

Appl icat ion Note, V 1.0, Feb. 2004

SAB C513 / C5xx
Emulat ing an asynchronous ser ia l
inter face (USART) via sof tware
rout ines
.

Microcontrol lers

AP08031

N e v e r s t o p t h i n k i n g .

Revision History: 2004-02 V 1.0
Previous Version: -
Page Subjects (major changes since last revision)
all Updated layout to Infineon Corporate Design, updated release to 1.0,

Content unchanged!

Controller Area Network (CAN): License of Robert Bosch GmbH

SAB C513 / C5xx

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

Edition 2004-02-01

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

AP08031
Emulating USART via software routines

Table of Contents

Application Note 3 V 1.0, 2004-02

Table of Contents Page

1 Introduction ... 4
2 General Operation and Hardware Environment .. 5
2.1 Supported Features .. 5
2.2 Required Resources ... 5
2.3 External Routing.. 6
2.4 Principles of Emulation.. 6
2.4.1 USART Write... 7
2.4.2 USART READ ... 8
3 USART Emulation Software Description ... 9
3.1 Software Structure .. 9
3.2 Main Program.. 9
3.3 Emulation Subroutines .. 11
3.4 Baud Rate Calculation... 12
3.5 Load Measurement ... 13
3.6 Performance Limitations.. 14
3.7 Make File... 15
3.8 Support of KitCON-513 Evaluation Board ... 15

AP08031
Emulating USART via software routines

Introduction

Application Note 4 V 1.0, 2004-02

1 Introduction

The C500 microcontroller family usually provides only one on-chip asynchronous serial
communication channel (USART). If a second USART is required, an emulation of the
missing interface may help to avoid an external hardware solution with additional
electronic components.

The solution presented in this paper and in the attached source files emulates the
most important USART functions by using optimized SW routines with a performance
up to 19.2 KBaud in half duplex mode and an overhead less than 63% at SAB C513
with 11.059 MHz. Due to the implementation in C this performance is not the limit of
the chip. A pure implementation in assembler will result in a strong reduction of the
CPU load and therefore increase the maximum speed of the interface. In addition,
microcontrollers like the SAB C505 will speed up the interface by a factor of two
because of an optimized architecture compared with the SAB C513.

Moreover, this solution lays stress on using as few on-chip hardware resources as
possible. A more excessive consumption of those resources will result in a higher
maximum speed of the emulated interface.

Due to the restricted performance of an 8 bit microcontroller a pin compatible solution
is provided only; the internal register based programming interface is replaced by a set
of subroutine calls.

The attached source files also contain a test shell, which demonstrates how to
exchange information between an on-chip HW-USART and the emulated SW-USART
via three external wires in different operation modes. It is based on the SAB C513
(Infineon 8 bit microcontroller).

A table with load measurements is presented to give an indication for the fraction of
CPU performance required by software for emulating the USART.

AP08031
Emulating USART via software routines

General Operation and Hardware Environment

Application Note 5 V 1.0, 2004-02

2 General Operation and Hardware Environment

2.1 Supported Features

The following enumeration summarizes all features of the on-chip USART to be
emulated by software routines:

• 8 bit data frames with variable baud rate (1 start bit, 1 stop bit),
• half duplex communication,
• baud rates between 1.2 and 19.2 Kbaud @ SAB C513 with 11.059 MHz crystal

The following enumeration lists all functions of a SAB C500 on-chip USART, which
could not be cloned due to technical limitations or performance restrictions:

• 8 bit shift register with fixed baud rate fosc/12,
• 9 bit USART with fixed baud rate fosc/32, fosc/64
• 9 bit data frames with variable baud rate,
• multiprocessor communication feature,
• full duplex communication.

2.2 Required Resources

To emulate the USART interface by a set of software routines requires some
resources, which are listed in the following table:

Table 1 Resource Requirements

Resource Emulated USART

Number of required I/O pins 2

Number of interrupt pins 1

Interrupt Priority yes

Timer T0 or T1 (Auto Reload)

Program Memory
(Emulation routines only)

210 Byte

Data Memory
(Emulation routines only)

8 Byte

AP08031
Emulating USART via software routines

General Operation and Hardware Environment

Application Note 6 V 1.0, 2004-02

2.3 External Routing

An external wire connecting the SW-USART data input with the External0 Interrupt pin
is required to activate the emulation routines via a Start Bit transmitted by the external
communication partner. On test boards with C513 processor the on-chip USART may
also be used as ‘external party’.

Figure 1 External Routing of Transmission Lines

2.4 Principles of Emulation

The algorithms required for emulating the data transmission depend on the transfer
direction.

EX0

RXD

TXD

TXD

RXD

C513
SW-
USART

HW-
USART

AP08031
Emulating USART via software routines

General Operation and Hardware Environment

Application Note 7 V 1.0, 2004-02

2.4.1 USART Write

An USART Write is initiated by pulling down the SW-USART-TXD output pin (USART
Start Bit) and starting a timer loaded with one bit time of the required baud rate.

The timer interrupt service routine writes out the LSB bit of the output byte buffer to be
transmitted and executes a shift operation preparing a new LSB bit. The write
operation is finished by the output of an USART Stop Bit.

Figure 2 Schematic Diagram of Emulating an USART Write Operation using
a Timer ISR

Start
Bit

 Data Frame

Timer ISR
shifting data out

usart_start_
sw_write()

Stop
Bit

AP08031
Emulating USART via software routines

General Operation and Hardware Environment

Application Note 8 V 1.0, 2004-02

2.4.2 USART READ

A USART Start Bit arriving at the SW-USART-RXD input pin, which is externally
connected to an External Interrupt pin initiates an USART READ. The correlated
interrupt service routine starts a timer configured in ‘Auto Reload Mode’ and loaded
with a start value of 1.5 bit time and a reload value of 1.0 bit time of the required baud
rate.

The timer interrupt service routine samples and stores the logic state of the SW-
USART-RXD pin into the LSB bit of the input byte buffer followed by a shift operation.
The final USART Stop Bit provided by the external communication partner is
completely ignored.

Figure 3 Schematic Diagram of Emulating an USART Read Operation using
a Timer ISR

Start
Bit

Stop
Bit

 Data Frame

Timer ISR
sampling data in

Ext. Interrupt

HW USART

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 9 V 1.0, 2004-02

3 USART Emulation Software Description

3.1 Software Structure

The emulation software is written in C and is split into 3 files:

• usa_emul.c contains all low level software drivers (subroutines and interrupt
services) to emulate the USART functionality. This file may be directly added to the
user’s application software directory and may be included in his make file.

• usa_test.c demonstrates how to start, control and finish the emulation. The complete
file (test shell) may be used to check the low level software drivers in a real
application. Afterwards, the user may copy the required statements for calling the
individual USART functions into his own application code segments.

• usa_defi.h holds all definitions and declarations related to the emulation software
(usa_test.c, usa_emul.c)

3.2 Main Program

The main program (usa_test.c) is implemented as a state machine and handles
several test cases.

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 10 V 1.0, 2004-02

Figure 4 State Machine Diagram for test program ”usa_test.c”

usart_sw_flag_
_write_ready == OFF

USART_INIT_
EMULATED
_USART_WRITE

USART_SW_
_USART_WRITE_
_OUT

USART_FINISH_
EMULATED
_USART_WRITE

usart_sw_flag_
_write_ready == ON
 &
usart_transmit_byte_number
== USART_TRANSMIT_
_BUFFER_LENGTH

USART_WHILE_
_SW_USART_
_READS_IN

USART_FINISH_
EMULATED
_USART_READ

USART_INIT_
EMULATED
_USART_READ

USART_HW_
_USART_WRITE_
_OUT

usart_
_sw_flag_
read
_ready
== OFF

usart_sw_flag_
_write_ready == ON
 &
usart_transmit_byte_number
< USART_TRANSMIT_
 _BUFFER_LENGTH

USART_WHILE_
_SW_USART_
_WRITES_OUT

usart_sw_flag_
_read_ready == ON
 &
usart_receive_byte_number
< USART_RECEIVE_
 _BUFFER_LENGTH

ussart_sw_flag_
_read_ready == ON
 &
usart_receive_byte_number
== USART_RECEIVE_
_BUFFER_LENGTH

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 11 V 1.0, 2004-02

The first test case verifies the emulated USART by a data transmission to an external
source:

• The first state ‘USART_INIT_EMULATED_USART_WRITE’ initializes the emulated
USART interface with the baud rate to be supported (19.2 K). As communication
partner serves the on-chip HW-USART which is set up in the same baud rate.

• The second state ‘USART_SW_USART_WRITE_OUT’ starts the SW-USART with
the first byte of a message string to be transferred.

• In the third state ‘USART_WHILE_SW_USART_WRITES_OUT’ a flag is polled
indicating the end of data transmission via the SW-USART. User application code to
be executed during the SW-USART write operation may be included here instead of
wasting 9 bit times only for running a polling loop. After finishing the transmission of
a whole message containing a programmable number of bytes the state machine
proceeds to the next test case.

• The last state ‘USART_FINISH_EMULATED_USART_WRITE’ disables all hardware
modules required for data transmission.

In the second test case the communication is started with an altered transmission
direction. The SW-USART receives a message string provided by the on-chip HW-
USART.

The auxiliary subroutines ‘usart_init_hw_usart’, ‘usart_disable_hw_usart’ and
‘usart_hw_interrupt_service’ help to control the HW-USART in the test environment.

3.3 Emulation Subroutines

The file usa_emul.c contains all subroutines and interrupt services required for
controlling the USART emulation:

• ‘usart_init_sw_usart()’ initializes all required auxiliary hardware modules like Timer
and the External Interrupt input by programming their control registers. The Timer is
configured in ‘Auto-Reload Mode’; for SW-USART read operations its ‘start interval
register’ (TL0) is loaded with 1.5 bit time while the reload register (TH0) is generally
set to 1.0 bit time (see Figure 3).

• ‘usart_disable_sw_usart()’ disables all required auxiliary hardware modules like
Timer and the External Interrupt input setting their control registers respectively.

• ‘usart_start_sw_write()’ prepares a data transmission by pulling down the SW-
USART-TXD output pin to ‘low’ state, which is interpreted by the communication
partner as a Start Bit transmission. Furthermore a timer is started for switching off
the Start Bit after one bit time and activating the SW-USART data bit transmission.
The initial timer load value for achieving ‘one bit time’ is calculated by a formula
presented in chapter 3.4.

• ‘usart_int0_interrupt_service()’ is started by a ‘Low’ level at the SW-USART-RXD
pin, which is externally wired to the interrupt0 pin. The ‘Low’ level is interpreted as
an USART Start Bit announcing the arrival of further data bits. Therefore a timer is

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 12 V 1.0, 2004-02

started to activate the data reception after a 1.5 bit time interval. Finally the
interrupt0 service is disabled to avoid undesired reactions to incoming ‘0’ data bits.

• ‘usart_timer0_interrupt_service()’ is split into different parts for write and read
operations. In ‘Write Mode’ the SW-USART-TXD pin is provided with the LSB bit of
the data byte to be transmitted; a ‘Shift Right’ operation is executed afterwards
preparing the next data bit output. After 8 data bit outputs the USART Stop Bit is
finally transmitted. In ‘Read Mode’ the SW-USART-RXD pin is scanned and its logic
state is copied into the input byte buffer in ascending order. Finally the timer is
stopped and the External Interrupt is enabled again after clearing the External
Interrupt Flag indicating a ‘High’ - ‘Low’ transition in the received data bit stream.

3.4 Baud Rate Calculation

The reload values for the timer emulating the SW-USART baud rate generator are
calculated as follows:

SW_USART_Baud_Rate_using_Timer() =
f

OSC

 12 * (256 - TH0)

The TH0 reload register is generally loaded with ‘One Bit Time’ of the desired SW-
USART baud rate.

The initial TL0 start value for SW-USART Read Mode ignoring the received Start Bit is
calculated by subroutine ‘usart_init_sw_usart()’ as presented in the next formula:

TL0 = 256 - ((256 - TH0) * 1,5)
 + USART_EX0_INT_DELAY_CORRECTION
 + USART_TIMER_INT_DELAY_CORRECTION

The terms ‘XXXX_INT_DELAY_CORRECTION’ take into account

• the Interrupt Response Time for External Interrupt0 after receiving a Start Bit,
• the Interrupt Response Time for Timer0 Overflow including the execution time for all

statements in the corresponding interrupt service routine before sampling in 1st data
bit in the middle of the first data bit period.

The initial TL0 start value for SW-USART Write Mode is calculated by subroutine
‘usart_init_sw_usart()’ as presented in the next formula:

TL0 = TH0 + USART_TIMER_INT_DELAY_CORRECTION

The term ‘TIMER_INT_DELAY_CORRECTION’ takes into account

• the Interrupt Response Time for Timer0 Overflow including the execution time for all
statements in the corresponding interrupt service routine before shifting out 1st data
bit at the beginning of the first data bit period.

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 13 V 1.0, 2004-02

The exact value for all ‘XXXX_INT_DELAY_CORRECTION’ may be extracted by
analyzing the assembler program listing.

Table 2 Calculated Interrupt Delay Correction Values

External Interrupt
(fosc = 12 MHz)

Timer0 Interrupt
(fosc = 12 MHz)

9 us 20 us

Note: The Interrupt Service Delay value depends on the clock generator
frequency.

In the ”test shell” (usa_test.c) a communication system is designed using one software
emulated USART and one on-chip USART. They both are connected to each other.
These both peripherals are implemented on one SAB C513 device. So, after initializing
the speed of the software USART an initialization of the speed of the on-chip hardware
USART is necessary as well.

The reload values for the T2 timer configured as HW-USART baud rate generator are
calculated as presented in the next formula:

HW_USART_Baud_Rate_using_Timer2 =
f

OSC

 2 * 16 * (65536 - TH2, TL2)

3.5 Load Measurement

Emulating a hardware module by a set of software subroutines decreases the
processor performance available for user application software.

A load analysis shows the fraction of processor performance required for emulating
routines. For this purpose test statements are included in main program indicating the
begin and the end of a byte transfer by switching a port pin to ‘Low’ and to ‘High’ state.
An oscilloscope scans this port pin. The execution time of the required interrupt service
routines emulating the USART is calculated by analyzing the compiler object module
list.

The processor load generated by the emulation software is defined as:

Load =
Time spent in emulating and interrupt service routines

 Total amount of time for transmitting / receiving n bytes * 100%

The next table presents load measurement results for an USART emulation via SW
routines running with different baud rates.

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 14 V 1.0, 2004-02

Table 3 Load Measurement Values for an USART emulation via SW
Routines at SAB C513

Crystal Frequency Baud Rate Direction Load

11.059 MHz 19.2 K Read 63.0%

11.059 MHz 19.2 K Write 54.0%

11.059 MHz 9.6 K Read 31.5%

11.059 MHz 9.6 K Write 27.0%

11.059 MHz 4.8 K Read 15.7%

11.059 MHz 4.8 K Write 13.5%

Note: The load value increases with falling clock generator frequencies.

3.6 Performance Limitations

The most severe limitation is seen in the timer interrupt service routine handling an
emulated SW-USART read operation. The incoming bit stream is received with ‘LSB
first’, but must be stored in ascending order.

Handling Read and Write operations with different timers (e.g. T0 for read direction
and T1 for write direction) may increase the maximum baud rate or decrease the CPU
overhead at a constant baud rate and would support full duplex capabilities at lower
baud rates (max. 4.8 K).

Another fact which reduces the maximum baudrate of the application is the
implementation in C. A solution in assembler would have much more performance. Of
course, this solution would be not that easy understood like the solution in C code. So,
it is advised to implement the CPU intensive routines in assembler if performance
sensitive applications are used.

Moreover this application note is the attempt to use as few on-chip hardware resources
as possible. This effort results in a higher demand of software performance.

In addition having a look at C500 derivatives it has to be taken care about the fact that
e.g. SAB C505 has twice the performance than SAB C513. So, a solution using the
SAB C505 will result in twice the maximum baudrate than SAB C513.

AP08031
Emulating USART via software routines

USART Emulation Software Description

Application Note 15 V 1.0, 2004-02

3.7 Make File

The file usa_make.bat contains all statements to start the Keil C51™ compiler, linker
and locator. (Versions: C51 V5.10, L51 V3.52, OH V2.1) The paths to the source file
and compiler / library directories must be modified by the user in respect to the
individual file structure on his personal computer.

Typing ‘usa_make.bat’ in a DOS window switched to the directory containing this batch
file starts the Make-File.

3.8 Support of KitCON-513 Evaluation Board

The KitCON-513 Evaluation Board is a starter kit (order at Infineon Technologies www)
which helps for a general approach to the SAB C513. Generally speaking it is a printed
circuit board which lets you load software down via the PC to the SAB C513. After that
the SAB C513 executes that code and may be verified.

The starter kit is delivered with one SAB C513 romless device and one SAB C513
EEPROM device. It is advised firstly to make use of the SAB C513 romless device to
load (program) the code down to the SAB C513 EEPROM device After that the two
devices (romless and EEPROM) have to be changed and the programmed code is
executed out of the on-chip EEPROM.

Using the ”test shell” usa_test.c the SW-USART of the SAB C513 EEPROM
communicates with the on chip HW-USART of the SAB C513 EEPROM device.

The port pins selected for the SW-USART are neighbored to the related HW-USART
pins and can be easily connected by setting jumpers on the 152 pin KitCON
application area connector: The next table presents all port pins to be externally wired:

Table 4 Port pins to be externally wired on KitCON-513 Evaluation Board

 HW-USART-TXD (P3.1)

Ext. Interrupt 0
(P3.2)

X

Note: sharing the same I/O pin (P3.1) and do not need any external wire internally
connects SW-USART-RXD and HW-USART-TXD.

Note: sharing the same I/O pin (P3.0) and do not need any external wire internally
connects SW-USART-TXD and HW-USART-RXD

After pressing the restart button the test program runs in an endless loop.

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

