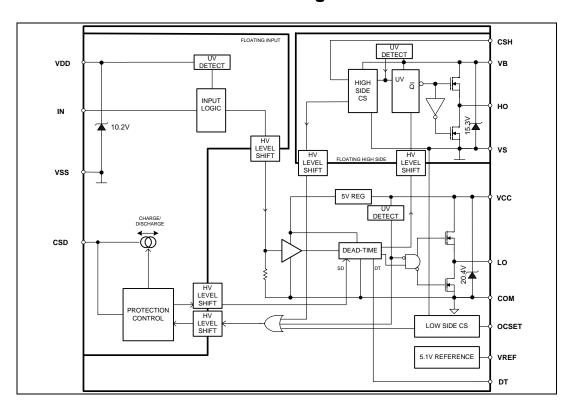


Application Note AN-1141

IRS20955S and IRS20957S Comparison

Table of Contents


Introduction	Page
Block Diagram	
Electrical Characteristic Differences	
VCLAMPH Differences	
Logic Status Differences	
Summary	

Introduction

The IRS20957S is a high voltage, high speed MOSFET driver with a floating PWM input designed for Class D audio amplifier applications. The IRS20957S is an improved version of the IRS20955S. This application note describes the differences between the IRS20955S and IRS20957S.

Block Diagram

The IRS20955S and the IRS20957S share the same functional structure. In normal operating conditions, there are no functional changes between corresponding part numbers.

www.irf.com AN-1141 2

Electrical Characteristic Differences

All measurement conditions are the same for both the IRS20955S and IRS20957S.

Absolute Maximum Ratings

		IRS20955S			I			
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units
V _B	High side floating supply voltage	-0.3	-	220	-0.3	-	215	V
Vs	High side floating supply voltage (†)	VB -20	ı	VB +0.3	VB -15	•	VB +0.3	V

[†] VDD - VSS, VCC -COM and VB - VS contain internal shunt zener diodes. Please note that the voltage ratings of these can be limited by the clamping current.

Recommended Operating Conditions

		IRS20955S			li li			
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units
V _B	High side floating supply absolute voltage	Vs+10	-	Vs+18	Vs+10	-	Vs+14	V
V _{CC}	Low side fixed supply voltage	10	-	18	10	-	15	V
I _{PW}	Input pulse width	10 (Note)	-	-	•	•	-	ns

Note: Output logic status may not respond correctly if input pulse width is smaller than the minimum pulse width.

www.irf.com AN-1141 3

Electrical Characteristics

		IRS20955S			<u>[</u>			
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units
Ton_1	High and low side turn-on propagation delay, floating inputs	1	105	ı	•	95	-	ns
Toff_1	High and low side turn-off propagation delay, floating inputs	-	90	1	•	80	_	ns
Ton_2	High and low side turn-on propagation delay, non-floating inputs	-	105	1	•	95	-	ns
Toff_2	High and low side turn-off propagation delay, non-floating inputs	-	90	-	-	80	-	ns
DT4	Deadtime: LO turn-off to HO turn-on (DTLO- HO) & HO turn-off to LO turn-on (DTHO-LO)VDT= VDT4	25	45	60	50	80	110	ns

Static Electrical Characteristics

		IRS20955S			I			
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units
V _{CLAMPH}	High side zener diode clamp voltage	19.6	20.4	21.6	14.7	15.3	16.2	V

Logic Status Differences

Narrow Pulse Behavior

In the IRS20955S, a narrow input pulse below 10 ns, such as spikes from switching stage, may flip the logic states of LO and HO opposite to the input. Next transition in input PWM fixes the inverted logic in the output. However, this wrong logic status is harmful in self-oscillating type topologies because it makes the system latch up and stop operation.

With natural PWM topologies, pulse width can be as narrow as 1ns that leads the wrong logic status with IRS20955S.

The IRS20957S ignores narrow input pulses. The logic states of HO and LO does not respond to the input of the IC if pulse width is less than 50ns, providing more noise immunity to systems using self-oscillating type topologies.

VCLAMPH Differences

Pre-charging with VBS Zener Diode

During start up sequence, pre-charging bootstrap power supply through positive bus voltage might be necessary to start self oscillating PWM. It would be convenient to integrate 15V zener diode to clamp the high side power supply, V_{BS}, for applications with MOSFETs that have rated gate voltage of 20V.

Upgrading IRS20955 with IRS20957

Current Design	Action Item for		
Deadtime	Vcc	IRS20957S	
	>15V	Reduce Vcc to 15V	
DT1-3		or less.	
	Up to 15V	Direct replacement.	
	>15V	Reduce Vcc to 15V	
		or less.	
DT4	Up to 15V	Direct replacement	
		with wider	
		deadtime.	

Summary

The IRS20957S is an improved version of the IRS20955S with shorter propagation delay. The longer deadtime window of IRS20957S enables use of MOSFET with larger gate charge. Applications using a natural PWM topology should use the IRS20957S. The IRS20957S has more immunity to incoming noise in IN pin. The IRS20955S is no longer recommended for new designs.

www.irf.com AN-1141 6