Highly Integrated and Performance Optimized
32-bit Microcontrollers for Automotive and Industrial Applications

www.infineon.com/TriCore
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TriCore™ Family Concept</td>
<td>3</td>
</tr>
<tr>
<td>Evolution of TriCore™ Generations</td>
<td>4</td>
</tr>
<tr>
<td>TriCore™ Based Product Roadmap</td>
<td>5</td>
</tr>
<tr>
<td>PRO-SIL™ Safety Concept</td>
<td>6</td>
</tr>
<tr>
<td>AURIX™ Family System Architecture</td>
<td>7</td>
</tr>
<tr>
<td>Embedded Software (AUTOSAR etc.)</td>
<td>14</td>
</tr>
<tr>
<td>Development Support</td>
<td>18</td>
</tr>
<tr>
<td>TriCore™ for Powertrain Applications</td>
<td>20</td>
</tr>
<tr>
<td>TriCore™ for Safety Applications</td>
<td>31</td>
</tr>
<tr>
<td>TriCore™ for Body Applications</td>
<td>40</td>
</tr>
<tr>
<td>TriCore™ for Transportation Applications</td>
<td>42</td>
</tr>
<tr>
<td>TriCore™ for Industrial Applications</td>
<td>45</td>
</tr>
<tr>
<td>Tool Partners</td>
<td>50</td>
</tr>
</tbody>
</table>
Family Highlights

- Compatibility and scalability
- Lowest system cost
- Industry benchmark system performance
- Easy to use
- Broad portfolio
- Certified to automotive standards

Applications

Powertrain

- Gasoline Direct Injection
- Gasoline Multi-Port Injection
- Diesel Direct Injection
- Automatic Transmission – Hydraulic Control
- Dry Double Clutch Transmission – Hydraulic Control
- Integrated (H)EV Control
- (H)EV Battery Management System

Safety

- Chassis Domain Control
- Electric Power Steering (EPS)
- Active Suspension Control System
- Advanced Airbag System
- Braking ECU
- Multi-purpose Camera Configuration
- Short Range Radar (24GHz) System
- Long Range Radar (76/77GHz) System

Body

- Body Domain Controller
- Gateway
- Advanced Body Applications

Transportation

- Commercial and Agricultural Vehicle (CAV)
- Fun Vehicle
- Transportation
- Trucks

Industrial & Multimarket

- Mobile Controller
- Inverter
- Wind Turbine Inverter
- Solar Panel
Evolution of TriCore™ Generations

In 1999, Infineon launched the first generation of AUDO (AUtomotive unifieD processOr) family. Based on a unified RISC/MCU/DSP processor core, this 32-bit TriCore™ microcontroller was a computational power horse. And the company has evolved and optimized the concept ever since – culminating in what is now the fourth TriCore™ generation. Based on the TriCore™ architecture, the new AUDO MAX family (version 1.6) sets a new performance standard for automotive microcontrollers. The TriCore™ success story is continuing with the introduction of the AURIX™ multicore family. AURIX™ combines easy-to-use functional safety support, strong increase in performance and a future-proven security solution in a highly scalable product family.

Infineon’s AUDO families are designed to handle highly complex algorithms. They are the perfect match for gasoline and diesel engine management systems – meeting rising market demands for lower emissions and higher efficiency levels. These trends are being accelerated by the Euro 5 and Euro 6 standards and increasingly stringent CO₂ regulations. In addition to engine management, the AUDO family is also ideal for applications in hybrid and electric vehicles as well as for transmission, active and passive safety and chassis applications. TriCore™-based products also deliver the versatility required for the industrial sector, excelling in optimized motor control applications and signal processing.

Infineon’s broad product portfolio allows engineers to choose from a wide range of memories, peripheral sets, frequencies, temperatures and packaging options. All of these features are fully compatible across generations. The new core is platform-compatible and can be used with software developed on existing controllers. Safety software is also available to help manufacturers meet SIL/ASIL safety standards. All members of the AUDO family are binary-compatible and share the same development tools. An AUTOSAR library that enables existing code ready for integration is also available.
TriCore™ Based Product Roadmap

<table>
<thead>
<tr>
<th>Segment</th>
<th>Production</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDO Family</td>
<td>130nm</td>
<td>90nm</td>
<td>65nm</td>
</tr>
<tr>
<td>High End</td>
<td>TC1797 180MHz, 4MB</td>
<td>TC1798 300MHz, 4MB</td>
<td>TC29x 300MHz, 8M</td>
</tr>
<tr>
<td></td>
<td>TC1793 270MHz, 4MB</td>
<td>TC1791 240MHz, 4MB</td>
<td>TC270 200MHz, 4M Bare Die</td>
</tr>
<tr>
<td>Mid Range</td>
<td>TC1768 133MHz, 3M Bare Die</td>
<td>TC1746 180MHz, 2.5M</td>
<td>TC26x 200MHz, 2.5M</td>
</tr>
<tr>
<td></td>
<td>TC1767 80/133MHz, 2MB</td>
<td>TC1782 180MHz, 2.5MB</td>
<td>TC260 200MHz, 2.5M Bare Die</td>
</tr>
<tr>
<td>Low End</td>
<td>TC1736 80MHz, 1MB</td>
<td>TC1728 133MHz, 1.5MB</td>
<td>TC23x 200MHz, 2M</td>
</tr>
<tr>
<td>Companion ICs</td>
<td>CIC61508 Safety IC</td>
<td>TC1724 133MHz, 1.5MB</td>
<td>TC24x 180MHz, 2M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TC22x 133MHz, 1M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TC21x 100MHz, 0.5M</td>
</tr>
</tbody>
</table>

- **Production**: Marked with a blue square
- **Development**: Marked with a red square
- **Concept**: Marked with a blue diamond
Infineon’s PRO-SIL™ Program, Designed to Protect

The functional complexity and levels of integration of real-time safety-critical applications continue to increase exponentially. In addition, the product life cycle of these applications has to meet stringent safety standards. Norms such as IEC 61508 and ISO 26262 mandate more robust and comprehensive product development processes and functional safety concepts in automotive and industrial applications.

Infineon’s PRO-SIL™ safety program is designed to ease and speed up your automotive and industrial design to comply with such standards. Across the full certification spectrum from Safety Integrity Levels (SIL) 1 to 4 and Automotive Safety Integrity Levels (ASIL) A to D, our end-to-end PRO-SIL™ approach will help you select the right hardware, software and functional safety concepts to meet your design and compliance needs.

PRO-SIL™ Highlights

- Broad hardware portfolio from sensors to microcontrollers, along with analog and power management ICs providing SIL-supporting features.
- For ISO 26262 PRO-SIL™ products, safety concepts are in place to enable the required safety measures, testing, monitoring and diagnostics capabilities for your safety architecture.
- Comprehensive safety software packages for seamless integration are in place, such as the SafeTlib software for Infineon’s AURIX™ microcontroller family
- Full range of support services – from consulting and design advice, including training, documentation and technical support – can be provided.
- Safety-focused organization and project management based on Infineon’s Zero Defect Program, Safety Culture and Quality Management System are in place.

Infineon’s PRO-SIL™ logo guides you to our products (HW, SW, Safety Documentation) with SIL-supporting features. These products will simplify the implementation of customers’ system design and improve time-to-market in achieving the desired functional safety level compliance.

www.infineon.com/prosil

<table>
<thead>
<tr>
<th>Scalability</th>
<th>Compliant to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables system design in line with different IEC 61508 and ISO 26262 ASIL</td>
<td>IEC 61508, ISO 26262 CMM level 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High diagnostic coverage</th>
<th>Application independence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfy requirement for startup and runtime testing</td>
<td>From chassis through body to powertrain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTOSAR supported</th>
<th>Free evaluation version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard AUTOSAR can be used</td>
<td>From sales contact</td>
</tr>
</tbody>
</table>
AURIX™ Family System Architecture

AURIX™ is Infineon’s brand new family of microcontrollers serving exactly the needs of the automotive industry in terms of performance and safety. Its innovative multicore architecture, based on up to three independent 32-bit TriCore™ CPUs, has been designed to meet the highest safety standards while significantly increasing performance at the same time.

Using the AURIX™ platform, automotive developers will be able to control powertrain and safety applications with one single MCU platform. Developments using AURIX™ will require less effort to achieve the ASIL-D standard than with a classical Lockstep architecture. Customers wanting to reduce their time-to-market can now cut down their MCU safety development by 30%. By the same token, a performance surplus of 50% up to 100% allows for more functionality and offers a sufficient resource buffer for future requirements, keeping the power consumption on the single-core microcontroller level. While protecting IP, and preventing theft and fraud, AURIX™ provides an already built-in Hardware Security Module.

With its special feature set, AURIX™ is the perfect match for powertrain applications (including hybrid and electrical vehicles) as well as safety applications (such as steering, braking, airbag and advanced driver assistance systems).
AURIX™ Family Package Scalability

<table>
<thead>
<tr>
<th></th>
<th>TQFP-80</th>
<th>TQFP-100</th>
<th>LQFP-144</th>
<th>TQFP-144</th>
<th>LQFP-176</th>
<th>LFBGA-292</th>
<th>BGA-416</th>
<th>LFBGA-516</th>
</tr>
</thead>
<tbody>
<tr>
<td>9x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC297</td>
<td>TC298</td>
<td>TC299</td>
</tr>
<tr>
<td>up to 8MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>2.75MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC275</td>
<td>TC277</td>
<td></td>
</tr>
<tr>
<td>up to 4MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>472KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC264</td>
<td>TC265</td>
<td>TC267</td>
</tr>
<tr>
<td>up to 2.5MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>752KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 2MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>96KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC233</td>
<td>TC234</td>
<td>TC237</td>
</tr>
<tr>
<td>up to 2MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>452KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC222</td>
<td>TC223</td>
<td>TC224</td>
</tr>
<tr>
<td>up to 1MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>96KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockstep-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC212</td>
<td>TC213</td>
<td>TC214</td>
</tr>
<tr>
<td>up to 512KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. SRAM</td>
<td>56KB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockstep-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Upgrade/Downgrade with pin-compatible packages
- Advanced package technologies deliver the best price/performance ratio
- Customers can choose between different devices in the same pin-compatible package

TriCore™ Upgrade Paths

- LFBGA-292 and LFBGA-516 are ball compatible so that customers can build one PCB for both packages
Package Information

1) For further information on Infineon packages, please visit our internet site at www.infineon.com/packages
AURIX™ (HW and SW) Development According to ISO 26262 Process

- Independent functional safety management established at Infineon
- Compliance certificate available
 - SDHB to ISO 26262 Gap Analysis performed by Exida
 - Close-the-gap activities performed by Infineon
 - Exida has issued a compliance certificate (Jan 2012) for Infineon HW and SW development processes for building systems up to ASIL-D

Infineon® Diverse Lockstep Concept

- Lockstep architecture designed to control and mitigate common cause factors
 - Physical isolation
 - Instruction-level execution diversity: 2-cycle delay
 - Circuit-level design & timing diversity
- Layout-level diversity
- Diversity controlled and verified by state-of-the-art design methods
- Special design of clock & reset networks
- Careful design of lockstep comparator

Main core and diverse lockstep core run the same software in parallel to detect computational errors
- Like normal locksteps, both cores are physically separated and have a time delay between their execution
- Diverse Lockstep core has been additionally transformed to provide architectural hardware diversity and further reduce common cause failures
Multi-AUTOSAR OS Support on One Microcontroller

- AURIX™ provides a memory protection system for each core plus an additional distributed hardware-based resource management system
- Each peripheral and shared SRAM has a resource management unit that works as a local access protection mechanism to allow or deny access
- When combined with the memory protection system, this hardware can be used to prevent selected direct access from certain tasks or cores to peripherals or regions of SRAMs and instead redirect the attempted access to a hypervisor function
- The hypervisor can arbitrate/grant/deny access and therefore provide paravirtualization of mixed-criticality tasks in a unified sub-system architecture with a minimal CPU overhead
- AURIX™ therefore provides the ability to run mixed-criticality software requiring real-time access while still enforcing encapsulation and freedom of interference between cores, even when the cores are not running time and memory-protected operating systems

AURIX™ Protection System Overview

- Hardware support for freedom of interference
 - Between SW components
 - Between HW parts
 - Between HW parts & SW components
- Timing protection
AURIX™ Hardware Security Module (HSM)

- A highly flexible and programmable solution
 - AES128 and TRNG implemented in HW
 - Customer-specific requirements like HASH, or asymmetric encryption can be implemented in software
- Offers performance required to encrypt/decrypt e.g. Ethernet traffic

- Secure key storage provided by separated HSM-DFLASH portion
 - Alternate secure key storage feasible in dedicated HSM-PFLASH sections
AURIX™ MultiCAN
- Up to 6 CAN nodes with FD support available
- CAN standard V2.0 B active
- ISO11898-1 FDIS 2014 CAN-FD
- Resonator ready with asynchronous operation and choice of clock source
- Frequency scaling without baud rate change
- Energy saving: pretended networking and partial networking (ISO11898-6 transceiver support) support (also in CAN FD mode)
- Safety support: total amount of bus errors countable
- Message objects can be freely assigned among the nodes
- Configurable FIFO length, automatic gateway mode support
- Acceptance mask filtering for each message object

Ethernet

Highlights
- MAC integrated in µC
- IEEE 802.3-2002 for Ethernet with support of IP, TCP/IP, UDP...
- Real-time stamping support (IEEE 1588-2008) for clock synchronization
- Standard MII and RMII interfaces to PHY
- Fast Ethernet w/ 100 Mbit
- AUTOSAR V4 features supported
- Automatic CRC checksum and padding support
- AVB support
Embedded Software

TriCore™ Performance

Real-life application benchmark (software controlling a four-cylinder diesel engine)

- Assuming a multicore performance gain of 1.5 times

Infineon Software Product Overview

- Microcontroller abstraction drivers
 - AUTOSAR MCAL
 - DAVET™
- Safety drivers
 - PRO-SIL™ SafeCore (AUDO MAX)
 - PRO-SIL™ SafeTlib (AURIX)
- Application drivers
 - DAVET™ Drive (IMM)
 - 3-phase eMotor driver
- System software
- Configuration tool
 - DAVET™
- Libraries
 - TriLib
 - DSP library
- Tools
 - MemTool etc.
Infineon AUTOSAR MCAL Drivers

MC-ISAR Product Overview

Supported AUTOSAR releases and devices
- V2.0: AUDO NG (TC1796, TC1766)
- V2.1, V3.0: XC2287, AUDO Future (TC1797, TC1767), AUDO S
- V3.1, V3.2: XC2000, AUDO MAX
- V4.03: AUDO MAX
- V3.2, V4.03: AURIX™
- ISO 26262 support

MC-ISAR Product Overview

- Complex driver for non-standardized modules (for TriCore™)
- CMM L3 process
- AUTOSAR BSW suite via partners: Electrobit, Vector, KPIT, ETAS
- Delivery packages include: source code, user manual, Tresos configuration tool

MC-ISAR
- MicroController – Infineon Software Architecture
- MC-ISAR: MCU, WDG, GPT, SPI, PORT, DIO, ICU, PWM, ADC
- MC-ISAR COM Basic: CAN, CanTrcv, LIN
- MC-ISAR COM Enhanced: FlexRay, Ethernet
- MC-ISAR MEM: FLASH, FEE
- MC-ISAR MCAL CD: UART, MSC, DMA, FLS Bootloader etc.

MC-ISAR
- Standardized driver
 - Compatibility and reduced time-to-market
- Qualified release
 - Compliant with CMM L3, lower development cost
- Free evaluation version
 - From sales contact
- Documented product release
 - Easy to use
- Efficient implementation
 - Lowest resource consumption
- Application independence
 - From chassis through body to powertrain
Infineon’s MC-ISAR eMotor Driver

3–Phase Motor Control for Mass Production
Electrical 3-phase motors, such as PMSM (Permanent Magnetic Synchronous Motors) and BLDC (Brushless DC) motors, are used across the automotive application domains (e.g. chassis control, (H)EV inverter, dry double clutch transmission etc.).

3–phase sinusoidal distributed and mechanically displaced windings are the characteristic of PMSM. The rotating magnetic field, activated by sinusoidal and time-displaced current, drives the motor. Three-phase current is switched into the motor windings via MOSFETs. The Field-Oriented Control (FOC) algorithm generates the PWM pattern needed for the current control. The rotor position and current are continuously sensed. The high-performance microcontroller plays the key role in the FOC algorithm, allowing higher accuracy, safer execution and improved efficiency for motor control.

The MC-ISAR eMotor driver collects the common feature of current and torque control, acting as a perfect solution for motor drive applications. Position and speed control can be achieved on an application-specific basis, supporting multiple position acquisition modes and satisfying different customer needs.

Feature Highlights
- Control PMSM motors via Field-Oriented Control (FOC), including Space Vector Modulation SVM
- Control BLDC motors via Block Communication (BC)
- Mixed control of FOC/BC motors
- Integrated with AUTOSAR drivers
- Supports safety applications

Sensors in FOC Mode
- Hall sensors/Incremental encoder
- Direct resolver mode (without resolver IC)
- Resolver mode (with resolver IC)
- Sensorless FOC
- Current measurement: 3-phases, 2-phase parallel and sequential, DC link sequential

Sensors in BC Mode
- Hall sensors
- Sensorless via back EMF
- Current measurement: DC link single

MC-ISAR eMotor Benefits:
- Developed for mass production, off-the-shelf implementation
- Limited software outlay
- Direct resolver mode (no external resolver IC), reduced system cost
- Compliant to ISO 26262 process and CMM level 3
- Seamless configuration under the same configuration tool for AUTOSAR MCAL driver
- Easy to use
Development Support

Emulation Device

- Emulation Devices (ED) are a very powerful solution for calibration, measurement, rapid prototyping and debugging
- Emulation logic and RAM are added next to the unchanged Production Device (PD) part on the same chip
- Cost-optimized PD, feature-rich ED
- Same package for ED and PD and minimum or no additional external circuitry allows highly cost-optimized ECU design
- Proven solution with broad tool support by leading automotive and debug tool vendors

AURIX™ Highlights

- Up to 2Mbyte RAM for calibration with same access speed as on-chip Flash
- Cold start access via the regular two-pin DAP interface when the ECU is unpowered
- Automotive measurement bandwidth (XCP) 15/30Mbyte/s via regular 2/3-pin DAP interface

Trace and Measurement

Today’s vehicles are designed to meet rising market demands for engine performance, engine responsiveness, torque, drivability, fuel economy and emissions. Infineon’s proven Multicore Debug Solution (MCDS) enables manufacturers to design and optimize features to support these automotive trends.

Multicore Debug Solution (MCDS)

Key Features

- Tracing of CPUs, busses, performance events and peripheral internal states
- Real-time, cycle-accurate and in parallel
- Up to 1Mbyte on-chip trace RAM (40Gbit/s bandwidth)
- Very powerful trigger capabilities
- No additional pins needed besides the DAP interface
- New Compact Function Trace (CFT) mode for continuous program trace via DAP
- New fine-grained data trace qualification for automotive measurement
Expert Kits

Infineon Tricore™ family starter kits are powerful evaluation systems that enable evaluation and development well before the target hardware is available. They offer a solid platform for both hardware and software engineers to evaluate and prototype designs that are closely aligned with their final applications.

Our Kits include

- Full-featured evaluation board
- USB cable
- Easy connectivity to all peripheral modules
- Extension board
- Development tools for evaluation such as compilers, debuggers and DAVE™
- Technical documentation – user manuals, architecture manuals, application notes, data sheets, board documentation

Further information on TriCore™ Starter Kits:
http://ehitex.com/starter-kits/for-tricore

Low-cost and Flexible Application Development Platform with TFT-Screen for the 32-bit AURIX™ Multicore TriCore™ Family

To simplify the development of your own application, the kit is supplied with a variety of on-board components including a highly-integrated software development environment that gives you everything you need to compile, debug, and Flash your AURIX™ multicore application.

Including

- AURIX™ application board
- 3V lithium batterie
- Link to the free TriCore™ entry tool chain including getting started, first 3 steps to
 - install the tools
 - set up your hardware
 - write, compile and debug your first program

Order Number: KIT_AURIX_TC275_TFT
MSRP: 149€
ACT – AURIX™ Configuration Tool

ACT is a powerful tool that helps engineers to jump-start programming of Infineon microcontrollers.

Key Feature
- Altium TASKING VX TriCore™ Lite Version including build-in
 - AURIX™ Pin Mapping incl. interactive package view
 - AURIX™ iLLD (Low-Level Driver)
 - AURIX™ OSEK

Free TriCore™ Entry Tool Chain

This free of charge tooling entry tool chain provides all required features to develop and test software for TriCore™ and AURIX™. The tool can be used with all available TriCore™ and AURIX™ starter kit and application boards.

Key Features
- Eclipse based IDE
- Project wizard to easy define the project properties for device and board support
- High performance GNU C compiler
- Integrated source level debugger
- On-chip Flash programming support
TriCore™ for Powertrain Applications

Energy Efficiency for Combustion Engine Vehicles
Electronic automotive components are key to raising fuel efficiency levels and cutting emissions. The latest environment protection agency standards – Euro 5 and Euro 6 for passenger cars and Euro 3 and Euro 4 for motorcycles – are driving developments in advanced engine management. TriCore™ based products can be found in improved combustion technologies such as Homogeneous Charge Compression Ignition (HCCI) as well as in direct injection, smart turbocharger and valve actuation applications. They are also ideal for a range of innovative transmission technologies such as Double Clutch Transmission (DCT) and modern Continuous Variable Transmission (CVT).

Driving Hybrid and Electrification
While excelling in fuel economy, being fun-to-drive and reducing CO₂ emissions, Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) have the drawbacks of higher cost, limited drive-range and safety concerns (e.g. risk of battery over-charging). TriCore™ products, with their high performance, functional integration and application-based SW support, are the ideal solution for (H)EV motor drives. TriCore™ offers less than 6% CPU load at 180MHz frequency, for the complete Field-Oriented Control (FOC) algorithm. TriCore™ AURIX™ family offers multicore architecture, allowing inverter control, hybrid torque management and DC/DC conversion to be done within one single microcontroller. Nevertheless, the TriCore™ AURIX™ family has built-in resolver functionality, saving customers the cost of implementing an external resolver IC.

Often seen as master micro in battery balancing topology, the TriCore™ AURIX™ family proposes a 32-bit standby domain combined with an integrated 8-bit standby controller, essential for battery balancing under low power mode (e.g. holiday parking). Its unique Secure Hardware Extension (SHE, details in next paragraph) feature prevents the main CPU from illegal manipulation, making the billing for battery charging more trustworthy.
In-Vehicle Security and Tamper-Proofing Electronic Control

By introducing SHE (Secure Hardware Extension), Infineon has met the demand for improved tamper-proofing and anti-theft protection of automotive control units as expressed by the "HIS" (Manufacturers’ Software Initiative) Working Group on Security. This working group consists of Audi, BMW, Daimler, Porsche and Volkswagen. Security solutions have so far been confined to the software level or were coupled with additional external hardware, meaning they were easily circumvented.

Infineon offers more than this basic software protection because Audo MAX SHE monolithically integrates a secure keystore which cannot be read without access authorization. In addition, SHE has a cryptographic module, which encrypts access codes with up to 128-bits. SHE is complemented by an array of hardware functions which, for example, prevent the application code from being illegitimately read and altered. Same risk can also apply to the identification of ECUs in the system network. These are important functions for tamper-proofing control units and protecting them against theft. Even if such an ECU were to be fitted in another identical vehicle, its engine performance characteristics could not be changed: the cryptographic individual key of an ECU has to match all the cryptographic keys within the ECU network of a vehicle. And that key is safely stored in the SHE.

The Audo MAX microcontroller family incorporating SHE currently comprises three products, each with 4MB Flash memory but differing in terms of clock frequency and package: TC1798 (300MHz, BGA-516), TC1793 (270MHz, BGA-416) and TC1791 (240MHz, BGA-292). Infineon’s future 65nm eFlash microcontrollers will offer and significantly extend the SHE functionality with a Hardware Security Module (HSM).
Gasoline Direct Injection

Application Example

Engine Management
Typical Partitioning for GDI Discrete & Solenoid

Application Features
- Direct injection
- Scalable software-based knock detection
- Variable valve control
- Throttle and EGR control
- Turbo charging
- Catalyst after treatment
- Start/stop system

System Benefits
- Microcontroller with best-in-class real-time performance
- Scalable platform – performance, memory size and I/Os
- Committed to reduce CO₂ by 20%
- Anti-theft protection and tuning protection
- Increased knock detection accuracy via DS-ADC
- Enhanced communication (Ethernet)
- Dedicated peripherals for powertrain

Suggested Products
- TC27x – TriCore™ 32-bit Microcontroller
- TC26x – TriCore™ 32-bit Microcontroller
Gasoline Multi-Port Injection

Application Example

Engine Management
Typical Partitioning for MPI discrete “Flex”

Application Features
- Gasoline port injection
- Scalable software-based knock detection
- Throttle and EGR control
- Catalyst after treatment
- Start/stop systems
- Cost-optimized for entry segment

System Benefits
- Scalable platform – performance, memory size and I/Os
- Single voltage supply (EVR)
- Focus on reducing CO₂
- Easy migration from ultra low-end to mid-range applications
- Best tool/partner support for all development phases within V-Cycle

Suggested Products
- TC265 – TriCore™ 32-bit Microcontroller
- TC264 – TriCore™ 32-bit Microcontroller
Diesel Direct Injection

Application Example

Engine Management
Typical Partitioning for DDI Discrete

Application Features
- Direct injection (Piezo/Magnetic)
- In-cylinder pressure measurement
- Hardware-supported security enhancements
- Throttle and EGR control
- Turbo charging
- Diesel particulate filter
- ‘Blue’ after-treatment support (e.g. urea-based SCR)

Suggested Products
- TC29x – TriCore™ 32-bit Microcontroller
- TC27x – TriCore™ 32-bit Microcontroller

System Benefits
- Microcontroller with best-in-class real-time performance
- Scalable platform – performance, memory size and I/Os
- Committed to reduce NOx and particulate matter in line with Euro 6 standard
- Hardware-supported IP/anti-theft protection and tuning protection
- Increased accuracy with in-cylinder pressure sensing via DS-ADC
- Enhanced communication (Ethernet)
- Dedicated peripherals for powertrain
Application Example

6-Speed Automatic Transmission
Typical Partitioning for Constant Current Control

Battery (KL30)
Key (KL15)

Input Shaft Speed TLE4951/54
Output Shaft Speed TLE4951/54
PRNDL Switches TLE4964
Tap up / Tap down Switches
Temperature Sensor

32-bit Multicore/Lockstep MCU AURIX™

Low-Side Driver
High-Side Driver PROFET™ Family BTS6133D
Constant Current Control TLE82453SA
Constant Current Control TLE82453SA

Vehicle Speed Out
Solenoid Supply
ON/OFF Solenoids
Variable Force Solenoid/Proportional Valve
Variable Force Solenoid/Proportional Valve

Powertrain FlexRay
Can TLE7250G
Lin TLE7259-2GE

Diagnostic/Instrumentation CAN
Diagnostic/Instrumentation

Application Features
- Smooth gear shifting
- Closely coupled with engine control via high-speed CAN/CAN-FD/FlexRay link
- Support of four 3-phase DC-brushless E-drives
- TC270: High microcontroller junction bare die Temperature
- TC275/TC277: Extended Tambient temperature range to meet harsh environment requirements

System Benefits
- Improved and fast clutch control
- Supports Safety Level up to ASIL-D
- Security module HSM to prevent tampering
- Hot bare die supports modular temperature-optimized TCU design
- Hot bare die capabilities enable microcontrollers to be placed wherever they are needed in the system
- Scalable product offering ensures perfect fit for individual application needs

Suggested Products
- TC277 – TriCore™ 32-bit Microcontroller
- TC275 – TriCore™ 32-bit Microcontroller
- TC270 – Bare Die TriCore™ 32-bit Microcontroller
Dry Double Clutch Transmission—Hydraulic Control

Application Features
- Ultra-fast gear switching
- Closely coupled with engine control via high-speed CAN/CAN-FD/FlexRay link
- Support of four 3-phase DC-brushless E-drives (Dry-DCT)
- High microcontroller junction bare die Temperature

System Benefits
- Improved fast clutch control
- Supports Safety Level up to ASIL-D
- Feature set optimized for wet and dry DCT designs
- Continuous torque on wheels ensures a sportive driving experience
- Hot bare die capabilities enable microcontrollers to be placed directly where they are needed in the system
- Hot bare die supports modular temperature-optimized TCU designs

Suggested Products
- TC265 – TriCore™ 32-bit Microcontroller
- TC260 – Bare Die TriCore™ 32-bit Microcontroller

© 2018 Infineon Technologies AG
All Rights Reserved
www.infineon.com
Dry Double Clutch Transmission—Electrical Control

Application Example

Safety System Supply
- Battery (KL30)
- Key (KL15)
- LDO
- µLDO
- Ref. LDO
- Com-LDO
- Tracker 1
- Tracker 2
- Window/OSA-Watchdog
- ASCLL
- E-Ray
- SENT
- GTM
- iGMR Sensor

32-bit Multicore/Lockstep
MCU
AURIX™

3-Phase Driver IC
TLE9180

System Benefits
- Improved fast clutch control
- Supports Safety Level up to ASIL-D
- Feature set optimized for wet and dry DCT designs
- Continuous torque on wheels ensures a sportive driving experience
- Hot bare die capabilities enable microcontrollers to be placed directly where they are needed in the system
- Hot bare die supports a modular temperature-optimized TCU design
- Infineon e-Motor Driver

Application Features
- Ultra-fast gear switching
- Closely coupled with engine control via high-speed CAN/CAN-FD/FlexRay link
- Support of four 3-phase DC-brushless E-drives (Dry-DCT)
- High microcontroller junction bare die Temperature

Suggested Products
- TC265 – TriCore™ 32-bit Microcontroller
- TC260 – Bare Die TriCore™ 32-bit Microcontroller
Integrated (H)EV Control

Application Example

Application Features
- Multicore & Lockstep architecture
- Direct resolver-to-microcontroller
- Superior performance
- Customized PWM pattern generation

System Benefits
- ISO 26262 ASIL-C/D compliant
- No resolver IC needed, lower system cost
- Enables sub-system integration (driving HCU + Inverter + DC/DC)
- Fine motor tuning

Suggested Products
- TC27x – TriCore™ 32-bit Microcontroller
- TC26x – TriCore™ 32-bit Microcontroller
(H)EV Battery Management System

Application Example

Application Features
- Multicore & Diverse Lockstep Core architecture
- Fast communication interface
- Integrated low-power 8-bit standby controller
- HW Security Module (HSM)

System Benefits
- ISO 26262 ASIL-C/D compliant
- IBCB network architecture
- Ring topology in event of failure
- Balancing & monitoring over long parking period
- Charge-billing verification
- Active & passive balancing

Suggested Products
- TC27x – TriCore™ 32-bit Microcontroller
- TC26x – TriCore™ 32-bit Microcontroller
- TLE8000 – battery balancing IC
TriCore™ for Safety Applications

AURIX™ Made for Safety

The AURIX™ architecture has been developed according to an audited ISO 26262 compliant process and designed to efficiently meet ASIL-D on an application level. The platform uses up to 2 cores in TriCore™ Diverse Lockstep Core technology, a diverse lockstep architecture combined with cutting-edge safety technology, such as safe internal communication buses or distributed memory protection system. Innovative encapsulation techniques allow the integration of software with various safety levels (QM to ASIL-D) from different sources, thereby significantly reducing system complexity. Thanks to this optimized approach, multiple applications and operating systems (such as steering, braking, airbag and advanced driver assistance systems) are seamlessly hosted on a unified platform. This leads to productivity gains of up to 30%, resulting in a smaller development outlay and reduced time-to-market for our customers.

Furthermore, Infineon extends the microcontroller safety roadmap with devices dedicated to the Advanced Driver Assistance System (ADAS) segment, such as radar or camera applications. Innovation has been focused on system partitioning in order to further integrate system functionality and consequently reduce the complexity and area, providing our customers with highly optimized solutions. The new devices include high-speed interfaces, integrated hardware acceleration and enhanced ECU validation and instrumentation tools. All ADAS devices have been designed in accordance with the ISO 26262 safety methodology, meaning that they can be involved in automatic decisions to assist drivers, such as emergency braking.

AURIX™ Made for Scalability

Thanks to its market-leading expertise, Infineon has translated customer demands for individual scalability into a universal product roadmap. Designed to optimize its customers’ investment, the AURIX™ family comes with a comprehensive range of fully modular components, thereby ensuring long-term design flexibility. The devices range in the ultra high-end from a 300MHz triple-core device with 8MB of embedded Flash to a 200MHz triple core with 4MB of embedded Flash to a 200MHz dual-core device with 2.5MB of embedded Flash right down to 130MHz and 80MHz single-core and single-core lockstep devices with 1.5MB, 1MB and 0.5MB of embedded Flash. The package portfolio includes a BGA-516 package with a ball-compatible BGA-292 package (I/O subset), and compatible QFP-176, QFP-144, QFP-100 to QFP-64 packages.
The new TriCore™ family AURIX™ with state-of-the-art safety features enables systems to achieve the highest safety level ASIL-D, which is already required in contemporary domain control systems. The latest diverse lockstep technology with clock delay (Diverse Lockstep Core) reduces the software overhead significantly and enables fast time-to-market. Thanks to a scalable multicore system and innovative encapsulation techniques, this supports the integration of software with mixed-criticality levels from different sources, thereby allowing multiple applications and operating systems to be seamlessly hosted on a unified platform.

Application Features AURIX™
- TriCore™ DSP functionality
- Best-in-class performance: triple TriCore™ with up to 300MHz per core
- Supporting floating point and fix point with all cores
- Up to 2.7MB of internal RAM
- Communication peripherals: CAN, LIN, FlexRay, Ethernet
- Innovative single supply 5V or 3.3V
- External memory interface
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits
- Advanced communication with FlexRay and Ethernet
- Highest available performance with integrated FPU
- Flexible DMA unit
- Scalability over Flash, RAM and peripherals
- Proven safety concept to support ISO 26262
- Innovative supply concept leads to best-in-class power consumption
Electric Power Steering (EPS)

Application Example

The new TriCore™ family AURIX™ with state-of-the-art safety features enables systems to achieve the highest safety level ASIL-D, which is already required in contemporary steering systems. The latest diverse lockstep technology with clock delay (Diverse Lockstep Core) reduces the software overhead significantly and enables fast time-to-market. Its rich scalability meets a variety of different electric power steering system demands.

Application Features AURIX™
- Flash 256KB–8MB
- Performance from 40MHz–3x 300MHz
- $T_a = -40^\circ\text{C} \ldots 145^\circ\text{C}$
- Dedicated peripheral set: CAN, SPI, FlexRay
- Advanced timer unit for totally flexible PWM generation and hardware input capture
- Redundant flexible 12-bit ADC
- Hardware SENT interface for low CPU load
- Hardware-focused safety concept for reduced SW overhead
- Safety software: Infineon SafeTcore library
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits
- Scalability over Flash, RAM and peripherals offering the best cost-performance ratio
- Serves all kinds of EPS systems, such as column or belt drive
- Proven safety concept to support ISO 26262
- Innovative supply concept leads to best-in-class power consumption
Active Suspension Control System

The new TriCore™ family AURIX™ with state-of-the-art safety features enables systems to achieve the highest safety level ASIL-D, which is already required in contemporary suspension systems.

The latest diverse lockstep technology with clock delay (Diverse Lockstep Core) reduces the software overhead significantly and enables fast time-to-market.

The scalability supports an optimized fit in order to meet different OEM specifications.

Application Features AURIX™
- TriCore™ DSP functionality
- Best-in-class performance: triple TriCore™ with up to 300MHz per core
- Supporting floating point and fix point with all cores
- Communication peripherals: CAN, LIN, FlexRay, Ethernet
- Innovative single supply 5V or 3.3V
- Wide range of packages from 64-Pin – 516-Pin
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits
- Scalability over Flash, RAM and peripherals offering the best cost-performance ratio
- Proven safety concept to support ISO 26262
- Innovative supply concept leads to best-in-class power consumption and saves external component costs
Advanced Airbag System

Application Example

The new TriCore™ family AURIX™ with state-of-the-art safety features enables systems to achieve the highest safety level up to ASIL-D.

The scalability allows the selection of a single-core solution for basic airbag systems and multicore solutions for airbag systems with an integrated sensor cluster. The best cost-performance fit is offered by the wide range of Flash, performance and peripheral options available within the AURIX™ family.

Application Features AURIX™

- Scalable MCU family from single to multicore
- Flash 256KB–8MB
- Embedded EEPROM
- Performance from 40MHz–3x 300MHz
- Dedicated peripheral set: CAN, SPI, FlexRay
- Hardware-focused safety concept for reduced SW overhead
- Safety software: Infineon SafeTcore library
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits

- Scalability over Flash, RAM and peripherals offering the best cost-performance ratio
- Proven safety concept to support ISO 26262
- Innovative supply concept leads to best-in-class power consumption
The new TriCore™ family AURIX™ with state-of-the-art safety features enables systems to achieve the highest safety level ASIL-D, which is already required in contemporary braking systems. The latest diverse lockstep technology with clock delay (Diverse Lockstep Core) reduces the software overhead significantly and enables fast time-to-market. The scalability supports an optimized cost-performance fit for basic ABS systems up to highly-integrated ESC systems.

Application Features AURIX™
- Scalable MCU family with diverse lockstep
- Flash 256KB–8MB
- Performance from 40MHz–3x 300MHz
- Hardware-focused safety concept for reduced SW overhead
- SENT interface for low CPU load
- Safety software: Infineon SafeTcore library
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits
- Scalability over Flash, RAM, performance and peripherals leads to an optimized cost-performance fit
- Proven safety concept to support ISO 26262 validated by 3rd party
- Innovative supply concept leads to best-in-class power consumption and saves external component costs
Multi-purpose Camera Configuration

The new TriCore™ family AURIX™ will enhance classic safety features with dedicated features to cater for multi-purpose camera systems.

The combination of new features, such as a picture pre-processing unit, camera interface, DSP functionality and increased SRAM, in conjunction with outstanding safety features enables a high level of scalability in order to achieve the best cost-performance ratio.

Application Features AURIX™

- TriCore™ DSP functionality
- Best-in-class performance: triple TriCore™ with up to 300MHz per core
- Supporting floating point and fix point with all cores
- Up to 2.7MB of internal RAM for picture information storage
- Picture pre-processing unit
- Camera interface up to 100MHz
- Innovative single supply 5V or 3.3V
- External memory interface
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits

- High scalability option allows a dedicated performance feature fit for multiple camera applications from single automatic high beam systems up to multi-function systems (lane departure warning, forward collision warning, traffic sign recognition, pedestrian recognition etc.)
- High integration leads to reduced complexity
- Support for ISO 26262 decisions such as emergency braking
- Innovative supply concept leads to best-in-class power consumption
Short Range Radar (24GHz) System

Application Example

The new TriCore™ family AURIX™ will enhance classic safety features with dedicated features to serve the needs of 24GHz Radar systems. The combination of new features and increased SRAM, in conjunction with outstanding safety features, enables a high level of integration and reduction of complexity.

Application Features AURIX™

- Up to 752KB RAM for Radar image storage
- Radar signal processing with windowing functionality
- Flexibility in Radar signal acquisition with 4x internal ADCs
- Possibility to connect external ADCs (Interface to connect up to 16-bit ADCs)
- High-precision input timers
- High-precision output timers for DAC
- Innovative single supply 5V or 3.3V
- ISO 26262 compliance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits

- High integration leads to significant cost savings
- High integration leads to reduced complexity
- ISO 26262 compliance supports safe input for functions such as emergency braking
- Innovative supply concept leads to best-in-class power consumption
Long Range Radar (76/77GHz) System

Application Example

The new TriCore™ family AURIX™ will enhance classic safety features with dedicated features to serve the needs of 77GHz Radar systems.

The combination of new features and increased SRAM, in conjunction with outstanding safety features, enables a high level of integration and reduction of complexity.

Application Features AURIX™

- TriCore™ DSP functionality
- Best-in-class performance: triple TriCore™ with up to 300MHz per core
- Up to 2.7MB RAM for Radar image storage
- Radar signal processing with windowing functionality
- Flexibility in Radar signal acquisition with 4x internal ADCs
- Possibility to connect external ADCs (Interface to connect up to 16-bit ADCs)
- High-precision input timers
- High-precision output timers for DAC
- Innovative single supply 5V or 3.3V
- External memory interface
- ISO 26262 compliance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits

- High integration leads to significant cost savings
- High integration leads to reduced complexity
- ISO 26262 compliance supports safe input for functions such as emergency braking
- Innovative supply concept leads to best-in-class power consumption
Body electronics systems embrace a broad variety of applications inside the car, covering comfort, safety and security as well as high-performance computing and in-vehicle networking. This leads to the key strengths of the AURIX™ family:

- **AUTOSAR** – With AUTOSAR 4, multicore architectures can be easily designed into vehicles. Infineon is one of the first implementers of a multicore architecture with AURIX™ ready for AUTOSAR 4.x. Furthermore, Infineon also provides the MCAL drivers developed according to CMM 3 level.

- **Power Consumption** – Innovative supply concept automatically adapts the power consumption to the actual performance needs. Furthermore, the new trend of pretended networking and ECU degradation is actively supported.

- **Enhanced communication** – As cars incorporate an increasing amount of electronics, the body electronics module’s responsibilities increase to handle the additional components and message traffic. Because of the gateway functionality of the BCM, the AURIX™ has enhanced communication capabilities to support communication between CAN, LIN, FlexRay™ and Ethernet buses.

- **Safety** – The trend is toward the integration of safety targets in the requirements of advanced body systems such as lighting, BCM etc. To achieve the required ASIL level according to ISO 2626, AURIX™ has the capability to cover targets up to the highest safety integrity level ASIL-D.

- **Security** – In the future, the need for a high level of security will also expand into body applications. Cars are expected to hold even more information as they become smart cards on wheels to simplify financial transactions at gas pumps, charging stations, parking lots, toll booths, drive-through shops and more. The vehicle will act as a smart card and pay your fee/fare – sometimes automatically. Hardware-based security is more robust than software-only security. AURIX™ provides a dedicated module, HSM (Hardware Secure Module), to cover the highest level of security.
High-Feature Body Control Module with Integrated Gateway Functionality

Application Example

Body Control Module (BCM) application comprising internal and external lighting systems, as well as control of relays and voltage rails and further comfort functions such as door and wiper control. The central gateway manages all internal interfaces (i.e. motor management, in-car entertainment, dashboard or convenience control) and communication with external interfaces for after-sales software updates. The AURIX™ multicore concept enables the integration of two applications in one device, e.g. BCM and Gateway.

Key Features
- Scalable MCU family from single to multicore
- Encapsulation feature allows software development without interference for multiple applications
- Embedded EEPROM
- Advanced communication peripherals: CAN, LIN, SPI, FlexRay, Ethernet
- ISO 26262 conformance to support safety requirements up to ASIL-D
- Availability of AUTOSAR 4.x

System Benefits
- Enables pretended networking and ECU degradation
- High integration leads to significant cost savings
- High integration leads to reduced complexity
- ISO 26262 compliance supports ASIL requirements
- Innovative supply concept leads to best-in-class power consumption
TriCore™ for Transportation Applications
Optimized with scalable AURIX™ Family

AURIX™ is Infineon’s brand new family of microcontrollers serving exactly the needs of the 24V–60V industry in terms of performance, memory, scalability, safety and security.

Its innovative multicore architecture supports the latest trends in connectivity, such as Ethernet and CAN FD as well as safety (IEC 61508/ISO 25119/ISO 26262) and security.

While supporting high performance, the innovative supply concept with integrated DC/DC converter leads to best-in-class power consumption.

The scalable AURIX™ family leads to the most optimized cost-performance application fit.

Commercial and Agricultural Vehicles

Sport and Alternative Vehicles

Trucks and Traction
Commercial and Agricultural Vehicles (CAV)

Hydraulic Management System

A 24V complete system solution for hydraulic management systems: power supply, sensors, microcontroller and high-side switches can be used without external protection in a 24V system. Valves and pumps can be driven via linear activation or demand-controlled via PWM signals.

Pneumatic Management System

A 24V complete system solution for pneumatic management systems: power supply, sensors, microcontroller and high-side switches can be used without external protection in a 24V system. Valves and pumps can be driven via linear activation or demand-controlled via PWM signals.

System Benefits

- Valves and pumps can be driven via linear activation or demand-controlled via PWM signals
- Quad and dual channels are optimized to reduce costs and space for these applications
- Pin-to-pin and software compatibility
- ISO 2626/SIL3 compliant
- AECQ-100

1) If ECU permanently supplied, you may need to add external protection against load dump 400ms above 40V
TriCore™ for Industrial Applications

High Performance for Demanding Applications
While the primary focus of the TriCore™-based microcontrollers is on the automotive market, they also provide significant advantages for industrial applications. Featuring a combination of high calculation performance, large memory sizes, a comprehensive set of peripherals and integrated safety & security measures, the MCUs can meet even the most demanding application requirements.

The devices of the AUDO MAX family reach more than 400 DMIPS at clock rates of up to 300MHz and combine MCU & DSP instructions with an integrated FPU. Memory sizes reach up to 4MB Flash and 192KB of SRAM and all memory is protected by hardware Error Correction Code (ECC).

The integrated peripheral set is primarily targeted toward motor control and power conversion providing up to 4 ADCs, an additional fast ADC and a full set of high-performance timers – namely the General Purpose Timer Array (GPTA). This is one of the very few in the industry that is able to drive the upcoming three-level inverter topologies.

Providing Security and Functional Safety
In a global economy, IP protection plays an increasingly important role. This demand is accounted for by the integration of special security modules providing the required means of safe key storage, along with secure boot and encryption on the hardware level. As one of the leaders in functional safety, Infineon has designed the TriCore™ MCUs to meet the growing demand for functional safety in the industrial market as specified in IEC 61508. Via our cooperation partner Hitex, Infineon offers a complete package comprising a microcontroller, external signature watchdog (CIC61508), software and documentation, achieving safety integrity levels up to SIL3.

The next generation of TriCore™-based microcontrollers – AURIX™ – will provide another significant performance milestone by integrating up to three cores in one device. The multicore concept is targeted at running concurrent applications in parallel. Some of the integrated cores integrate lockstep functionality and the peripherals can be allocated to individual cores. This allows running a combination of safety-critical tasks, such as controlling an inverter, with non-critical tasks, such as network communication, on a single MCU.
Mobile Controller

Application Example

Application Features
- Closed-loop control of solenoid currents
- Multitasking to drive hydraulic and electric actuators
- IEC 61131-3 support
- GNU toolchain
- Ready for harsh environments
- Compliance with IEC 61508 for Safety
- Integrity Level (SIL) 1 to 3

System Benefits
- High-speed 270MHz asymmetric dual core
- Up to 50 Pulse-Width-Modulated (PWM) outputs
- Three Analog to Digital Converters (ADC)
- 12-bit, up to 44 channels
- Four fast ADC inputs 10-bit (262.5ns @ $f_{\text{ADC}} = 80\text{MHz}$)
- Four frequency inputs
- Fast, 10-bit ADC
- Industrial and automotive temperature range
- SAE J1939 supported by four CAN nodes
- 32KB EEPROM for parameter
- Hitex PRO-SIL™ support

Suggested Products
- TC1793N – TriCore™ 32-bit Microcontroller
- TC1798N – TriCore™ 32-bit Microcontroller
Inverter

Application Example

Application Features
- Multi-axis controller for two 3-phase complementary PWMs
- Multiple modulation strategies (SVPWM, DPWM, Soft-PWM, direct torque control) to support requirements for reduced noise emissions and increased efficiency
- Ready for four Q-inverters, matrix-inverters
- Field-oriented control with less than 10% CPU load
- Multiprocessor support for reliability and safety
- Support for 3-Level inverter topologies

System Benefits
- Generic flexibility timer (GPTA)
- Two Analog to Digital Converters (ADC) 12-bit, up to 32 channels
- Fast, 10-bit ADC (262.5ns @ f_{FADC} = 80MHz)
- Resolver I/F
- Encoder I/F with digital noise filter
- Optimized motion control library
- Very fast control loop

Suggested Products
- TC1784N – TriCore™ 32-bit Microcontroller
Wind Turbine Inverter

Application Example

Application Features
- Reliable blade pitch control
- Increased wind turbine efficiency
- Multiple modulation strategies (SVPWM, DPWM, Soft-PWM, direct torque control) to support requirements for reduced noise emissions and increased efficiency
- Multiprocessor support for reliability and safety
- Support for 3-level inverter topologies

System Benefits
- Generic flexibility timer (GPTA)
- Two Analog to Digital Converters (ADC) 12-bit, up to 36 channels
- Fast, 10-bit ADC (262.5ns @ f_{ADC} = 80MHz)
- Resolver I/F
- Encoder I/F with digital noise filter
- Optimized motion control library

Suggested Products
- TC1782N – TriCore™ 32-bit Microcontroller
- TC1784N – TriCore™ 32-bit Microcontroller
Solar Panel

Application Example

Application Features
- Multi-phase PWM controller for single or multiple strings
- Runs multiple modulation strategies (SVPWM, DPWM, Soft-PWM, direct torque control) to support requirements for reduced noise emissions and increased efficiency
- Maximum Power Point Tracking (MPPT) to extract maximum power from solar panels
- Grid phase monitoring and synchronization to ensure power factor unity
- Current control to avoid disharmonics and to determine the feed in refund
- Support for 3-level inverter topologies

System Benefits
- Generic flexibility timer (GPTA)
- Two Analog to Digital Converters (ADC) 12-bit, up to 36 channels
- Fast, 10-bit ADC (262.5ns @ f_{ADC} = 80MHz)
- Optimized DSP library

Suggested Products
- TC1784N – TriCore™ 32-bit Microcontroller
- TC1793N – TriCore™ 32-bit Microcontroller

Maximum Power Point Tracking (MPPT)

(Cell Temperature: 25°C)
TriCore™ Tool Partners

Embedded Software

Simulation/Virtual Prototyping

Integrated Compiler Environments

Auto Code Generation Tools

dSPACE

Timing/Scheduling Analysis

Operating Systems

Debugger and Test Tools

Data Measurement/Calibration/Rapid Prototyping

Programmer/Flash Tools

Software Verification

Training/Services

Free Tooling

Free TriCore™ Entry Toolchain, MemTool, ACT
Feature Overview TriCore™ Family

TriCore™ Microcontroller

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Max Clock Frequency [MHz]</th>
<th>Program Memory [Kbyte]</th>
<th>SRAM (incl. Cache) [Kbyte]</th>
<th>Co-Processor</th>
<th>Core (lockstep)</th>
<th>Emi/JI/O G/ID</th>
<th>Number of ASC Channels</th>
<th>External Bus Interface</th>
<th>CAN/OAFD Nodes</th>
<th>Temperature Ranges °C</th>
<th>Package</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AURIX™ – Family</td>
<td></td>
</tr>
<tr>
<td>TC299T</td>
<td>300</td>
<td>8000</td>
<td>728</td>
<td>FPU</td>
<td>3/1</td>
<td>263</td>
<td>84/10 DS</td>
<td>yes</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA5-16</td>
</tr>
<tr>
<td>TC299TX</td>
<td>300</td>
<td>8000</td>
<td>2728</td>
<td>FPU</td>
<td>3/1</td>
<td>263</td>
<td>84/10 DS</td>
<td>yes</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA5-16</td>
</tr>
<tr>
<td>TC299T</td>
<td>300</td>
<td>6000</td>
<td>728</td>
<td>FPU</td>
<td>3/1</td>
<td>263</td>
<td>84/10 DS</td>
<td>yes</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA5-16</td>
</tr>
<tr>
<td>TC298T</td>
<td>300</td>
<td>6000</td>
<td>728</td>
<td>FPU</td>
<td>3/1</td>
<td>232</td>
<td>84/10 DS</td>
<td>no</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LBGA4-16</td>
</tr>
<tr>
<td>TC298T</td>
<td>300</td>
<td>6000</td>
<td>728</td>
<td>FPU</td>
<td>3/1</td>
<td>232</td>
<td>84/10 DS</td>
<td>no</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LBGA4-16</td>
</tr>
<tr>
<td>TC297T</td>
<td>300</td>
<td>8000</td>
<td>728</td>
<td>FPU</td>
<td>3/1</td>
<td>169</td>
<td>84/10 DS</td>
<td>no</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA2-292</td>
</tr>
<tr>
<td>TC297T</td>
<td>300</td>
<td>6000</td>
<td>728</td>
<td>FPU</td>
<td>3/1</td>
<td>169</td>
<td>84/10 DS</td>
<td>no</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA2-292</td>
</tr>
<tr>
<td>TC297TA</td>
<td>300</td>
<td>8000</td>
<td>2728</td>
<td>FPU, FFT, CIF</td>
<td>3/1</td>
<td>169</td>
<td>84/10 DS</td>
<td>no</td>
<td>6</td>
<td>4xASCLIN, 6xQSPI, 3xMSC, 2xI/C, 15xSENT, 5xPSIS, 2xFlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA2-292</td>
</tr>
<tr>
<td>TC277T</td>
<td>200</td>
<td>4000</td>
<td>472</td>
<td>FPU</td>
<td>3/2</td>
<td>169</td>
<td>60/6 DS</td>
<td>no</td>
<td>4</td>
<td>4xASCLIN, 4xQSPI, 2xMSC, HSSL, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA2-292</td>
</tr>
<tr>
<td>TC275T</td>
<td>200</td>
<td>4000</td>
<td>472</td>
<td>FPU</td>
<td>3/2</td>
<td>112</td>
<td>60/6 DS</td>
<td>no</td>
<td>4</td>
<td>4xASCLIN, 4xQSPI, 2xMSC, HSSL, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LQFP-176</td>
</tr>
<tr>
<td>TC267D</td>
<td>200</td>
<td>2500</td>
<td>240</td>
<td>FPU</td>
<td>2/1</td>
<td>169</td>
<td>50/3 DS</td>
<td>no</td>
<td>5</td>
<td>4xASCLIN, 4xQSPI, 2xMSC, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA2-292</td>
</tr>
<tr>
<td>TC265D</td>
<td>200</td>
<td>2500</td>
<td>240</td>
<td>FPU</td>
<td>2/1</td>
<td>112</td>
<td>50/3 DS</td>
<td>no</td>
<td>5</td>
<td>4xASCLIN, 4xQSPI, 2xMSC, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LQFP-176</td>
</tr>
<tr>
<td>TC264D</td>
<td>200</td>
<td>2500</td>
<td>240</td>
<td>FPU</td>
<td>2/1</td>
<td>88</td>
<td>50/3 DS</td>
<td>no</td>
<td>5</td>
<td>4xASCLIN, 4xQSPI, 2xMSC, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LQFP-144</td>
</tr>
<tr>
<td>TC264DA</td>
<td>200</td>
<td>2500</td>
<td>752</td>
<td>FPU, FFT, CIF</td>
<td>2/1</td>
<td>88</td>
<td>50/3 DS</td>
<td>no</td>
<td>5</td>
<td>4xASCLIN, 4xQSPI, 2xMSC, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LQFP-144</td>
</tr>
<tr>
<td>TC2445</td>
<td>180</td>
<td>2000</td>
<td>192</td>
<td>FPU</td>
<td>1/-</td>
<td>28. Mrz</td>
<td>40/3 DS</td>
<td>no</td>
<td>3</td>
<td>2xASCLIN, 4xQSPI, 2xMSC, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFP-164</td>
</tr>
<tr>
<td>TC237L</td>
<td>200</td>
<td>2000</td>
<td>192</td>
<td>FPU</td>
<td>1/1</td>
<td>120</td>
<td>24</td>
<td>no</td>
<td>6</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-LFBGA2-292</td>
</tr>
<tr>
<td>TC234L</td>
<td>200</td>
<td>2000</td>
<td>192</td>
<td>FPU</td>
<td>1/1</td>
<td>120</td>
<td>24</td>
<td>no</td>
<td>6</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-TQFP-144</td>
</tr>
<tr>
<td>TC233L</td>
<td>200</td>
<td>2000</td>
<td>192</td>
<td>FPU</td>
<td>1/1</td>
<td>78</td>
<td>24</td>
<td>no</td>
<td>3</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-TQFP-144</td>
</tr>
<tr>
<td>TC222L</td>
<td>133</td>
<td>1000</td>
<td>96</td>
<td>FPU</td>
<td>1/1</td>
<td>59</td>
<td>24</td>
<td>no</td>
<td>3</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-TQFP-100</td>
</tr>
<tr>
<td>TC221L</td>
<td>133</td>
<td>1000</td>
<td>96</td>
<td>FPU</td>
<td>1/1</td>
<td>78</td>
<td>24</td>
<td>no</td>
<td>3</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-TQFP-100</td>
</tr>
<tr>
<td>TC213L</td>
<td>100</td>
<td>500</td>
<td>96</td>
<td>FPU</td>
<td>1/1</td>
<td>59</td>
<td>24</td>
<td>no</td>
<td>3</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-TQFP-80</td>
</tr>
<tr>
<td>TC212L</td>
<td>100</td>
<td>500</td>
<td>96</td>
<td>FPU</td>
<td>1/1</td>
<td>59</td>
<td>24</td>
<td>no</td>
<td>3</td>
<td>2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet</td>
<td>K</td>
<td>PG-TQFP-80</td>
</tr>
</tbody>
</table>

AURIX™ – Bare Die												
TC270T	200	4000	472	FPU	3/2	60/6 DS	no	4	4xASCLIN, 4xQSPI, 2xMSC, HSSL, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet	L	Bare Die	EVR, WUT, HSM
TC260D	200	2500	240	FPU	2/1	50/3 DS	no	5	4xASCLIN, 4xQSPI, 2xMSC, I/C, 10xSENT, 3xPSIS, FlexRay, Ethernet	L	Bare Die	EVR, STBU

www.infineon.com/TriCore
Feature Overview TriCore™ Family

TriCore™ Microcontroller

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Max Clock Frequency</th>
<th>Program Memory</th>
<th>SRAM (incl. Cache)</th>
<th>Co-Processor</th>
<th>Digital I/O Lines</th>
<th>Number of ADC Channels</th>
<th>Timed I/O Channels (PWM, CAPCOM, GPTA)</th>
<th>External Bus Interface</th>
<th>Communication Interfaces</th>
<th>Temperature Ranges</th>
<th>Packages</th>
<th>Additional Features/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDO – Next Generation Family</td>
<td></td>
</tr>
<tr>
<td>TC1766</td>
<td>80</td>
<td>1500</td>
<td>88</td>
<td>FPU, PCP</td>
<td>81</td>
<td>32</td>
<td>48</td>
<td>2</td>
<td>2xASC, 2xSSC, MSC, 2xMLI</td>
<td>K</td>
<td>PG-LQFP-176</td>
<td></td>
</tr>
<tr>
<td>TC1796</td>
<td>150</td>
<td>2000</td>
<td>192</td>
<td>FPU, PCP</td>
<td>123</td>
<td>44</td>
<td>126</td>
<td>yes</td>
<td>4</td>
<td>2xASC, 2xSSC, 2xMSC, 2xMLI</td>
<td>K</td>
<td>PG-BGA-416</td>
</tr>
<tr>
<td>AUDO – Future Family</td>
<td></td>
</tr>
<tr>
<td>TC1736</td>
<td>80</td>
<td>1000</td>
<td>48</td>
<td>FPU</td>
<td>70</td>
<td>24</td>
<td>53</td>
<td>no</td>
<td>2</td>
<td>2xASC, 2xSSC, MSC, MLI</td>
<td>K</td>
<td>PG-LQFP-144</td>
</tr>
<tr>
<td>TC1767</td>
<td>133</td>
<td>2000</td>
<td>104</td>
<td>FPU, PCP</td>
<td>88</td>
<td>36</td>
<td>80</td>
<td>no</td>
<td>2</td>
<td>2xASC, 2xSSC, MSC, MLI</td>
<td>K</td>
<td>PG-LQFP-176</td>
</tr>
<tr>
<td>TC1797</td>
<td>180</td>
<td>4000</td>
<td>176</td>
<td>FPU, PCP</td>
<td>221</td>
<td>48</td>
<td>118</td>
<td>yes</td>
<td>4</td>
<td>2xASC, 2xSSC, 2xMSC, MLI, 2xFlexRay</td>
<td>K</td>
<td>PG-BGA-416</td>
</tr>
<tr>
<td>AUDO MAX – Family</td>
<td></td>
</tr>
<tr>
<td>TC1724</td>
<td>133</td>
<td>1500</td>
<td>152</td>
<td>FPU, PCP</td>
<td>89</td>
<td>28</td>
<td>77</td>
<td>no</td>
<td>3</td>
<td>2xASC, 4xSSC, MSC, MLI</td>
<td>K</td>
<td>PG-LQFP-144</td>
</tr>
<tr>
<td>TC1728</td>
<td>133</td>
<td>1500</td>
<td>152</td>
<td>FPU, PCP</td>
<td>113</td>
<td>36</td>
<td>94</td>
<td>no</td>
<td>3</td>
<td>2xASC, 4xSSC, MSC, MLI</td>
<td>K</td>
<td>PG-LQFP-176</td>
</tr>
<tr>
<td>TC1782</td>
<td>180</td>
<td>2500</td>
<td>176</td>
<td>FPU, PCP</td>
<td>88</td>
<td>36</td>
<td>80</td>
<td>no</td>
<td>3</td>
<td>2xASC, 3xSSC, MSC, MLI, FlexRay</td>
<td>K</td>
<td>PG-LQFP-176</td>
</tr>
<tr>
<td>TC1784</td>
<td>180</td>
<td>2500</td>
<td>176</td>
<td>FPU, PCP</td>
<td>141</td>
<td>36</td>
<td>122</td>
<td>yes</td>
<td>3</td>
<td>2xASC, 3xSSC, MSC, MLI, FlexRay</td>
<td>K</td>
<td>PG-LFBGA-292</td>
</tr>
<tr>
<td>TC1791</td>
<td>240</td>
<td>4000</td>
<td>288</td>
<td>FPU, PCP</td>
<td>130</td>
<td>48</td>
<td>100</td>
<td>no</td>
<td>4</td>
<td>2xASC, 4xSSC, 2xMSC, 2xMLI, 8xSENT, FlexRay</td>
<td>K</td>
<td>PG-LFBGA-292</td>
</tr>
<tr>
<td>TC1793</td>
<td>270</td>
<td>4000</td>
<td>288</td>
<td>FPU, PCP</td>
<td>221</td>
<td>44</td>
<td>112</td>
<td>yes</td>
<td>4</td>
<td>2xASC, 4xSSC, 2xMSC, MLI, 8xSENT, FlexRay</td>
<td>K</td>
<td>PG-LBGA-416</td>
</tr>
<tr>
<td>TC1798</td>
<td>300</td>
<td>4000</td>
<td>288</td>
<td>FPU, PCP</td>
<td>238</td>
<td>72</td>
<td>138</td>
<td>yes</td>
<td>4</td>
<td>2xASC, 4xSSC, 2xMSC, MLI, 8xSENT, FlexRay</td>
<td>K</td>
<td>PG-BGA-516</td>
</tr>
</tbody>
</table>

1) MAC = Multiply-Accumulate-Unit (DSP), FPU = Floating Point Unit, PCP = Peripheral Control Processor
2) I²C = Inter-Integrated Circuit, USART = Universal Synchronous Asynchronous Receiver Transmitter, UART = Universal Asynchronous Receiver Transmitter, SSC = Synchronous Serial Channel, ASC = Asynchronous Serial Channel, MLI = Micro Link Interface, MSC = Micro Second Channel, LIN = Local Interconnect Network
4) ROM = Read Only Memory, EVR = Embedded Voltage Regulator
Important Links/Contact

Service center: www.infineon.com/service
Technical training: www.infineon.com/mc-training
Sales contact: www.infineon.com/sales
Technical forum: www.infineon.com/tricore-forum
Preferred-Design-Houses: www.infineon.com/pdh
Ask Infineon. Get connected with the answers.

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

Our global connection service goes way beyond standard switchboard services by offering qualified support on the phone. Call us!

- Germany 0800 951 951 951 (German/English)
- China, mainland 4001 200 951 (Mandarin/English)
- India 000 800 4402 951 (English)
- USA 1-866 951 9519 (English/German)
- Other countries 00* 800 951 951 951 (English/German)
- Direct access+49 89 234-0 (interconnection fee, German/English)

* Please note: Some countries may require you to dial a code other than “00” to access this international number, please visit www.infineon.com/service for your country!

Where to Buy

Infineon Distribution Partners and Sales Offices:
www.infineon.com/WhereToBuy

Stay connected

- www.facebook.com/infineon
- www.google.com/+infineon
- www.twitter.com/infineon
- www.infineon.com/linkedin
- www.infineon.com/xing
- www.youtube.com/infineon

Precautions

Attention please!
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.