffEncoding (char Q1Q2In);
char ConvEncoding (char Y1Y2In);
char AddNoise (char Y0Y1Y2_transmitted, char Noise);
_inline
void ComputeBranchDistances (char Y0Y1Y2_transmitted, char
BranchDist[8]);
_inline
char MetricUpdate (char *BranchDist, int *NewPathAccDist);
_inline
char TraceBack (char StartDS);
void UpdateAccDistances (int PathAccDist[8], int NewPathAccDist[8]);
char ViterbiDecoding (char Y0Y1Y2_received);
char DiffDecoding (char Y1Y2Out);
void IncrementTimePeriod (void);

//**
// @ModuleViterbi Decoder
// @FilenameSource.c
// @Project V.32 Modem Implementation
//--
// @ControllerTriCore
//
// @CompilerTASKING TriCore C Cross-Compiler
//
// @DescriptionThis file contains all the functions both to encode and
decode
// the data in accordance with V.32 specifications
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**

//**
// @Project and Libraries Includes
//**

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 40 V 1.1, Sept. 2001

#include <stdio.h> /* Prototype for the function "printf"*/
#include "Parameters.h"/* File containing all the constants used */
#include "Prototypes.h" /* File containing the prototypes for all the
functions used */
//**
// @Global Variables
//**
_near static char DS[LENGTH_TB][8], Tr[LENGTH_TB][8], TCurr;
_near static int PathAccDist[8];
char StateEncoderEval; /* Convolutional encoder state evaluated by the
decoder*/
char TransitionEval; /* most likely transition transmitted by the
encoder evaluated
by the decoder*/
_near static char PastY1Y2In, PastY1Y2Out, S0S1S2;
_near static char DiffEncod[4][4] = { 0, 1, 2, 3,
1, 0, 3, 2,
2, 3, 1, 0,
3, 2, 0, 1};
_near static char DiffDecod[4][4] = { 0, 1, 2, 3,
1, 0, 3, 2,
3, 2, 0, 1,
2, 3, 1, 0};

//**
// @Function void main (void)//
//--
// @DescriptionMain function
//
//--
// @Returnvaluenone
//
//--
// @Parametersnone
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
void main (void)
{
FILE *pf_transmission;
FILE *pf_reception;
int SymbolCount;
char Q1Q2In, Q1Q2Out;

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 41 V 1.1, Sept. 2001

char Noise;
char Y1Y2In, Y0Y1Y2_transmitted;
char Y1Y2Out, Y0Y1Y2_received;
char TabQ1Q2In[LENGTH_INPUT] = {0,0,0,3,1,2,2,3,0,1,3,1,2,0,3,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
char TabNoise[LENGTH_INPUT] = {0,2,0,0,0,0,0,0,0,0,1,0,0,0,2,0,
0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0};
char TabQ1Q2Out[LENGTH_INPUT];
/* print the output files headers if output files are needed*/
if (OUTPUT_FILES == 1)
{pf_transmission = fopen("transmission.txt","w");
fprintf(pf_transmission,"\n Time | Input | Encoder | Channel");
fprintf(pf_transmission,"\n | Q1Q2 | State S Transition Y | Noise
Trans_Disturbed");
fprintf(pf_transmission,"\n---
---------------------");
pf_reception = fopen("reception.txt","w");
fprintf(pf_reception,"\n Time | Output | Encoder_Evaluati on");
fprintf(pf_reception,"\n | Q1Q2 | State S Transition Y");
fprintf(pf_reception,"\n---
");
}
/* Encoder Initialization */
InitEncoder ();
/* Decoder Initialization */
InitDecoder();
/* Metric Initialization */
InitMetric();
printf("\n---------------------------------\n");
for (SymbolCount = 0; SymbolCount < LENGTH_INPUT; SymbolCount++)
{
/* Read the current input symbol from the input buffer TabQ1Q2In */
Q1Q2In = TabQ1Q2In[SymbolCount];
if (OUTPUT_FILES == 1)
{fprintf(pf_transmission,"\n %2d | %2d | ",SymbolCount,Q1Q2In);}
/* Perform the Differential Encoding */
Y1Y2In = DiffEncoding (Q1Q2In);
/* Perform the Convolutional Encoding */
Y0Y1Y2_transmitted = ConvEncoding (Y1Y2In);
if (OUTPUT_FILES == 1)
{fprintf(pf_transmission,"%2d %2d ",S0S1S2, Y0Y1Y2_transmitted);}
/* Channel simulation: add some errors on the transmitted transition
Y0Y1Y2_transmitted:
Y0Y1Y2_received = Y0Y1Y2_transmitted + Noise */
Noise = TabNoise[SymbolCount];
Y0Y1Y2_received = AddNoise (Y0Y1Y2_transmitted, Noise);
if (OUTPUT_FILES == 1)

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 42 V 1.1, Sept. 2001

{fprintf(pf_transmission,"| %2d %2d",Noise,Y0Y1Y2_transmitted);}
/* Perform the Convolutional Decoding: Run the Viterbi algorithm
to estimate the transmitted transition */
if (SymbolCount == (LENGTH_TB+1))
{printf("Time to mesure...\n");}
Y1Y2Out= ViterbiDecoding (Y0Y1Y2_received);
/* Perform the Differential Decoding */
Q1Q2Out = DiffDecoding (Y1Y2Out);
/* Write the current Output Symbol in the Output Buffer TabQ1Q2Out */
TabQ1Q2Out[SymbolCount] = Q1Q2Out;
if (OUTPUT_FILES == 1)
{fprintf(pf_reception,"\n %2d | %2d | %2d %2d",
SymbolCount,Q1Q2Out,StateEncoderEval, TransitionEval);}
/* Print both Input and Output Symbols */
if (SymbolCount >= 16)
printf("%d %d\n",TabQ1Q2In[SymbolCount - 15], Q1Q2Out);
/* Increment the current Time Pointer */
IncrementTimePeriod();
}
printf("\n\n");
if (OUTPUT_FILES == 1)
{fclose(pf_reception);
fclose(pf_transmission);}
}

//**
// @Function void InitMetric (void)
//
//--
// @DescriptionThis function initializes the entire arrays DS and Tr to
zeros so that
// the "null path" is always chosen as the maximum-likelihood path at
// the beginning.
//
// To ensure that the decoder always chooses branches that
// originate from delay state number 0 in the first time interval,
// the initial cost of the path originating from delay state number
// 0 is set to 0 whereas the rest of the paths are set to a greater
// cost, 16 for instance.
//
// Current time pointer Tcurr is initialized to 0.
//
//--
// @Returnvaluenone
//

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 43 V 1.1, Sept. 2001

//--
// @Parametersnone
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
void InitMetric ()
/* Initialization of the metric so that the "null path" is always chosen
as the most likely one at the start */
{
int i, j;
TCurr = 0;
PathAccDist[0] = 0;
for (i = 1; i < 8; i++)
PathAccDist[i] = 16;
for (j = 0; j < LENGTH_TB; j++)
for (i = 0; i < 8; i++)
{
DS[j][i] = 0;
Tr[j][i] = 0;
}
}

//**
// @Function void InitEncoder (void)
//
//--
// @DescriptionThis function initializes both differential encoder and
convol utional
// encoder so that the initial state of the encoder is the null path
//
//--
// @Returnvaluenone
//
//--
// @Parametersnone
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
void InitEncoder ()
{PastY1Y2In = 0;
S0S1S2 = 0;

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 44 V 1.1, Sept. 2001

}

//**
// @Function void InitDecoder (void)
//
//--
// @DescriptionThis function initializes the latest input of the encoder
to zero
// so that the "null path" is always chosen as the maximum-likelihood
// path at the beginning.
//
//
//
//--
// @Returnvaluenone
//
//--
// @Parametersnone
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
void InitDecoder ()
{PastY1Y2Out = 0;
}

//**
// @Function char DiffEncoding (char Q1Q2In)
//
//--
// @DescriptionThis function differentially encodes the input symbol
Q1Q2In
// in a 2-bit encoded data Y1Y2In
//
//--
// @ReturnvalueThe differential 2-bit encoded data Y1Y2In
//
//--
// @ParametersQ1Q2In: the input symbol that has to be transmitted
//
//--
// @Date 19/02/99 15:00:00 AM

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 45 V 1.1, Sept. 2001

//
//**
char DiffEncoding (char Q1Q2In)
{
char NewY1Y2In;
NewY1Y2In = DiffEncod[PastY1Y2In][Q1Q2In];
PastY1Y2In = NewY1Y2In;
return (NewY1Y2In);
}

//**
// @Function char ConvEncoding (char Y1Y2In))
//
//--
// @DescriptionThis function convolutionaly encodes the 2-bit
differentially
// encoded data Q1Q2In in a 3-bit transition Y0Y1Y2transmitted
//
//--
// @Returnvalue the 3-bit transition Y0Y1Y2transmitted that si
transmitted over
// the channel
//
//--
// @ParametersY1Y2In: the 2-bit differentially encoded data
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
char ConvEncoding (char Y1Y2In)
{
char NewY0Y1Y2 =Y1Y2In;
/* NewY0Y1Y2 = [Y0 Y1 Y2], based on the 2 bit input [Y1 Y2]
with a third redundant bit Y0 computed in this function
It is initialised to the value of Y1Y2 and will be increased
of 4 if Y0 is equal to 1 */
char NewY0, NewY1, NewY2;
char S0, S1, S2;
char NewS0, NewS1, NewS2;
char alpha;
S0 = S0S1S2 >> 2;
S1 = (S0S1S2 & 2) >> 1;
S2 = S0S1S2 & 1;
NewY0 = S0;

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 46 V 1.1, Sept. 2001

NewY1 = (Y1Y2In & 2) >> 1;
NewY2 =Y1Y2In & 1;
alpha = S1 ^ NewY2;
NewS0 = alpha ^(S0 & NewY1);
NewS1 = (S2 ^ (NewY1 ^ NewY2)) ^ (alpha & S0);
NewS2 = S0;
if (NewY0 == 1)
{NewY0Y1Y2 = NewY0Y1Y2 + 4;
}
/* Update encoder state */
S0S1S2 = NewS0*4 + NewS1*2 + NewS2;
return (NewY0Y1Y2);
}

//**
// @Function char AddNoise (char Y0Y1Y2_transmitted, char Noise)
//
//--
// @Description This function simulate the transmission over a
disturbing channel
//
//--
// @Returnvalue the disturbed transition Y0Y1Y2_received
//
//--
// @ParametersY0Y1Y2_transmitted: the transmitted transition
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
char AddNoise (char Y0Y1Y2_transmitted, char Noise)
{
return(Y0Y1Y2_transmitted ^ Noise);
}

//**
// @Function _inline
// void ComputeBranchDistances (char Y0Y1Y2_received,
// char BranchDist[8])
//
//--

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 47 V 1.1, Sept. 2001

// @DescriptionThis function computes Hamming distance values between
the
// current transition received and the 8 possible transition values,
// and stores these distances in the array BranchDist
//
//--
// @Returnvaluenone
//
//--
// @Parameters char Y0Y1Y2_received: transition received by the decoder
//
// BranchDist[8]: 8 distance values between the current received
// transition and the 8 possible transition values
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
_inline
void ComputeBranchDistances (char Y0Y1Y2_received, char BranchDist[8])
{
BranchDist[Y0Y1Y2_received] = 0;
BranchDist[1^Y0Y1Y2_received] = 1;
BranchDist[2^Y0Y1Y2_received] = 1;
BranchDist[3^Y0Y1Y2_received] = 2;
BranchDist[4^Y0Y1Y2_received] = 1;
BranchDist[5^Y0Y1Y2_received] = 2;
BranchDist[6^Y0Y1Y2_received] = 2;
BranchDist[7^Y0Y1Y2_received] = 3;
};

//**
// @Function _inline
// char MetricUpdate (char *BranchDist, int *NewPathAccDist)
//
//--
// @DescriptionThis function finds the 8 most likely branches to extend
each path
// stored in memory and computes the new accumulated distances for
// each one.
//
//--
// @Returnvaluedelay state chosen as the start point for the trace back
operation
//

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 48 V 1.1, Sept. 2001

//--
// @ParametersPathAccDist[8]: buffer containing accumulated distances
for
// each one of the 8 paths stored
//
// BranchDist[8]: buffer containing the 8 distances between the
// received transition and each possible transition
//
// NewPathAccDist[8]: buffer where the 8 new accumulated distances are
// being stored during the current time period, after
// the 8 most likely branches have been chosen to
// extend the 8 paths
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
_inline
char MetricUpdate (char *BranchDist, int *NewPathAccDist)
{
int TotalDist, PathAccDistMin;
char BestDS;
/* NewDS with the smallest accumulated distance, which will be used as
the start point
for the trace back operation */
int GlobalDistMin;
/* global minimum path accumulated Distance between all the 8 existing
path accumulated distances (one for each DS) The corresponding NewDS -
called BestDS- will be the start point for the trace back and is the
output char of the function */

/* NewDS 0 */
/* PastDS 0, Transition 0 */
PathAccDistMin = PathAccD ist[0] + BranchDist[0];
DS[TCurr][0] = 0;
Tr[TCurr][0] = 0;
/* PastDS 1, Transition 2 */
TotalDist = PathAccDist[1] + BranchDist[2];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][0] = 1;
Tr[TCurr][0] = 2;
}
/* PastDS 2, Transition 3 */
TotalDist = PathAccDist[2] + BranchDist[3];
if (TotalDist < PathAccDistMin)

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 49 V 1.1, Sept. 2001

{
PathAccDistMin = TotalDist;
DS[TCurr][0] = 2;
Tr[TCurr][0] = 3;
}
/* PastDS 3, Transition 1 */
TotalDist = PathAccDist[3] + BranchDis t[1];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][0] = 3;
Tr[TCurr][0] = 1;
}
NewPathAccDist[0] = PathAccDistMin;
GlobalDistMin = PathAccDistMin;
BestDS = 0;
/* NewDS 1 */
/* PastDS 4, Transition 4 */
PathAccDistMin = PathAccDist[4] + BranchDist[4];
DS[TCurr][1] = 4;
Tr[TCurr][1] = 4;
/* PastDS 5, Transition 7 */
TotalDist = PathAccDist[5] + BranchDist[7];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][1] = 5;
Tr[TCurr][1] = 7;
}
/* PastDS 6, Transition 6 */
TotalDist = PathAccDist[6] + BranchDist[6];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][1] = 6;
Tr[TCurr][1] = 6;
}
/* PastDS 7, Transition 5 */
TotalDist = PathAccDist[7] + BranchDist[5];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][1] = 7;
Tr[TCurr][1] = 5;
}
NewPathAccDist[1] = PathAccDistMin;
if (NewPathAccDist[1] < GlobalDistMin)

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 50 V 1.1, Sept. 2001

{GlobalDistMin = NewPathAccDist [1];
BestDS = 1;
}
/* NewDS 2 */
/* PastDS 0, Transition 2 */
PathAccDistMin = PathAccDist[0] + BranchDist[2];
DS[TCurr][2] = 0;
Tr[TCurr][2] = 2;
/* PastDS 1, Transition 0 */
TotalDist = PathAccDist[1] + BranchDist[0];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][2] = 1;
Tr[TCurr][2] = 0;
}
/* PastDS 2, Transition 1 */
TotalDist = PathAccDist[2] + BranchDist[1];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][2] = 2;
Tr[TCurr][2] = 1;
}
/* PastDS 3, Transition 3 */
TotalDist = PathAccDist[3] + BranchDist[3];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][2] = 3;
Tr[TCurr][2] = 3;
}
NewPathAccDist[2] = PathAccDistM in;
if (NewPathAccDist[2] < GlobalDistMin)
{GlobalDistMin = NewPathAccDist[2];
BestDS = 2;
}
/* NewDS 3 */
/* PastDS 4, Transition 7 */
PathAccDistMin = PathAccDist[4] + BranchDist[7];
DS[TCurr][3] = 4;
Tr[TCurr][3] = 7;
/* PastDS 5, Transition 4 */
TotalDist = PathAccDist[5] + BranchDist[4];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 51 V 1.1, Sept. 2001

DS[TCurr][3] = 5;
Tr[TCurr][3] = 4;
}
/* PastDS 6, Transition 5 */
TotalDist = PathAccDist[6] + BranchDist[5];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][3] = 6;
Tr[TCurr][3] = 5;
}
/* PastDS 7, Transition 6 */
TotalDist = PathAccDist[7] + BranchDist[6];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][3] = 7;
Tr[TCurr][3] = 6;
}
NewPathAccDist[3] = PathAccDistMin;
if (NewPathAccDist[3] < GlobalDistMin)
{GlobalDistMin = NewPathAccDist[3];
BestDS = 3;}
/* NewDS 4 */
/* PastDS 0, Transition 3 */
PathAccDistMin = PathAccDis t[0] + BranchDist[3];
DS[TCurr][4] = 0;
Tr[TCurr][4] = 3;
/* PastDS 1, Transition 1 */
TotalDist = PathAccDist[1] + BranchDist[1];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][4] = 1;
Tr[TCurr][4] = 1;
}
/* PastDS 2, Transition 0 */
TotalDist = PathAccDist[2] + BranchDist[0];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][4] = 2;
Tr[TCurr][4] = 0;
}
/* PastDS 3, Transition 2 */
TotalDist = PathAccDist[3] + BranchDist[2];
if (TotalDist < PathAccDistMin)

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 52 V 1.1, Sept. 2001

{
PathAccDistMin = TotalDist;
DS[TCurr][4] = 3;
Tr[TCurr][4] = 2;
}
NewPathAccDist[4] = PathAccDistMin;
if (NewPathAccDist[4] < GlobalDistMin)
{GlobalDistMin = NewPathAccDist[4];
BestDS = 4;
}
/* NewDS 5 */
/* PastDS 4, Transition 5 */
PathAccDistMin = PathAccDist[4] + BranchDist[5];
DS[TCurr][5] = 4;
Tr[TCurr][5] = 5;
/* PastDS 5, Transition 6 */
TotalDist = PathAccDist[5] + BranchDist[6];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][5] = 5;
Tr[TCurr][5] = 6;
}
/* PastDS 6, Transition 7 */
TotalDist = PathAccDist[6] + BranchDist[7];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][5] = 6;
Tr[TCurr][5] = 7;
}
/* PastDS 7, Transition 4 */
TotalDist = PathAccDist[7] + BranchDist[4];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][5] = 7;
Tr[TCurr][5] = 4;
}
NewPathAccDist[5] = PathAccDistMin;
if (NewPathAccDist[5] < GlobalDistMin)
{GlobalDistMin = NewPathAccDist[5];
BestDS = 5;
}
/* NewDS 6 */
/* PastDS 0, Transition 1 */
PathAccDistMin = PathAccDist[0] + BranchDist[1];

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 53 V 1.1, Sept. 2001

DS[TCurr][6] = 0;
Tr[TCurr][6] = 1;
/* PastDS 1, Transition 3 */
TotalDist = PathAccDist[1] + BranchDist[3];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][6] = 1;
Tr[TCurr][6] = 3;
}
/* PastDS 2, Transition 2 */
TotalDist = PathAccDist[2] + BranchDist[2];
if (TotalDist < PathAccDistM in)
{
PathAccDistMin = TotalDist;
DS[TCurr][6] = 2;
Tr[TCurr][6] = 2;
}
/* PastDS 3, Transition 0 */
TotalDist = PathAccDist[3] + BranchDist[0];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][6] = 3;
Tr[TCurr][6] = 0;
}
NewPathAccDist[6] = PathAccDistMin;
if (NewPathAccDist[6] < GlobalDistMin)
{GlobalDistMin = NewPathAccDist[6];
BestDS = 6;
}
/* NewDS 7 */
/* PastDS 4, Transition 6 */
PathAccDistMin = PathAccDist[4] + BranchDist[6];
DS[TCurr][7] = 4;
Tr[TCurr][7] = 6;
/* PastDS 5, Transition 5 */
TotalDist = PathAccDist[5] + BranchDist[5];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][7] = 5;
Tr[TCurr][7] = 5;
}
/* PastDS 6, Transition 4 */
TotalDist = PathAccDist[6] + BranchDist[4];
if (TotalDist < PathAccDistMin)

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 54 V 1.1, Sept. 2001

{
PathAccDistMin = TotalDist;
DS[TCurr][7] = 6;
Tr[TCurr][7] = 4;
}
/* PastDS 7, Transition 7 */
TotalDist = PathAccDist[7] + BranchDist[7];
if (TotalDist < PathAccDistMin)
{
PathAccDistMin = TotalDist;
DS[TCurr][7] = 7;
Tr[TCurr][7] = 7;
}
NewPathAccDist[7] = PathAccDistMin;
if (NewPathAccDist[7] < GlobalDistMin)
{GlobalDistMin = NewPathAccDist[7];
BestDS = 7;
}
UpdateAccDistances(PathAccDist, NewPathAccDist);
return(BestDS);
}

//**
// @Function void UpdateAccDistances (int PathAccDist[8], int
NewPathAccDist[8])
//
//--
// @DescriptionThis function updates the accumulated distance values by
storing
// them in the array PathAccDist.
//
//--
// @Returnvaluenone
//
//--
// @ParametersNewPathAccDist[8]: buffer where the accumulated distances
have
// been temporary stored during the current time
// period
//
// PathAccDist[8]: buffer where the new accumulated distances
// are transferred for each path
//
//--
// @Date 19/02/99 15:00:00 AM

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 55 V 1.1, Sept. 2001

//
//**
void UpdateAccDistances (int PathAccDist[8], int NewPathAccDist[8])
{
#pragma asm
ld.d e14,[a5+]0x8
st.d [a4+]0x8,e14
ld.d e14,[a5+]0x8
st.d [a4+]0x8,e14
ld.d e14,[a5+]0x8
st.d [a4+]0x8,e14
ld.d e14,[a5+]0x8
st.d [a4+]0x8,e14
#pragma endasm
}

//**
// @Function _inline
// char TraceBack (char StartDS)
//
//--
// @DescriptionThe purpose of this function is to determine the most
probalble
// transition by tracing back the maximum-likelihood path through
// the trellis once it has been identified and stored
//--
// @Returnvaluedifferential encoded data Y1Y2Out, obtained after
discarding
// the MSB of the transition[Y0 Y1 Y2] selected as the most likely one
//
//--
// @ParametersStartDS: start delay state to perform the trace back
operation
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
_inline
char TraceBack (char StartDS)
{
char PastDS, T_TB, i;
T_TB = TCurr;
for (i = 0; i < LENGTH_TB-1; i++)
{

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 56 V 1.1, Sept. 2001

PastDS = DS[T_TB][StartDS];
StartDS = PastDS;
T_TB--;
if (T_TB < 0)T_TB = LENGTH_TB-1;
}
return(Tr[T_TB][StartDS]);
}

//**
// @Function char ViterbiDecoding (char Y0Y1Y2_received)
//
//--
// @Descriptionknowing the transition received and using the structure
of the
// trellis (i.e. the allowed transitions), this function determines the
most
// likely path through the trellis for LENGTH_TB time periods and
// trace it back to find the most likely transmitted input symbol at
this time
// This means that the output for the current time reflects a decision
made
// by the decoder on data received up to LENGTH_TB time periods later.
//
//--
// @Returnvaluedifferential encoded data Y1Y2Out, obtained after
discarding
// the MSB of the transition[Y0 Y1 Y2] selected as the most likely one
// after a trace back of LENGTH_TB time periods
//
//--
// @ParametersY0Y1Y2_received: transition received by the decoder
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
char ViterbiDecoding (char Y0Y1Y2_received)
{
static char BranchDist[8];
static int NewPathAccDist[8];
static char StartDS;
static char Y0Y1Y2selected, Y1Y2Out;
/* Compute the 8 current Hamming distance values between the input
symbol
and the 8 possible Transitions */

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 57 V 1.1, Sept. 2001

ComputeBranchDistances (Y0Y1Y2_received, BranchDist);
/* Metric Update */
StartDS = MetricUpdate (BranchDist, NewPathAccDist);
/* Select the most likely transition by tracing backward the most likely
path */
Y0Y1Y2selected = TraceBack (StartDS);
/* The MSB Y0 of the transition selected is discarded */
Y1Y2Out = Y0Y1Y2selected & 3;
return (Y1Y2Out);
}

//**
// @Function char DiffDecoding (char Y1Y2Out)
//
//--
// @DescriptionThis function performs the differential decoding
// The encoded data Y1Y2Out is differentially decoded in an
// output symbol Q1Q2Out
//
//--
// @Returnvaluedecoded output symbol Q1Q2Out
//
//--
// @ParametersY1Y2Out: 2-bit differentially encoded data, output from
the
// convolutional decoder
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
char DiffDecoding (char Y1Y2Out)
{
char Q1Q2Out;
Q1Q2Out = DiffDecod[PastY1Y2Out][Y1Y2Out];
PastY1Y2Out = Y1Y2Out;
return (Q1Q2Out);
}

//**
// @Function void IncrementTimePeriod (void)
//
//--

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Application Note 58 V 1.1, Sept. 2001

// @DescriptionOnce all steps of the Viterbi algorithm have been
performed, the
// current time period pointer Tcurr is incremented to enable a new pass
// of the Viterbi algorithm.
// Tcurr is necessary lower than LENGTH_TB since the metric storage
// buffers DS and Tr are set up as circular buffers.
//
//--
// @Returnvaluenone
//
//--
// @Parametersnone
//
//--
// @Date 19/02/99 15:00:00 AM
//
//**
void IncrementTimePeriod (void)
{
TCurr++;
if (TCurr >= LENGTH_TB)
TCurr = 0;
}

AP32018
Viterbi Decoding for V.32 standard

Appendix B - Benchmark

Application Note 59 V 1.1, Sept. 2001

11 Appendix B - Benchmark

The breakpoints for benchmarking are placed before the call of the ViterbiDecoding
function and after the call of the DiffDecoding function in the main function. Thus the
complete decoding algorithm is considered.

Implemented Method Cycles

Viterbi decoder + differential decoder 445

Figure 17 Clock cycle requirement for the V.32 Decoding Algorithm

Note: V.32 modems have a rate of 2400 symbols per second (baud).

Using this C implementation, at 2400 symbols/sec, the percentage loading of a
100Mhz computer is equal to:445*2400/100.10 6 = 1.07 Mips

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

	Abstract
	Theoretical Context
	Differential Coding and Decoding Overview
	Convolutional Encoding and Decoding Overview
	Viterbi Encoding
	Vocabulary conventions
	Convolutional Decoding Process
	Viterbi algorithm

	Implementation Overview
	Data Flow Diagrams
	Memory resources needed

	Encoder Implementation
	Differential Encoder
	Convolutional Encoder
	Encoder Initialization

	Channel Modelisation
	Viterbi Decoding Implementation
	Metric Initialization
	Viterbi Decoding – Dynamic Programming
	Transition Receiving
	Hamming Branch Distance Calculation
	Metric Update or Add–Compare–Select (ACS)
	Determine the 4 Past Delay States reaching the current Delay State
	Add current Branch Distances to the Path Accumulated Distances for each possible Transition
	Comparison of the 4 Input Branches and Selection of the Survivor Path
	Find the begining point for the Trace Back
	Chosen implementation for the Metric Update

	Update Path Accumulated Distance Values
	Trace back
	Evaluation of the Convolutional Encoder State
	Find the most probable transition transmitted
	Discard YO

	Differential Decoding Implementation
	Chosen implementation
	Differential Decoder Initialization

	Optimization Strategy
	Results Presentation
	Printing Results to the Screen
	Printing Results to Files
	Most likely Path selected for the test input sequence

	Appendix A - C Code Implementation for the Viterbi Algorithm
	Appendix B - Benchmark

