Application Note, V 1.1, Sept. 2001

~TriCore

" Viterbi Decoding for V.
‘standard -

Microcontrollers

—

. ®
< Infineon
technologies

Never stop thinking.

TriCore

Revision History: Sept. 2001 V1.1
Previous Version: Feb. 1999 V1.0
Page Subjects (major changes since last revision)

all Changed layout to Infineon Corporate Design

Controller Area Network (CAN): Licence of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

@

technologies Viterbi Decoding for V.32 standard

Abstract

1 Abstract

In most wireless communications systems, convolutional coding is the preferred
method of error-correction coding to overcome transmission distortions.

Practical applications of convolutional encoding became possible when Viterbi
proposed a maximum-likelihood method for decoding convolutional codes in 1967.

This application note deals with encoding and decoding algorithms as required for the
V.32 standard. The basic encoding algorithm is known as a convolutional encoding
scheme and the decoding algorithm scheme is based on the Viterbi algorithm.

In a first part the theoretical context is outlined:

» Encoder / decoder schematic block diagram
« Differential coding and decoding
» Convolutional encoding and decoding

Then the present implementation of both encoding and decoding algorithms is
introduced in a second part.

Appendix contains both the C code implementation of the V.32 encoding and decoding
algorithms and the benchmark for the complete decoding algorithm.

Application Note 3 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

2 Theoretical Context
YO YO
@ * Gfferentifar | Vi terbi yp |Transmission ., viterbi [Differentifar ~ &
Encoder Y2 Encoder Channel Decoder Y2 .| Decoder .
@ e Y2 Y2 > Q@2
Encoder T Decoder
Noi se

Figure 1 Encoder / Decoder Schematic Block Diagram

The V.32 encoder is divided into 2 functional blocks:

» Differential encoder
» Convolutional encoder also called Viterbi encoder

Decoding must be done by performing each decoder function in the reverse order in
which it was encoded. Therefore, we have 2 functional blocks for decoding:

» Differential decoder
» Convolutional decoder also called Viterbi decoder

2.1 Differential Coding and Decoding Overview

Algorithms used both for differential encoding and decoding can be described by the
following equations:

+ Differential Encoder: Y1 =Q1 "Y1 ,
Y2,=(Q1,* Y1,)" Y2, " Q2
+ Differential Decoder: Q1 =Y1 ~ Y1 ,
Q2,=(Q1,* Y1,,)" Y2, " Y2,
Note: (*) means EXCLUSIVE OR function.
() means AND function.

n

Refer to the parts called "Differential Encoder Implementation” (chapter 4.1) and
"Differential Decoding Implementation” (chapter 7) for more details.

2.2 Convolutional Encoding and Decoding Overview

If convolutional encoding is easy to implement, however convolutional decoding is
more complex.

Application Note 4 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

2.2.1 Viterbi Encoding

The encoding method is referred to as convolutional coding. The outputs [YO Y1 Y2]
are generated by convolving a signal [Y1 Y2] with itself, which adds a level of
dependence on past values.

Convolutional encoder error-correction capabilities result from outputs that depend
on a sequence of past symbol values.

A simplified diagram of the Viterbi convolutional encoder is shown on the following
figure:

from Y1 >
Differential S0 Si S2 L » YO (Redundant Bit
Encoder Y2 >

3 Bits of Menory

Y1

v

Y2

v

Figure 2 Viterbi Encoder

Definitions

» The 3 bits [SO S1 S2] are called delay states and represent the state of the encoder.

» The 3 bits [YO Y1 Y2] are known as transitions and represent the encoded symbols
that are output from the encoder. These 3-bit encoded symbols are transmitted,
disturbed by the channel noise and then received by the decoder.

 Since the convolutional encoder is made of M = 3 bits of memory for V.32 standard,
the constraint length K of the code isK =M + 1 = 4.

» The rate of this convolutional encoder is 2/3: 2 input bits [Y1 Y2] are encoded in a 3
bit transition [YO Y1 Y2].

Note: Refer to the part following the trellis diagram called "Vocabulary conventions” for
more information about these concepts.

Constraint condition

Given a particular set of delay states [SO S1 S2], not all transitions are possible in that
time interval. For instance, given a delay state [0 0 1] for the encoder, only 4
transitions [0 0 0], [0 1 0], [1 0 0], and [1 1 O] are allowed in next time interval (see the
trellis diagram, Figure 3).

Application Note 5 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

This leads to the concept of trellis structure. Since the encoder is essentially a finite-
state machine, a finite-state diagram may be used to represent it.

The following trellis diagram concisely illustrates possible transformations from one
delay state to another, along with their corresponding transition:

[0] 004) 000 [0]

[1] 001 [1]

[2] 010. [2]

(3]

[SO S1 S2]
New Del ay State
[SO S1 S2]

[4]

Past Delay State

100 [4]

[5] 101 [5]
[6] 110 [6]

[7]

Transi tions
[YO Y1 Y2]

Figure 3 V.32 Modem Trellis Diagram

Note: Each column of delay states on the trellis diagram indicates one symbol interval.

Application Note 6 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

2.2.2 Vocabulary conventions

Symbol

A symbol is a 2-bit value [Q1 Q2] and denotes a data that has to be sent. To protect it
against channel distorsions, this data has to be encoded in a 3-bit transition [YOY1Y2]
before it is sent. The aim of the decoder is then to decode the received transition so as
to retrieve the transmitted symbol.

Delay State

the 3 bits [SO S1 S2] in the encoder memory are called delay states since they
represent the state of the 3 delays composing the convolutional encoder. For the 2/3
rate Viterbi encoder, there are 8 possible delay states, numbered from 0 to 7.

[see figure 2]

Branch

A branch is a link between 2 delay states. We have 32 different branches at each time
period, divided in 8 groups of 4 branches: each group starts from one of the 8 delay
states.

[see figure 3]

Note: A branch is just a physical support to draw a transition in the trellis diagram. Its
aim is especially to identify the transition it represents.

Transition

the 3 bits [YO Y1 Y2] are known as transitions and represent the encoded symbols
that are output from the encoder. A transition represents a sample transmitted by the
encoder, disturbed in the channel, and received by the decoder.

There are 8 possible transitions numbered from 0 to 7.

[see figure 3]

Note: There are only 8 possible transitions for 32 branches: a transition identifies 4
differentbranches in the trellis diagram.

Note: Knowing the transition and the past delay state it comes from, the branch
identified is unique.

Application Note 7 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

Path

A path consists in a succession of linked branches, one branch for each time period.
2 successive branches of a path are connected by a delay state.

On the figure 4, 8 different paths have been drawn.

[see figure 4]

2.2.3 Convolutional Decoding Process

Convolutionally encoded data is decoded through knowledge of the possible state
transitions (represented by the trellis diagram), created from the dependence of the
current transition on past transitions. The decoding scheme makes use of past history
and reliability information to decode incoming transitions.

2.2.4 Viterbi algorithm

This algorithm is based on a maximum-likelihood decoding technique and was
devised by A. J. Viterbi in 1967: the decoder uses the trellis structure and continually
calculates the distance between received and valid transitions.The purpose is to
identify the transition sequence with the highest probability of matching the transmitted
sequence based on the received sequence.

The encoder may attain only one delay state at any given time, but the decoder keeps
track of all the possible delay states until it decides which one to select. This is the
essence of this algorithm in which the actual decision is delayed until more
information is available.

Application Note 8 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

Transitions
[YO Y1 Y2]

[000]

8 Delay States
[SO S1 S2]

Current
Time Period
(TCurr)

Figure 4 Dynamic Programming

Figure 4 shows an expanded trellis diagram over several transition time intervals with
the x axis representing time and the y axis representing the eight possible delay states
of the encoder.

In relation with the trellis diagram on figure 3, note that there are only 8 surviving
branches for each time period instead of 32. In fact, considering the trellis diagram
shows that 4 branches lead to every new delay state.

As proposed by Viterbi, the decision is performed at each time increment which
is the branch belonging to the most likely path leading to the considered delay
state. Only this branch is stored whereas the 3 others are discarded. Thus, the
number of branches to store at each time period is reduced to 8, one for each delay
state and only 8 paths are stored in memory after several time period as shown on
figure 4.

Ideally, the maximum-likelihood method looks at the entire sequence of input
transitions before making any decision about the output transitions. Clearly, this
approach is not feasible for real-time applications due to two factors:

Application Note 9 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Theoretical Context

» Prohibitive memory requirements, even for relatively small blocks of data
* Inherent time delay before the decoder selects an output

A more practical approach is to consider only a finite length of input transitions before
making a decision about the output. This length will be called LENGTH_TB in this
application note.

Note: This length LENGTH_TB must be great enough to avoid deciding on a wrong
path. This parameter value is determined by the constraint length K of the code
(in our case, K = 4) and for near-optimum decoding should be chosen four or
five times the constraint length. Since four times the constraint length in this
case is 16 (4 x K), this makes modulo addressing easier than using 20 (5 x K)
because 16 is a power of two.
So LENTH_TB =16 is suitable for our application.

Application Note 10 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

3 Implementation Overview

3.1 Data Flow Diagrams
I'nput Buffer Qut put Buffer
TabQLQRI n TabQLQQut

Differential

Differential
Encodi ng Tabl e ! ngl“@?n/"bo‘ mquc‘;ms[/ bl Decodi ng Tabl e
bi f f Encod Di f f Decod
Differential Encoder Differential Decoder
Past Qut put d D ff Decoding Past | nput I'nit Decoder
Past Y1Y2I n Past Y1Y2Qut

I ncrement
Time Period

@ Yiv2in Yiv2aut

Current Tine Pointer
TCurr

Del ay States Buffer
Convol uti onal Vi t er bi e
Encoder State Conv Encodi ng Decodi n

Transitions Buffer
Tr

. Path Accumul at ed
TabNoi se Di stances Buffer
Pat hAccDi st

hl tted T Noi se
ransmitted TransiNion .
YOYLY2t r ansni t t ed Recei ved Transition

YOY1Y2r ecei ved
Add Noi se

Figure 5 General Data Flow Diagram

Application Note 11 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Implementation Overview

Recei ved Transition
YOY1Y2r ecei ve

Branch Distances
Buf f er
BranchDi st

New Path Acc.
Di stances Buffer
NewPat hAccDi st

CQurrent Time Pointer
TCQurr

Acc Di stances

Pat h Accumul at ed
Di stances Buffer
Pat hAccDi st

Transitions Buffer

Del ay States Buffer
DS Tr

Trace Back Start Point

Start DS
Trace Back
Transition Sel ected
YOY1lY2sel ect ed
Di scard YO
Y1lY2Qut

Figure 6 Viterbi Decoding Data Flow Diagram

Application Note 12 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Implementation Overview

3.2 Memory resources needed

Note: Note: As the smallest possible data type in C language, a char variable (coded
with 8 hits) has been chosen to store a 2-bit symbol [Q1Q2], a 3-bit delay state
[SO S1 S2] as well as a 3-bit transition [YO Y1 Y2].

Input buffer (TabQ1Q2In)

This input buffer contains the successive input symbols [Q1 Q2] that have to be sent.
The size for this linear buffer is defined by the parameter LENGTH_INPUT and can
easily be modified.

Size: LENGTH_TB * 8 bits

Output buffer (TabQ1Q20ut)

The decoded output symbols [Q1 Q2],, calculated by the decoder are stored in this
output buffer TabQ1Q20ut. It is a linear buffer and its size is the same than the one of
the input buffer, since for each time period one input symbol is read and one output
symbol is found and stored as well.

Size: LENGTH_TB * 8 bits

Differential Encoding Table (DiffEncod)

Knowing the past output [Y1 Y2] and the current input [Q1 Q2] of the differential
encoder, this look-up table allows to compute the current output [Y1Y2] of the
differential encoder, and thus to perform the differential coding.

Note: Please refer to the part 4.1 for more details about how to use this look-up table.

Size: 16 * 8 bits

Differential Decoding Table (DiffDecod)

Knowing the past input [Y1 Y2] and the current input [Y1 Y2] of the differential
decoder, this look-up table allows to compute the current output [Q1 Q2] of the
differential decoder, and thus to perform the differential decoding.

Note: Please refer to the part 4.2 for more details about how to use this look-up table.

Size: 16 * 8 bits

Application Note 13 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Implementation Overview

Branch Distances buffer (BranchDist)

Since the received transitions [YO Y1 Y2]_ ... an have been disturbed by channel
noise, each transition value is considered as a possible representation of the received
transition. Each one of the 8 possible transitions is a more or less likely representation
of the received transition regarding its Hamming distance to it. This buffer contains the
8 distance values between the received transition [YO Y1 Y2] and the 8 possible
transitions [YO Y1 Y2].

Size: 32 * 8 bits

received

Path Accumulated Distances Buffers (PathAccDist and NewPathAccDist)

Since only one path, the most likely, is selected to lead to each delay state, only 8
paths have to be stored. Each path is identified by its accumulated distance which is
the sum of the branch distances for each branch constituting the path. Since a new
branch is added to each path at each symbol period, these accumulated path
distances have to be updated each time interval.

Note: The previous accumulated path distances are needed until a new branch has
been selected for all paths. Hence, it is not possible to directly replace the old
accumulated path distances by the new ones. Therefore 2 buffers are required,
PathAccDist and NewPathAccDist.

Size: The size of these 2 buffers depends on how many symbols are transmitted, i.e.
on the parameter LENGTH_INPUT. In the worst case, one of the 8 paths stored
is constituted of branches that have all a maximum cost of 3, and an initial cost
of 16.

After LENGTH_INPUT time periods, the maximum accumulated distance is:

AccDistMax = 16 + LENGTH_INPUT * 3
e Currently: LENGTH_INPUT = 32
AccDistMax = 112, which can be represented on 7 bits.

We use 8 *8 bits to store the 8 accumulated distances for all paths.

» Best: Let us assume n is the number of bits necessary to represent the accumulate
distance. Knowing the maximum path accumulated distance AccDistMax, n must
confirm the following equation:

2 n= AccDistMax = 16 + LENGTH_INPUT * 3 and then:
n2Log (16 + 3* LENGTH_INPUT) / Log (2) (n ON)
8*n bits would be necessary, if the parameter LENGTH_INPUT is modified.

Application Note 14 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Implementation Overview

Metric Storage Circular Buffers (DS and Tr)

The decision which symbol has been transmitted after all symbols have been received.
Therefore the whole path history has to be stored. Unfortunately, this can be very
memory consuming. In addition, this leads often to an unacceptable delay of the
decision. In practice, the path history is truncated to a smaller value, called
LENGTH_TB in our application.

Since the decoder bases its decision on the path history of the previous LENGTH_TB-
1 time periods, the metric storage buffers span LENGTH_TB time periods (including
the current time period).

They are set up as circular buffers so that new branch information overwrites the
oldest one at each time period.

To enable reconstruction of the 8 entire paths, 2 pieces of information have to be

stored with respect to each selected branch at each time period:

» The transition that identify the branch is stored in the Tr circular buffer.

e The previous delay state from which the branch originates is stored in the DS
circular buffer.

The format of these metric storage buffers is shown below, assuming the parameter

LENGTH_TB is equal to 8 for instance:

o 0 DS [TQurr
© 1 DS [TCurr L
B~ 2 DS [TCQurr]
>§ 3 56 [Tourr DS Buf fer
@© 4 DS [TCurr 1
& 2 5 DS [TCQurr 5
6 DS [TCurr
7 DS [TCurr f
TQurr = 3
LENGTH_TB = 8
o 0 Tr [TCurr 9)
S 1 Tr [TCurr 1
B 2 Tr [TCurr 2
>§ 3 T Taurr 5 Tr Buffer
© 5 4 Tr [TCurr 4
8<% 5 Tr [TCurr 5
6 Tr [TCurr 6
7 Tr [TCurr 7
TCurr =3

Figure 7 Metric Storage Buffers

Application Note 15 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Implementation Overview

Example: Referring to the expanded trellis diagram on figure 4, let us assume the
current time period (identified by the pointer Tcurr) is 3 and that the current delay state
is number O (called NewDS).

The Viterbi algorithm calculates the most likely branch leading to that delay state and
finds for instance that this most likely branch is originating from the previous delay
state [SO S1 S2] number 2 (called PastDS), with a transition [YO Y1 Y2] equal to 3
(called Transition).

Then these 2 pieces of information are stored as follows:
DS [Tcurr] [NewDS] =PastDSi.e.DS [3] [0] = 2
Tr [Tcurr] [NewDS] = Transitioni.e.Tr [3] [0] = 3

Both buffers are set up as 8*LENGTH_TB symbol circular buffers, containing
LENGTH_TB columns to represent a history of LENGTH_TB passes of the Viterbi
algorithm. Each element of these 2 buffers is 3 bit wide.

Size: 8 * LENGTH_TB * 8 bits

Application Note 16 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Encoder Implementation

4 Encoder Implementation
4.1 Differential Encoder
Input Symbol " > > Yin Yiy2in
Q@I n @n Y2n to Convol utional Encc
Y1ln-1 Y2n-1
Differential Encoder

Past Qut put
Past Y1Y2I n

Figure 8 Differential Encoder Schematic

Implementing this differential encoder consists in storing the previous outputs of the
differential encoder and then performing the appropriate EXCLUSIVE OR (*) and AND
(*) functions defined by:

Yln = an n Yln-l
Y2n = (an i Yln-l) N Y2r|-1 N Q2n

Chosen Implementation

Function Name: DiffEncoding

A table look up approach is taken to decrease the execution time of this routine. A 16-
char table called DiffEncod is set up in memory. Each element of this table
corresponds to a unique combination of bits [[Y1 Y2]1[Q1 Q2]] and contains
resulting differential encoding bits [Y1 Y2].

Application Note 17 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Encoder Implementation

(@ =3 (YLY2) = 2

D ffEncod [4] [4] 110|3[2e— (1Y =1

Figure 9 Differential Encoding look up table

Size of the table: 16 * 8 bits

Using: Knowing the past output [Y1 ,Y2 .] and the current input [Q1 Q2] of the
encoder, the current output [Y1 Y2] can easily be determined using the DiffEncod
table and the following formula:

[Y1,Y2,] = DiffEncod [Y1,,Y2] [Q1,Q2]

Ex: Let us consider that:

+ the pastoutputis [Y1 Y2]=2<=>Y1 =1landY2 =0
+ the currentinputis [Q1,Q2]=1<=>Q1 =0and Q2 =1
Considering the logic formules leads to:

Y1,=Q1 "Y1, ,=0r1=1

Y2, =(Q1,-Y1L)"Y2,7~Q2=(0-1)"0"1=0"0"1=1
thus, [Y1Y2]=3

Using the DiffEncod table allows to come with this result too:

[Y1,Y2] = DiffEncod [Y1,,Y2] [Q1,Q2] = DiffEncod [2] [1] = 3

4.2 Convolutional Encoder

The 3 delays which compose the convolutional encoder are called SO, S1 and S2. The
convolutional encoder takes the 2 differentially encoded bits [Y1 Y2] and generates an
output bit YO. YO is often called the redundant bit because it carries only the forward
error-correction information.

Application Note 18 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Encoder Implementation

Detailled View

Functionally, the convolutional encoder is a 3-bit shift register interconnected by AND
and XOR logic.

These 3 delays are referrred to as SO, S1 and S2 and represent the state of the
encoder. Hence, the name of delay states to denote the state of the convolutional
encoder.

G
Y2n

Y2n

e e BT Lo, s
™ Del ay ’ Del ay Del ay 1> Yon

Yon. Al pha

Y1n. Yon

Al pha

Figure 10 Convolutional Encoder

Chosen Implementation
Function Name: ConvEncoding
The convolutional encoder is implemented in the following way:

the content of the 3 delays - SO, S1 and S2 - is stored in a unique global variable
called S0S1S2. Based on the configuration of the figure 10, the piece of information
contained in each delay is used for each new symbol to determine the redundant bit
Y0, and must be updated then. The output bit YO, at each time period is the value of
the delay 0 (S0) before it is updated.

4.3 Encoder Initialization

Function name: InitEncoder

This function is called to initialize both differential and convolutional encoders. To
ensure that the encoding process begin with the null path - only composed of null

Application Note 19 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Encoder Implementation

transitions and always staying in the delay state number O -, following initializations
have to be performed:

» The latest output of the differential encoder (called PastY1Y2In) must be set up on
0, otherwise it means that the preceding transmitted transition [YO Y1 Y2]
(composed of the 2-bit signal PastY1Y2In plus a redundant bit YO added by the
convolutional encoder) was not 0 and so did not belong to the null path.

« The initial state of the convolutional encoder - stored in the global variable called
S0S1S2 - must be set up on 0, because staying in the null path means that the
convolutional encoder stays in the delay state 0.

Application Note 20 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Channel Modelisation

5 Channel Modelisation

The transmitted symbols [YOY1Y2] . are disturbed by a noise while transmitted
over the channel. As a result, the received symbols [YOY1Y2]__.., can contain binary
errors. The task of the decoder is then to correct the maximum of the disturbed bits.

This addition of noise is essential to test how resistant the decoder is when the
channel disturbes the transmitted symbols.

Note: No assumption are made about any characteristic of the noise in this
implementation.

Chosen implementation
Function Name: AddNoise

A relative simple approach is taken here. Each received symbol [YOY1Y2]__. ., consists
in an addition of one transmitted symbol [YOY1Y2] __ . and a noise sample. The
noise values are stored in the array called TabNoise, one noise value for each
transmitted symbol.

Note: An ideal transmission without noise can be simulated by setting all the noise
samples to the value zero.

Application Note 21 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

6 Viterbi Decoding Implementation

6.1 Metric Initialization

Function name: InitMetric
This function is called to set up global metric variables.

In practice, it is important to assume that the 8 paths stored start from the delay state
number 0. Therefore, DS and Tr arrays are reseted to zeros so that the "null path" is
always chosen as the maximum-likelihood path at the beginning.

To ensure that the decoder always chooses branches that originate from delay state
number 0 in the first time interval, the initial cost of the path originating from delay state
number O is set to 0 whereas the rest of the paths are set to a greater cost, 16 for
instance.

Then PathAccDist is initialized to the following array:

0
16
16
16
16
16
16
16

6.2 Viterbi Decoding — Dynamic Programming

Note: Each of the 5 following steps (from 6.2.1 to 6.2.5) must be performed for each
time period.

6.2.1 Transition Receiving

The input to the Viterbi decoder is the 3 bit data stream [YO Y1 Y2]
corresponds to a received transition (encoded symbol).

which

received’

A new input transition is read every time period (or symbol period).

Application Note 22 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Note: A decision on the integrity of the input encoded symbol read will only be made
by the decoder LENGTH_TB time periods later. This is the essence of Viterbi
algorithm in which the actual decision is delayed until more information is
available.

Note: A symbol input data is read from the array called Tablnput defined in the main
function. The size for this array is defined as parameter LENGTH_INPUT and
can easily be modified. This symbol is then differential and convolutional
encoded, and can be transmitted as a 3-bit transition at that time.

6.2.2 Hamming Branch Distance Calculation

Function Name: ComputeBranchDistances

The next step is to compute distance between the received transition and each of the 8
possible transitions [YO Y1 Y2].

The cost function is either Euclidean or Hamming distance, this application used the
Hamming distance between the received encoded symbol and each possible
transition, which is suitable for binary signals.

For each encoded symbol received, 8 distances to each transition are generated by
the cost function, and stored in the array called BranchDist (means branch distances),
as shown by the following example:

Example: Symbolin = (011)

Distance { Symbolin, (000) } = 2
Distance { Symbolin, (001) } =1
Distance { Symbolin, (010) } =1
Distance { Symbolin, (011) } =0 = BranchDist =
Distance { Symbolin, (100) } =3
Distance { Symbolin, (101) } =2
Distance { Symbolin, (110) } =2
Distance { Symbolin, (111) }=1

P ININ|W|O(FR [N

6.2.3 Metric Update or Add—Compare—Select (ACS)
Function Name: MetricUpdate

The aim of this step is to find the current most likely branch to extend each path, and
to compute the new accumulated cost for each path as following:

» Determine the 4 past delay states reaching the current delay state

Application Note 23 V 1.1, Sept. 2001

. .
(Infineon
technologies

» Add current branch distances to the path accumulated distances for each transition
» Comparison of the 4 input branches and selection of the survivor path
» Find the beginning point for the trace back

Note: Each of these 4 steps must be performed for each delay state.

AP32018
Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Note: Each path can be identified by the current delay state it leads to. That is why we
speak of accumulated cost for a delay state as well as a cost for a path.

Note: Most of calculation time is spent in this MetricUpdate procedure. This
implementation is written with the aim of optimized speed while the code length
is not so important. Efforts have to be made here to find the best solution
regarding CPU cycles consuming. (see section 6.2.3.5)

6.2.3.1 Determine the 4 Past Delay States reaching the current Delay

State

Close analysis of the V.32 trellis in Figure 4 reveals that there are a limited number of
transitions (four) leading to each new delay state from the previous time period. The
following table identifies the combination of previous delay states and transitions to
reach each delay state for the current time period.

New Even DS
[SO S1 S2]

Past DS
[S0 Sl S2]

Transition
[YO Y1 Y2]

New Qdd DS
[SO S1 S2]

Past DS
[SO Sl S2]

Transition
[YO Y1 Y2]

0

1

wN|R|o|w(N|k|o|w[Nk ofw(Nk o
oNv|wlk (v ok wlw|koN k| wiv o
~jo|a|s(~Njo|al s Njo|al s N ool s
~N[b |ojolbNo|ulo| o sNlo o NS

Figure 11 Trellis singularities

Notice that all even-numbered delay states of the current time interval have links to the
first 4 delay states of the previous time interval, whereas all odd-numbered new delay
states have links to the last 4 past delay states.

So it is relatively simple to process even- and odd-numbered delay states in two
groups.

Application Note 24 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Furthermore even-numbered delay states can be reached only by the first 4
transitions, whereas odd-numbered delay states can be reached only by the last 4
transitions.

All these trellis singularities can lead to an implementation with a look-up table to
determinate the 4 possible previous delay states reaching the current delay state
(NewDS).

So to favour the speed of the algorithm, trellis singularities have not been used in this
implementation. Indeed, determining the 4 past delay states reaching the current delay
state is time consuming and can be disregard by using a loop-unrolling. (See section
6.2.3.5)

6.2.3.2 Add current Branch Distances to the Path Accumulated
Distances for each possible Transition

As shown before, each current delay state is linked to 4 previous delay states by 4
different branches. Because each current delay state is the target of 4 different paths
origin from 4 previous delay states, the accumulated distance must be calculated for
each of these 4 paths.

Each delay state is considered sequentially and the total metrics for each of the 4
possible paths leading to the current delay state are being calculated.

The following figure shows the possible transitions leading to delay state 0 for the V.32
trellis:

Application Note 25 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

ad Path Past Transition Current New Pat h
Accumnul at ed Delay State (YOY1Y2)n Delay State Accumul ated
Di st ance (S0S1S2)n (S0S1S2)n+1 Di st ance
000 (a)
An 000 @ 000 An+1
010 Q)
Bn 001 [] 001 Bn+1
Cn 010 [] 010 Cn+1
Dn 011] 011 Dn+1
. . » Tine
Tn Tn+1
Figure 12

* Branch Distances:

(@), (b)), (c,), (d,) represent the branch distances, i.e. the Hamming distances between
the input symbol and the different possible transitions.

These branch distances are being stored in the array called BranchDist.

* Old Path Accumulated Distances:

Accumulated distances for each delay state till the current time period (i.e. for each
path stored) are stored in the array PathAccDist.

In this example, the 4 first values in this array are A, B,, C and D..

» Total Distances:

On the preceding example, accumulating the total distance for each possible path will
lead to these 4 total distance values:

A +a}{B,+b}{C +c}{D,+d}

Note: Overflow problem

Application Note 26 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

As underlined when presenting the buffers PathAccDist and NewAccDist, it is
impossible to continue to accumulate these distances without running into an overflow
problem.

In this implementation, path accumulated distances are stored in the buffer
PathAccDist composed of int variables, coded on 16 hits. It means that accumulated
distance values stored must not exceed 65535.

The worst case would appear with a path whose transitions have always a maximum
cost of 3 and which originates from a delay state whose initial cost is set up to 16. After
(65535 — 16) / 3 < 21840 time periods, an overflow problem may occur.

Thus, the number of input symbols to process must be lower than 21840.

LENGTH_INPUT < 21840 to avoid overflow

6.2.3.3 Comparison of the 4 Input Branches and Selection of the
Survivor Path

The Viterbi algorithm now chooses the branch belonging to the maximum-likelihood
path leading to the current delay state. It becomes the new fragment of the path
reaching the current delay state.

The branch with the minimum total distance is selected as the most probable one,
whereas the 3 others are discarded.

Note: For each one of the 8 delay states and for each time period, only one branch is
selected and stored. It means that at any time only 8 paths are being stored in
memory, each one leading to a different delay state. These 8 stored paths are
called the survivor paths.

Example: Refering to the preceding example, let us assume {C_ + c } is the minimum
total distance value, that is to say the new accumulated distance A , for delay state
number Ois {C,+c}.

To enable reconstruction of the delay state sequence from a later point, the following
information needs to be stored once the minimum distance branch is found:
* new accumulated distance for the current delay state

This new accumulated distance (A ,, = C, + ¢, here) can not be directly stored in the
PathAccDist array, since the old accumulated distances (stored in PathAccDist) are
being used to select the survivor path also for the others delay states till the end of this
step 4.2.3.3.

Hence, the new accumulated distance for each new delay state is temporary stored in
the array called NewPathAccDist.

Application Note 27 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

 delay state of the previous time interval linked to the current delay

This past delay state number state (Past DS number 2 in the example) is being stored
in the array DS, in the column pointed to by the current time pointer (Tcurr) and in the
row corresponding to the current delay state (New DS number 0).

Hence the following formula:DS [TCurr] [NewDS] = Past DS
« transition that identify the branch selected

This transition (011 in our example) is being stored in the array Tr, in the column
pointed to by the current time pointer (Tcurr) and in the row corresponding to the
current delay state (New DS number 0 in the example).

Hence the following formula:Tr [TCurr] [NewDS] = Transition

This is the metric update that is repeated for each delay state, and for each time
period. It is also called the add — compare — select (ACS) operation: accumulation of
distance data, comparison of input branches, and selection of the maximum likelihood
path.

6.2.3.4 Find the begining point for the Trace Back

The smallest path accumulated distance must be found and stored in the variable
PathAccDistMin first.

Then, the path reaching the delay state associated with this smallest accumulated
distance is considered as the most likely one and selected to receive output at the
current time period. This minimum accumulated distance delay state is stored in the
variable NewDS and will be used as the initial point to perform the trace back
operation.

6.2.3.5 Chosen implementation for the Metric Update

The chosen implementation is optimized in relation to CPU cycles consumption. Delay
states are processed one after each other without any loop, each delay state
described by its own C code so as to avoid related calculations that are really time
consuming (adress calculations for example) and encountered when using a loop.

Therefore, the C code is less dense (calculation for a path total distance is written 32
times, one calculation per existing branch in the trellis) but the generated assembler
code is clearly faster.

6.2.4 Update Path Accumulated Distance Values

Function Name: UpdateAccDistances

Application Note 28 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

Once the least-cost branches to the 8 delay states are identified and stored in
appropriate tables, the path accumulated distance buffer PathAccDist can be updated
with new accumulated distances (temporary saved in the NewPathAccDist array).

Note: this update routine is written directly in TriCore Assembler for a minimal time
consumption. TriCore assembler commands are used and enable to load and store 32
bit-data in only one CPU cycle (optimal using of the TriCore 32 bit Architecture).

6.2.5 Trace back
Function Name: TraceBack

The purpose of the trace back routine is to determine the most likely transmitted
transition by tracing back the maximum-likelihood path through the trellis once it has
been identified. For every time period, accumulated distances to each delay state have
been calculated (6.2.3.2).

Furthermore, the minimum-distance branch (identified by a transition [YO Y1 Y2]) to
each delay state has been stored as well as the delay state it came from [SO S1 S2] in
metric storage buffers DS and Tr respectively (6.2.3.3). Storing this data during the last
LENGTH_TB time periods creates a history, making it possible to trace back along the
most likely path to get the most likely output of the decoder.

6.2.5.1 Evaluation of the Convolutional Encoder State

A loop is used to trace back history of the path chosen as the most probable one
through LENGTH_TB — 1 time periods.

Each cycle of this loop corresponds to a trace back time period and is identified by the
T_TB pointer (Time period of the trace back). This pointer is initialized to the current
time period value Tcurr and will be decremented at each cycle.

The following processing needs to be performed during one loop cycle:

» Find the delay state from which the current delay state NewDS comes, and store it
in the variable PastDS.

» This preceding delay state (PastDS) becomes the current delay state (NewDS) for
the next loop cycle.

» Trace back time period pointer (T_TB) must also be decremented.

» Remembering the metric storage buffers DS and TR are circular, T_TB pointer can
not be assigned to a negative value. If T_TB value becomes equal to -1 after
decrementing, it must be reseted to the value LENGTH_TB - 1 so that it points to
the preceding entry.

Application Note 29 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Viterbi Decoding Implementation

At the end of the loop iterations, the oldest delay state [S0S1S2] will be found and
stored in the NewDS variable: it determines the most likely state of the convolutional
encoder LENGTH_TB — 1 time periods backward.

6.2.5.2 Find the most probable transition transmitted

By means of the most likely delay state detected at the end of the trace back, we can
retrieve the respective transition [YOY1Y2] from the array Tr.

The transition (stored in the buffer Tr) taken to get to that most likely delay state
(stored in the variable NewDS) is selected by the Viterbi convolutional decoder as the
most probable transition transmitted by the encoder.

Note: The output for the current time period (TCurr) reflects a decision made by the
decoder on symbols received up to LENGTH_TB time periods later. This means that
the output symbol is necessarily delayed by LENGTH_TB time periods in
relation with input symbol.

6.2.5.3 Discard YO

The most significant bit (YO) of the transition [YOY1Y2] selected by the decoder can be
stripped off at this point since it is only a redundant bit added during the encoding
process. Then the resulting 2-bit differential encoded symbol Y1Y20ut is the output of
the Viterbi convolutional decoder for the current time period TCurr.

Application Note 30 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Differential Decoding Implementation

7 Differential Decoding Implementation
Y1iv2Qut Yin ———— > Qn Qutput Synbol
from a@ait
Viterbi Decoder Y2n ———»j ——» @n
Yln-1 Y2n-1
Differential Decoder
Past | nput
Past Y1Y2Qut

Figure 13 Differential Decoder Schematic

Implementing this differential decoder consists in storing the previous inputs of the
differential decoder and then performing the appropriate EXCLUSIVE OR (*) and AND
(+) functions defined by:

QL =YL "Y1,
Q2n = (an * Yln-l) " Y2n-1,\ Y2n

7.1 Chosen implementation

Function Name: DiffDecoding

A table look up approach is taken to decrease the execution time of this routine. A 16-
char table called DiffDecod is set up in memory. Each element of this table
corresponds to a unique combination of bits [[Y1 Y2] [Y1Y2]] and it contains
resulting differential encoding bits [Q1 Q2].

Size of the table: 16 * 8 bits

Application Note 31 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Differential Decoding Implementation

(Y1Y2y =3
! (Q@y =1
0 1 2 3
1 0 3 2

Di ffDecod [4] [4]

32|01 fe— (Yiv2p1 =2

Figure 14 Differential Decoding look up table

Using: Knowing the past input [Y1 Y2] and the current input [Y1Y2] of the
differential decoder, the current output [Q1, Q2] can easily be determined using the
DiffDecod table and the following formula:

[Q1,Q2] = DiffDecod [Y1,,Y2] [Y1Y2]

Example: Let us consider that:

+ the pastinputis [Y1 Y2]=3 « Y1 =land¥Y2 =1
 the currentinputis [Y1Y2]=2 < Y1 =1and Y2 =0

Considering the preceding logic formules leads to:

QlL,=Y1 "Y1 =1721=0

Q2 =(Q1-Y1,)"Y2 ~Y2=(0+1)"120=071"0=1
thus, [Q1Q2]=1

Using the DiffDecod table allows to come with this result too:
[Q1,Q2,] = DiffDecod [Y1,,Y2,] [Y1,Y2] = DiffDecod [3] [2] = 1

7.2 Differential Decoder Initialization

Function name: InitDecoder

This function is called to initialize the differential decoder. The decoder also wait for a
succession of zeros - succession of transitions composing the null path - to begin with
its decoding task. It is therefore assumed that the initial latest input of the differential
decoder (called PastY1Y20ut) is O too.

Application Note 32 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Optimization Strategy

8 Optimization Strategy

The TASKING C cross-compiler (ctri) allows the user to control the special functions of
the TriCore in C with extensions to the C language.

The following C extensions are used in this implementation:

e _near storage type:
Using the _near addressing qualifier, allows the compiler to generate faster access
code for frequently used variables. The data object is directly addressable using the
absolute addressing mode.

* inline C functions:
The _inline keyword is used to signal the compiler to inline the function body instead
of calling the function.

Note: The debugger cannot step-into an inline function.

* inline assembly:
ctri supports inline assembly. Writing a function directly in assembler is especially
useful when the compiler generates non optimized assembler code. In this
implementation, the function UpdateAccDist is written using inline assembler.

* static storage specifier:
using this keyword with a variable that is local to a function allows the last value of
the variable to be preserved between successive calls to that function.

Application Note 33 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Results Presentation

9 Results Presentation

A global constant called OUTPUT_FILES is set up to specify if output files must be
generated or not. If OUTPUT_FILES is set up to 1 then two output files containing all
simulation results are generated as decribed further.

9.1 Printing Results to the Screen

If the global constant OUTPUT_FILES is initialized to another value than 1, then
simulations results are only printed to the screen.

Only input symbols (read from the buffer Tablnput) and output symbols (stored in the
buffer TabOuput) are both printed to the screen, so as to compare them and to see
how performant the decoder is.

This configuration is used to benchmark the decoding. (no time wasting in opening and
writing into output files).

9.2 Printing Results to Files

This second configuration (OUTPUT_FILES initialized to 1) make use of output text
files to print all the intermediate results from the input symbols to the decoded output
symbols.

Two output text files called ‘ transmission.txt’ and * reception.txt’ are generated.

The aim of this configuration is especially to be able to reconstruct the path selected
by the decoder through the trellis.

Transmission File (transmission.txt)

This file gives information about all the necessary data to show the path taken by the
encoder through the trellis and about the noise disturbing the transmission too.

In this file are stored the following data:

» Current time value: from 0 to 31 since the simulation with the test sequence consists
of 32 symbols.

* Input symbol: read from the buffer Tablnput, it represents the data [Q1QZ2], to be
transmitted.

» Encoder State: it represents the current state of the convolutional encoder
[S0S1S2].

+ Transition: denotes the transition [YOY1Y2] .
is transmitted over the transmission channel.

calculated by the encoder and that

Application Note 34 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

* Noise: noise sample, read from the buffer TabNoise that disturbs the transmitted
transition in the channel.

e Trans_Disturbed: transition resulting from the superposition of the transmitted
transition and the noise sample. This disturbed transition represents the transition

[YOoY1Y2]....., received by the decoder.
Time Input Encoder Channel
Q1Q2 State S Transition Y Noise D;rsrtir:?fad
0 0 0 0 0 0
1 0 0 0 2 2
2 0 0 0 0 0
3 3 4 3 0 3
4 1 7 6 0 6
5 2 1 5 0 5
6 2 6 3 0 3
7 3 3 5 0 5
8 0 0 1 0 1
9 1 0 0 0 0
10 3 4 3 1 2
11 1 7 6 0 6
12 2 1 5 0 5
13 0 4 1 0 1
14 3 7 6 2 4
15 1 7 7 0 7
16 0 7 7 0 7
17 0 7 7 0 7
18 0 7 7 0 7
19 0 7 7 4 3
20 0 7 7 0 7
21 0 7 7 0 7
22 0 7 7 0 7
23 0 7 7 0 7
24 0 7 7 0 7
25 0 7 7 0 7
26 0 7 7 0 7
27 0 7 7 0 7
28 0 7 7 0 7
29 0 7 7 0 7
30 0 7 7 0 7
31 0 7 7 0 7

Figure 15 Transmission File for a test input sequence

Application Note 35 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

Reception File (reception.txt)

This file gives information about all the necessary data to reconstruct the path selected
by the decoder through the trellis as the most likely one.

In this file are stored the following data:

» Current time value: from 0 to 31 since the simulation with the test sequence consists
of 32 symbols.

» Output symbol: stored in the buffer TabOutput, it represents the decoded symbol
[Q1Q2],, -

» Evaluated Encoder State: it represents the state of the convolutional encoder
[S0S1S2] evaluated by the decoder as the most likely one.

» Transition: denotes the transition [YOY1Y2] chosen by the decoder as the most
probable one.

selected

Time Output Encoder_Evaluation
Q1Q2 State S Transition Y
0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 0 0
17 0 0 0
18 3 4 3
19 1 7 6
20 2 1 5
21 2 6 3
22 3 3 5
23 0 0 1
24 1 0 0
25 3 4 3
26 1 7 6

Application Note 36 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Results Presentation

27 2 1 5
28 0 4 1
29 3 7 6
30 1 7 7
31 0 7 7

Figure 16 Reception File for the test input sequence

9.3 Most likely Path selected for the test input sequence

8 Delay States
[SO S1 S2]

0 1 2 3 4 5 6 7 8 9 10 11 1
Transition Receiled
YOY1Y2r ecei ved 2 0 3 6 5 3 5 1 0 2 6 5
Transition Selecfed
YOY1Y2sel ect ed 0 0 3 6 5 3 5 1 0 3 6 5

Bits corrected‘ 1 ‘

Application Note 37 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

10 Appendix A - C Code Implementation for the Viterbi
Algorithm

//**

/1 @bdul eVi terbi Decoder
/1 @il enaneParaneters. h
/'l @roject V.32 Modem | npl ementati on

e T T
/] @ontrollerTriCore

/1

/1 @conpi |l er Tasking Tri Core C Cross- Conpil er

/1

/1 @pescriptionThis nodul e contains all specific paraneters
/1 for the V.32 Decoding application

/1 @pate 19/02/99 15:00:00 AM

//**
//**

/1 @efines
//**
#def i neLENGTH_I NPUT 32

#def i neLENGTH_TB 16

#define OQUTPUT_FILES 0/* If you want output files to be printed then put
the value of this constant to 1 */

//**
/1 @bdul eVi terbi Decoder

/'l @il enameProt ot ypes. h
/1 @roject V.32 Modem | npl enentation

e e
/'l @ControllerTriCore

11

/1 @Conpi | er TASKI NG Tri Core C Cross- Conpil er

1

/1 @Description This file contains all function prototypes for the V.32
Encodi ng

/1 and Decodi ng

11

e

/1 @pate 19/02/99 15:00: 00 AM

11

//**

Application Note 38 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

//**

/1l @rototypes of global functions
//**
voi d I nitEncoder (void);

voi d I nitDecoder (void);

void InitMetric (void);

char DiffEncoding (char QLQIn);

char ConvEncodi ng (char Y1Y2ln);

char AddNoi se (char YOY1lY2_transmtted, char Noise);

_inline

voi d Conput eBr anchDi st ances (char YOY1lY2_transmitted, char
BranchDi st[8]);

_inline

char MetricUpdate (char *BranchDi st, int *NewPathAccDi st);

_inline

char TraceBack (char StartDS);

voi d Updat eAccDi stances (int PathAccDi st[8], int NewPathAccDi st[8]);
char Viterbi Decoding (char YOY1Y2_received);

char DiffDecoding (char YlY2Qut);

voi d I ncrement Ti mePeriod (void);

//**
/] @bdul eViterbi Decoder

/'l @il enaneSource. c
/1 @roject V.32 Modem | npl enentation

N e e R
/'l @ControllerTriCore

/1

/1 @onpi | er TASKI NG Tri Core C Cross- Conpil er

/1

/1 @escriptionThis file contains all the functions both to encode and
decode

/1 the data in accordance with V.32 specifications

/1

/1 @ate 19/02/99 15:00: 00 AM
/1

//**

//**

/1l @roject and Libraries Includes

//**

Application Note 39 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

#i nclude <stdio.h> /* Prototype for the function "printf"*/

#i nclude "Paranmeters.h"/* File containing all the constants used */
#include "Prototypes.h" /* File containing the prototypes for all the
functions used */

//**

// @4 obal Variabl es
//**
_near static char DS[LENGTH TB][8], Tr[LENGIH TB][8], TCurr;

_near static int PathAccDist[8];

char StateEncoderEval; /* Convolutional encoder state evaluated by the
decoder */

char TransitionEval; /* mopst likely transition transmtted by the
encoder eval uated

by the decoder*/

_near static char PastYlY2ln, PastYlY2Qut, S0S1S2;

near static char DiffEncod[4][4] ={ O, 1, 2, 3,

1, 0, 3, 2,
2, 3,1, 0,
3, 2, 0, 1};
_near static char DiffDecod[4][4] ={ O, 1, 2, 3,
1, 0, 3, 2,
3, 2, 0, 1,
2, 3, 1, 0};

//**
/1 @wunction void main (void)//

[e e
/1 @escriptionMain function

/1

/] @pate 19/02/99 15:00: 00 AM

/1
//**
voi d nmain (void)

{

FI LE *pf_transm ssion;

FI LE *pf _reception;

int Synbol Count;

char QLI n, QLCut;

Application Note 40 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

char Noi se;

char Y1Y2In, YOYlY2_transnmitted;

char Y1Y2Qut, YOY1Y2_received;

char TabQLQ2I n[LENGTH_I NPUT] = {0,0,0,3,1,2,2,3,0,1,3,1,2,0,3, 1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0};

char TabNoi se[LENGTH | NPUT] = {0, 2,0,0,0,0,0,0,0,0,1,0,0,0, 2,0,
0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0};

char TabQLQ2Qut [LENGTH_I NPUT] ;

/* print the output files headers if output files are needed*/

if (QUTPUT_FILES == 1)

{pf_transm ssion = fopen("transmi ssion.txt","w');
fprintf(pf_transmssion,"\n Time | Input | Encoder | Channel");
fprintf(pf_transmssion,"\n | QL@ | State S Transition Y | Noise
Trans_Di sturbed");

fprintf(pf_transmssion, " \N--------mmmmmmm e

pf _reception = fopen("reception.txt","w');
fprintf(pf_reception,"\n Tine | CQutput | Encoder_Eval uati on");
fprintf(pf_reception,"\n | QI | State S Transition Y");
fprintf(pf_reception, "\N-----ommmm e
");

}

/* Encoder Initialization */

I nit Encoder ();

/* Decoder Initialization */

I ni t Decoder () ;

/* Metric Initialization */

InitMetric();

printf("\n------cccemi i \n");

for (Synbol Count = 0; Synbol Count < LENGTH_| NPUT; Synbol Count ++)
{

/* Read the current input symbol fromthe input buffer TabQL@In */
QLRI n = TabQlQ2I n[Synbol Count];

if (QUTPUT_FILES == 1)

{fprintf(pf_transmssion,"\n %2d | %d | ", Synbol Count, QLQIn);}

/* Performthe Differential Encoding */

Y1Y2ln = DiffEncoding (QLQInN);

/* Performthe Convol uti onal Encodi ng */

YOY1Y2_transmitted = ConvEncodi ng (Y1lY2ln);

if (QUTPUT_FILES == 1)

{fprintf(pf_transm ssion,"%®d %2d ", S0S1S2, YOY1lY2_transmtted);}
/* Channel simulation: add some errors on the transmtted transition
YOY1Y2_transm tted:

YOY1Y2_recei ved = YOY1lY2_transmtted + Noise */

Noi se = TabNoi se[Synbol Count] ;

YOY1Y2_recei ved = AddNoi se (YOY1lY2_ transnitted, Noise);

if (QUTPUT_FILES == 1)

Application Note 41 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

{fprintf(pf_transmssion,"| 9%2d %2d", Noi se, YOY1Y2_transmtted);}
/* Performthe Convol utional Decoding: Run the Viterbi algorithm
to estimate the transnitted transition */

if (Synbol Count == (LENGTH TB+1))

{printf("Time to mesure...\n");}

Y1Y2Qut = Vit erbi Decodi ng (YOYLY2_received);

/* Performthe Differential Decoding */

QlQ@Qut = DiffDecodi ng (YlY2Qut);

/* Wite the current Qutput Symbol in the Qutput Buffer TabQLQCut */
TabQLQQut [Synmbol Count] = QLQRCut;

if (OQUTPUT_FILES == 1)

{fprintf(pf_reception,"\n %d | 9%®2d | 9%2d %2d",

Synbol Count, QLQRQut, St at eEncoder Eval , TransitionEval);}

/* Print both Input and CQutput Synbols */

if (Symbol Count >= 16)

printf ("% %\ n", TabQLQI n[Synbol Count - 15], QLQQut);

/* Increment the current Time Pointer */

I ncrenent Ti nePeri od();

}

printf("\n\n");

if (OUTPUT_FILES == 1)

{fclose(pf_reception);

fclose(pf_transm ssion);}

}

//**

/1l @wunction void InitMetric (void)
/1

/1 @pescriptionThis function initializes the entire arrays DS and Tr to
zeros so that

/1 the "null path" is always chosen as the naxi numlikelihood path at
/1 the begi nning.

/1

/1l To ensure that the decoder always chooses branches that

/'l originate fromdelay state nunber O in the first time interval,

/1 the initial cost of the path originating fromdelay state nunber
/1 O0is set to O whereas the rest of the paths are set to a greater
/1 cost, 16 for instance.

/1

/1 Current tine pointer Tcurr is initialized to O.

/1

/1 @Returnval uenone
/1

Application Note 42 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

/1

I e R R E LT T
/] @pate 19/02/99 15:00: 00 AM
;;**
void InitMetric ()

/* Initialization of the netric so that the "null path" is always chosen
as the nost likely one at the start */

{

int i, j;

TCurr = O;

Pat hAccDi st[0] = O;

for (i =1; i < 8; i++)

Pat hAccDi st[i] = 16;

for (j = 0; j < LENGTH_TB; | ++)

for (i =0; i <8; i++)

{
bS[j][i] =0
Ty =0;
}
}

//**

/1 @wunction void InitEncoder (void)
/1

/1 @escriptionThis function initializes both differential encoder and
convol utional

/'l encoder so that the initial state of the encoder is the null path
/1
e e R EE R
/| @Ret urnval uenone

/1
e e R T
/| @pPar anet er snone

/1

N e e e R T
/] @pate 19/02/99 15:00: 00 AM
;;**
voi d I nitEncoder ()

{PastY1Y2ln = O;

S0S1S2 = 0;

Application Note 43 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

//**

/1l @unction void InitDecoder (void)
/1

/1 @escriptionThis function initializes the |atest input of the encoder
to zero

/1l so that the "null path" is always chosen as the maxi mumli kel i hood

/1 path at the beginning.

/] @pate 19/02/99 15:00: 00 AM

/1
//**
voi d I nitDecoder ()

{Past Y1Y2Qut = O;

}

//**

/1 @unction char DiffEncoding (char QLQI n)
/1

/1l @escriptionThis function differentially encodes the input synbol
QI n

/1 in a 2-bit encoded data Y1Y2ln

/1
R T T R
/1 @Returnval ueThe differential 2-bit encoded data Y1Y2ln

/1
R LR T T
/1l @arametersQLQ@In: the input synmbol that has to be transmitted
/1
e LT T
/] @pate 19/02/99 15:00: 00 AM

Application Note 44 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

/1
//**
char DiffEncoding (char QLQIn)

{

char NewY1Y2I n;

NewY1Y2l n = DiffEncod[Past Y1Y2I n] [QLQ2I n] ;

Past Y1Y2l n = NewY1Y2l n;

return (NewY1lY2l n);

}

//**

/1l @unction char ConvEncoding (char Y1Y2ln))
/1

11 @escriptionThis function convolutionaly encodes the 2-bit
differentially

/1 encoded data QIQIn in a 3-bit transition YOYlY2transmtted

/1

/1 @Returnvalue the 3-bit transition YOYlY2transmitted that Si
transmtted over

/1 the channel

/1

/1 @aranmetersYlY2ln: the 2-bit differentially encoded data
/1

/] @pate 19/02/99 15:00: 00 AM
;;**
char ConvEncodi ng (char Y1Y2In)

{

char NewYOY1Y2 =Y1Y2In;

/* NewYOY1Y2 = [YO Y1 Y2], based on the 2 bit input [Y1l Y2]
with a third redundant bit YO conputed in this function

It isinitialised to the value of Y1Y2 and will be increased
of 4if YO is equal to 1 */

char NewYO, NewYl, NewY2;

char S0, S1, S2;

char NewS0, NewSl, NewS2;

char al pha;

S0 = S0S1S2 >> 2;

S1 = (S0S1S2 & 2) >> 1;

S2 = S0S1S2 & 1;

NewY0 = SO;

Application Note 45 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

NewYl = (Y1Y2ln & 2) >> 1;

NewY2 =Y1Y2In & 1;

al pha = S1 * Newy2;

NewSO = al pha ~(SO & NewYl);

NewSl = (S2 ~ (NewYl A NewY2)) ~ (al pha & SO);
NewS2 = SO;

if (NewY0 == 1)

{NewY0Y1Y2 = NewYOY1Y2 + 4;

}

/* Update encoder state */

S0S1S2 = NewS0*4 + NewS1*2 + NewS2;
return (NewYOY1Y2);

}

//**

/1l @unction char AddNoi se (char YOYl1Y2_transnmitted, char Noi se)
/1

/1 @escription This function sinmulate the transmission over
di sturbi ng channel
/1

/1 @ParanmetersYOY1lY2 transmitted: the transmtted transition
/1

/1 @ate 19/02/99 15:00: 00 AM

11
//**
char AddNoi se (char YOY1lY2_transmtted, char Noi se)

{

return(YOY1lY2_transmtted * Noise);

}

//**

/1l @unction _inline

/1 void ConputeBranchDi stances (char YOY1Y2_received,
/1 char BranchDi st[8])

I

a

Application Note 46 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

/1 @pescriptionThis function conmputes Hanmi ng distance values between
t he

/1 current transition received and the 8 possible transition val ues,

/1 and stores these distances in the array BranchD st

/1

e R T

/| @Ret urnval uenone

/1

e e T T P

/1 @Paranmeters char YOY1Y2_received: transition received by the decoder
/1

/1 BranchDist[8]: 8 distance val ues between the current received

// transition and the 8 possible transition val ues

/1

R T T R P

/] @pate 19/02/99 15:00: 00 AM

/1

//**
_inline

voi d Conput eBranchDi stances (char YOY1Y2_received, char BranchDist[8])

{

BranchDi st[YOY1Y2_received] = O;
BranchDi st[1"YOY1Y2_received] =1
BranchDi st[2"YOY1Y2_received] =1
BranchDi st [3AYOY1Y2_received] = 2
BranchDi st[4"YOY1Y2_recei ved] = 1;
BranchDi st [5"YOY1Y2_recei ved] = 2;
BranchDi st [62YOY1Y2_received] = 2
BranchDi st[7°YOY1Y2_recei ved] = 3

b

//**

/1l @unction _inline

/1 char MetricUpdate (char *BranchDist, int *NewPathAccD st)

/1

e e R T

/1 @pescriptionThis function finds the 8 nost |ikely branches to extend
each path

/1 stored in nenory and conputes the new accunul ated di stances for

/1 each one.

/1

/1l @Returnval uedel ay state chosen as the start point for the trace back
operation
/1

Application Note 47 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

/1 @rar anet ersPat hAccDi st[8]: buffer containing accumulated distances
for

/1 each one of the 8 paths stored

/1

/1 BranchDist[8]: buffer containing the 8 distances between the

/1 received transition and each possible transition

/1

/1 NewPat hAccDi st[8]: buffer where the 8 new accunul ated di stances are
/1 being stored during the current tine period, after

/1l the 8 nost likely branches have been chosen to

/1 extend the 8 paths

/1

[e e
/] @pate 19/02/99 15:00: 00 AM

/1
//**
_inline

char MetricUpdate (char *BranchDist, int *NewPathAccDi st)

{

int Total Dist, PathAccDi stM n;

char Best DS;

/* NewDS with the smallest accumul ated distance, which will be used as

the start point

for the trace back operation */

int dobal DistM n;

/* global mnimm path accunul ated Di stance between all the 8 existing
path accunul ated di stances (one for each DS) The correspondi ng NewDS -
called BestDS- will be the start point for the trace back and is the
out put char of the function */

/* NewDS 0 */

/* PastDS 0, Transition 0 */

Pat hAccDi st M n = PathAccD ist[0] + BranchDist[0];
DS[TCurr][0] = O;

Tr[TCurr][0] = O;

/* PastDS 1, Transition 2 */

Total Di st = PathAccDi st[1] + BranchDist[2];

if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n
DS[TCurr][0]
Tr[TCurr][0]
}

/* PastDS 2, Transition 3 */

Total Dist = PathAccDi st[2] + BranchDist[3];
if (Total Dist < PathAccDi st M n)

Total D st;

1;
2;

Application Note 48 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

{
Pat hAccDi stM n

DS[TCurr][0]
Tr[TCurr][0]
}

/* PastDS 3, Transition 1 */

Total Dist = PathAccDist[3] + BranchDis t[1];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n
DS[TCurr][0] =
Tr[TCurr][0] =
}

NewPat hAccDi st[0] = Pat hAccDi stM n;

G obal Di st M n = Pat hAccDi st M n;

Best DS = 0;

/* NewDS 1 */

/* PastDS 4, Transition 4 */

Pat hAccDi st M n = Pat hAccDi st[4] + BranchDist[4];
DS[TCurr][1] = 4;

Tr[TCurr][1] = 4,

/* PastDS 5, Transition 7 */

Total Di st = PathAccDi st[5] + BranchDist[7];

if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n =
DS[TCurr][1] = 5;
Tr[TCurr][1] 7;
}

/* PastDS 6, Transition 6 */

Total Dist = PathAccDi st[6] + BranchDi st[6];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n = Tot al Di st;

DS[TCurr][1] = 6;

Tr[TCurr][1] 6;

}

/* PastDS 7, Transition 5 */

Total Di st = PathAccDist[7] + BranchDist[5];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M
DS[TCurr][1]
Tr[TCurr][1]

= Total Di st;
2,
3

1

Tot al Di st;

|
2w

Total D st;

Total D st ;

I n s

7,
5;

}
NewPat hAccDi st[1] = Pat hAccDi st M n;
if (NewPat hAccDi st[1] < d obal Di st M n)

Application Note 49 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

{d obal DistM n = NewPat hAccDi st [1];

Best DS = 1;
}
/* NewDS 2 */

/* PastDS 0, Transition 2 */

Pat hAccDi st M n = Pat hAccDi st[0] + BranchDist[2];
DS[TCurr][2] 0;

Tr[TCurr][2] = 2;

/* PastDS 1, Transition 0 */

Total Dist = PathAccDist[1] + BranchDi st[O0];

if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n
DS[TCurr][2]
Tr[TCurr][2]
}

/* PastDS 2, Transition 1 */

Total Di st = PathAccDi st[2] + BranchDist[1];
if (Total Dist < PathAccDi stM n)

{

Pat hAccDi stM n
DS[TCurr][2]
Tr[TCurr][2]
}

/* PastDS 3, Transition 3 */

Total Di st = PathAccDi st[3] + BranchDist[3];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n
DS[TCurr][2] =
Tr[TCurr][2]
}

NewPat hAccDi st[2] = PathAccDi stMin;

if (NewPat hAccDi st[2] < d obal Di stM n)

{d obal DistM n = NewPat hAccDi st[2];

Best DS = 2;

}

/* NewDS 3 */

/* PastDS 4, Transition 7 */

Pat hAccDi st M n = Pat hAccDi st[4] + BranchDist[7];
DS[TCurr][3] = 4;

Tr[TCurr][3] = 7;

/* PastDS 5, Transition 4 */

Total Di st = PathAccDi st[5] + BranchDist[4];

if (Total Dist < PathAccDi st M n)

{
Pat hAccDistMn = Total Di st ;

Tot al Di st;

1
0;

Total D st;

2;
1;

Total Di st ;

|
w i

Application Note 50 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018

Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

DS[TCurr][3] = 5;
Tr[TCurr][3] = 4;
}

/* PastDS 6, Transition 5 */

Total Di st = PathAccDi st[6] + BranchDist[5];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n =
DS[TCurr][3] = 6;
Tr[TCurr][3] 5;
}

/* PastDS 7, Transition 6 */

Total Dist = PathAccDist[7] + BranchDi st[6];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n
DS[TCurr] [3]
Tr[TCurr][3]

Total D st;

Tot al Di st;

1
(2N |

NewPat hAccDi st[3] = PathAccDi stM n;

if (NewPat hAccDi st[3] < d obal Di stM n)
{d obal Dist M n = NewPat hAccDi st[3];
BestDS = 3;}

/* NewDS 4 */

/* PastDS 0, Transition 3 */

Pat hAccDi st M n = PathAccDis t[0] + BranchDist[3];

DS[TCurr][4] = O;

Tr[TCurr][4] 3;

/* PastDS 1, Transition 1 */

Total Di st = PathAccDi st[1] + BranchDist[1];
if (Total Dist < PathAccDi st M n)

{
Pat hAccDi stM n

Total D st;
DS[TCurr][4] ;
Tr[TCurr][4]
}

/* PastDS 2, Transition 0 */

Total Di st = PathAccDi st[2] + BranchDist[O0];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n
DS[TCurr] [4]
Tr[TCurr][4]
}

/* PastDS 3, Transition 2 */

Total Dist = PathAccDist[3] + BranchDist[2];
if (Total Dist < PathAccDi st M n)

= Total Di st;
2,
0

1

Application Note 51

V 1.1, Sept. 2001

@

Infineon

technologies

AP32018

Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

{
Pat hAccDi stM n

DS[TCurr][4] =
Tr[TCurr][4]
}

NewPat hAccDi st[4] = Pat hAccDi stM n;

if (NewPat hAccDist[4] < d obal DistM n)
{d obal DistM n = NewPat hAccDi st[4];
Best DS = 4;

Total Di st ;

|
SRS

/* NewDS 5 */

/* PastDS 4, Transition 5 */

Pat hAccDi st M n = Pat hAccDi st[4] + BranchDi st[5];
DS[TCurr][5] = 4;

Tr[TCurr][5] = 5;

/* PastDS 5, Transition 6 */

Total Di st = PathAccDi st[5] + BranchDist[6];

if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n
DS[TCurr][5] =
Tr[TCurr][5]
}

/* PastDS 6, Transition 7 */

Total Dist = PathAccDi st[6] + BranchDist[7];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDistMn =
DS[TCurr][5] = 6;
Tr[TCurr][5] = 7;
}

/* PastDS 7, Transition 4 */

Total Di st = PathAccDi st[7] + BranchDist[4];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M
DS[TCurr][5]
Tr[TCurr][5]
}

NewPat hAccDi st[5] = Pat hAccDi st M n;

if (NewPat hAccDi st[5] < d obal Di st M n)

{d obal DistM n = NewPat hAccDi st[5];

Best DS = 5;

}

/* NewDS 6 */

/* PastDS 0, Transition 1 */

Pat hAccDi st M n = Pat hAccDi st[0] + BranchDist[1];

= Total Di st;
5;
6;

Tot al Di st;

Total D st;

I n s

7,
4;

Application Note 52

V 1.1, Sept. 2001

@

Infineon

technologies

AP32018

Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

DS[TCurr][6] 0;

Tr[TCurr][6] = 1,

/* PastDS 1, Transition 3 */

Total Dist = PathAccDi st[1] + BranchDist[3];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n
DS[TCurr] [6]
Tr[TCurr][6]
}

/* PastDS 2, Transition 2 */

Total Di st = PathAccDi st[2] + BranchDist[2];
if (Total Dist < PathAccDi stMin)

{

Pat hAccDi stM n
DS[TCurr][6]
Tr[TCurr][6]
}

/* PastDS 3, Transition 0 */

Total Di st = PathAccDi st[3] + BranchDist[O0];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n
DS[TCurr] [6]
Tr[TCurr] [6]
}

NewPat hAccDi st[6] = Pat hAccDi stM n;

if (NewPat hAccDist[6] < G obal DistM n)

{d obal Di stM n = NewPat hAccDi st[6];

Best DS = 6;

}

/* NewDS 7 */

/* PastDS 4, Transition 6 */

Pat hAccDi st M n = Pat hAccDi st[4] + BranchDist[6];
DS[TCurr][7] = 4;

Tr[TCurr][7] = 6;

/* PastDS 5, Transition 5 */

Total Di st = PathAccDi st[5] + BranchDist[5];

if (Total Dist < PathAccDi st M n)

{

Pat hAccDi stM n
DS[TCurr][7]
Tr[TCurr][7]
}

/* PastDS 6, Transition 4 */

Total Dist = PathAccDi st[6] + BranchDist[4];
if (Total Dist < PathAccDi st M n)

Tot al Di st;

1
3;

Total Di st ;

2;
2;

Total Di st ;

3;
0;

Total D st;

5;
5;

Application Note 53

V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

{
Pat hAccDi stM n

DS[TCurr][7]
Tr[TCurr][7]
}

/* PastDS 7, Transition 7 */

Total Dist = PathAccDist[7] + BranchDist[7];
if (Total Dist < PathAccDi st M n)

{

Pat hAccDi st M n
DS[TCurr][7] =
Tr[TCurr][7] =
}

NewPat hAccDi st[7] = Pat hAccDi stM n;

if (NewPat hAccDi st[7] < d obal Di st M n)
{d obal DistM n = NewPat hAccDi st[7];
Best DS = 7;

= Total Di st;
6,
4

1

Tot al Di st;

|
~N N

}
Updat eAccDi st ances(Pat hAccDi st, NewPat hAccDi st);
return(BestDS);

}

//**

/1 @-unction void Updat eAccDi st ances (int Pat hAccDi st [8], int
NewPat hAccDi st [8])

/1

N e e R

/1 @escriptionThis function updates the accunul ated di stance val ues by
storing

/1 themin the array PathAccDi st.

/1

e R T e LT

/| @Ret urnval uenone

/1

R R e

/1 @ar anmet er sNewPat hAccDi st[8]: buffer where the accunul ated di stances
have

/1 been tenporary stored during the current tine

/'l period

/1

/1 PathAccDi st[8]: buffer where the new accunul at ed di st ances

/1 are transferred for each path

/1

T T R

/] @pate 19/02/99 15:00: 00 AM

Application Note 54 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

/1
//**
voi d Updat eAccDi stances (int PathAccD st[8], int NewPathAccDi st[8])
{

#pragma asm

I d.d el4,[a5+] 0x8

st.d [a4+] 0x8, el4d
I d.d el4,[a5+] 0x8
st.d [a4+] 0x8, eld
Id.d el4,[a5+] 0x8
st.d [a4+] 0x8, eld
I d.d el4,[a5+] 0x8

st.d [a4+] 0x8, el4d
#pragma endasm

}

//**
/1l @unction _inline

/'l char TraceBack (char StartDS)

/1

/'l @escriptionThe purpose of this function is to determ ne the nost
probal bl e

/1 transition by tracing back the maxi numlikelihood path through

/1 the trellis once it has been identified and stored

/1 @Ret urnval uedi fferenti al encoded data YivYa2Qut, obtained after
di scardi ng

/1 the MSB of the transition[YO Y1 Y2] selected as the nost |ikely one
/1

e e R EE R

/1l @ParanetersStartDS: start delay state to perform the trace back
operation

/1

R R e

/1 @pate 19/02/99 15:00: 00 AM

/1

//**
_inline

char TraceBack (char StartDS)

{

char PastDS, T_TB, i;

T_TB = TCurr;

for (i =0; i < LENGTH_TB-1; i++)
{

Application Note 55 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

PastDS = DS[T_TB] [StartDS];
Start DS = Past DS;

T_TB--;

if (T_TB < 0)T_TB = LENGTH_TB-1;
}

return(Tr[T_TB][StartDS]);

}

//**

/'l @unction char Viterbi Decoding (char YOY1Y2_received)

/1

N e e e R

/1 @escriptionknowing the transition received and using the structure
of the

/1 trellis (i.e. the allowed transitions), this function determ nes the
nost

/1 likely path through the trellis for LENGTH TB tine periods and

/1l trace it back to find the nost likely transnmitted input symbol at
this time

/1 This neans that the output for the current time reflects a decision
made

/1 by the decoder on data received up to LENGTH TB tinme periods |ater.
/1

[e e
/1 @Ret urnval uedi fferenti al encoded data YlvYaQut, obtained after
di scardi ng

/1 the MSB of the transition[Y0 Y1 Y2] selected as the nost |ikely one
/'l after a trace back of LENGIH TB time periods
/1

/1 @Paramet ersYOY1Y2_received: transition received by the decoder
/1

/] @pate 19/02/99 15:00: 00 AM

/1
//**
char Viterbi Decoding (char YOY1Y2_received)

{

static char BranchDist[8];

static int NewPat hAccDi st[8];

static char StartDS;

static char YOYlY2sel ected, YlY2CQut;

/* Conpute the 8 current Hamming distance values between the input
synbol

and the 8 possible Transitions */

Application Note 56 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

Conput eBranchDi st ances (YOY1Y2_received, BranchDist);

/* Metric Update */

StartDS = MetricUpdate (BranchDi st, NewPat hAccDist);

/* Select the nost likely transition by tracing backward the nost likely
path */

YOY1lY2sel ected = TraceBack (StartDS);

/* The MSB YO of the transition selected is discarded */

Y1Y2Qut = YOYlY2sel ected & 3;

return (Yly2Qut);

}

//**

/1l @unction char DiffDecoding (char Y1Y2Qut)
/1

/1 @escriptionThis function perfornms the differential decoding
/1 The encoded data Y1Y2Qut is differentially decoded in an
/1 output synbol QLQ2Cut

/1 @ParanetersYlY2Qut: 2-bit differentially encoded data, output from
t he

/1 convol utional decoder

/1

/1 @pate 19/02/99 15:00: 00 AM

/1
//**
char DiffDecoding (char Y1Y2Qut)

{

char QLQQut ;

QLQ@Cut = DiffDecod[Past Y1Y2Qut][YlY2Qut];

Past Y1Y2Qut = Y1Y2Qut;

return (QLQQut);

}

//**

/1 @unction void Increment Ti mePeri od (void)
/1

Application Note 57 V 1.1, Sept. 2001

@

Infineon

technologies

AP32018
Viterbi Decoding for V.32 standard

Appendix A - C Code Implementation for the Viterbi Algorithm

/1 @DescriptionOnce all steps of the Viterbi algorithm have been
performed, the

/1 current tine period pointer Tcurr is increnented to enable a new pass
/1 of the Viterbi algorithm

/1 Tcurr is necessary |ower than LENGTH TB since the metric storage

/1 buffers DS and Tr are set up as circular buffers.

/1

/1 @ate 19/02/99 15:00: 00 AM

//**

voi d I ncrement Ti mePeri od (void)

{
TCurr ++;

if (TCQurr >= LENGTH_TB)
TCurr = 0;
}

Application Note 58 V 1.1, Sept. 2001

@

technologies Viterbi Decoding for V.32 standard

Appendix B - Benchmark

11 Appendix B - Benchmark

The breakpoints for benchmarking are placed before the call of the ViterbiDecoding
function and after the call of the DiffDecoding function in the main function. Thus the
complete decoding algorithm is considered.

Implemented Method Cycles
Viterbi decoder + differential decoder 445

Figure 17 Clock cycle requirement for the V.32 Decoding Algorithm
Note: V.32 modems have a rate of 2400 symbols per second (baud).

Using this C implementation, at 2400 symbols/sec, the percentage loading of a
100Mhz computer is equal t0:445*2400/100.10 6 = 1.07 Mips

Application Note 59 V 1.1, Sept. 2001

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.

Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

http://www.infineon.com

Published by Infineon Technologies AG

	Abstract
	Theoretical Context
	Differential Coding and Decoding Overview
	Convolutional Encoding and Decoding Overview
	Viterbi Encoding
	Vocabulary conventions
	Convolutional Decoding Process
	Viterbi algorithm

	Implementation Overview
	Data Flow Diagrams
	Memory resources needed

	Encoder Implementation
	Differential Encoder
	Convolutional Encoder
	Encoder Initialization

	Channel Modelisation
	Viterbi Decoding Implementation
	Metric Initialization
	Viterbi Decoding – Dynamic Programming
	Transition Receiving
	Hamming Branch Distance Calculation
	Metric Update or Add–Compare–Select (ACS)
	Determine the 4 Past Delay States reaching the current Delay State
	Add current Branch Distances to the Path Accumulated Distances for each possible Transition
	Comparison of the 4 Input Branches and Selection of the Survivor Path
	Find the begining point for the Trace Back
	Chosen implementation for the Metric Update

	Update Path Accumulated Distance Values
	Trace back
	Evaluation of the Convolutional Encoder State
	Find the most probable transition transmitted
	Discard YO

	Differential Decoding Implementation
	Chosen implementation
	Differential Decoder Initialization

	Optimization Strategy
	Results Presentation
	Printing Results to the Screen
	Printing Results to Files
	Most likely Path selected for the test input sequence

	Appendix A - C Code Implementation for the Viterbi Algorithm
	Appendix B - Benchmark

