
N e v e r  s t o p  t h i n k i n g .

IP Cores

Archi tecture Overview Handbook, V1.3.3,  May 2002

Tr iCore™ 1.3
32-bi t  Uni f ied Processor Core



Edition May 2002

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 2002.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted 
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding 
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address 
list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in 
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written 
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure 
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support 
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain 
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may 
be endangered.



 
 

IP Cores

N e v e r  s t o p  t h i n k i n g .

Archi tecture Overview Handbook, V1.3.3,  May 2002

Tr iCore™ 1.3
32-bi t  Uni f ied Processor Core



TriCore™ 1.3 Architecture Overview Handbook
 
Revision History: May 2002 V1.3.3

Previous Version: -

Page Subjects (major changes since last revision)

All Document rewrite for latest issue of TriCore core

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
ipdoc@infineon.com



TriCore 1.3
32-bit Unified Processor Core

Table of Contents Page

Architecture Overview Handbook 3 V1.3.3, 2002-05

1 Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2 TriCore Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
2.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
2.1.1 Feature Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.2 TriCore Instruction Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.3 Target Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3 TriCore Programming Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
3.1 Architectural Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
3.2 Data Types and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
3.3 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
3.4 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

4 Tasks and Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

5 Interrupt System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.2 Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.3 Interrupt Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

6 Trap System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

7 Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
7.1 Memory Management Unit (MMU)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

8 Instruction Set Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
8.1 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
8.2 16-bit and 32-bit Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
8.3 Load and Store Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
8.4 Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
8.4.1 Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
8.4.2 DSP & Packed Arithmetic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
8.4.3 Packed Arithmetic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
8.5 Comparison Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
8.6 Bit Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
8.6.1 Two-Input Boolean Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
8.6.2 Three-Input Boolean Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
8.7 Address Arithmetic and Address Comparison . . . . . . . . . . . . . . . . . . . . . .  38
8.8 Branch Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
8.9 System Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
8.10 16-bit Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39



TriCore 1.3
32-bit Unified Processor Core

Table of Contents Page

Architecture Overview Handbook 4 V1.3.3, 2002-05

9 TriCore-1.3 Architecture Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
9.1 Program and Data Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
9.2 TriCore Bus Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
9.3 Local Memory Bus Hub (LMBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
9.4 CPU Processor Slave (CPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
9.5 LMB to PFI Interface (LFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
9.6 FPI Bus Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

10 TriCore Software Development Tools  . . . . . . . . . . . . . . . . . . . . . . . . . .  44
10.1 TSIM - TriCore Instruction Set Simulator . . . . . . . . . . . . . . . . . . . . . . . . . .  45

11 DSP Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

12 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48



TriCore 1.3
32-bit Unified Processor Core

Preface   

Architecture Overview Handbook 5 V1.3.3, 2002-05

1 Preface
This document has been written for Engineering Managers and hardware/software
Engineers, to provide an overview of the TriCore Instruction Set Architecture (ISA). 

TriCore is Infineon’s architecture for a unified MCU/DSP processor core. This
architecture is available today in two implementations:

• TriCore version 1.3 (v1.3 or TC1.3)
• TriCore version 2.0 (v2.0 or TC2)

Each version of the architecture has a complete set of documentation of its own: Product
Brief, Architecture Manual, Data Sheet and Integration Manual. 

More information about the TriCore product line can be found in the following
documents:

• TriCore Architecture Manual
• TriCore Instruction Set Simulator User’s Guide
• TriCore Development Tools (brochure)

These documents are available from your regional sales office, or visit the TriCore
internet Home Page to download PDF versions. 

The TriCore home page is:

• http://www.infineon.com/tricore

Details of your nearest Infineon sales office can be found at:

• http://www.infineon.com/business/offices/index1.htm

http://www.infineon.com/tricore
http://www.infineon.com/business/offices/index1.htm


TriCore 1.3
32-bit Unified Processor Core

TriCore Family Architecture

Architecture Overview Handbook 6 V1.3.3, 2002-05

   

2 TriCore Family Architecture

2.1 Overview

Present and future trends for embedded systems include a convergence of 
microcontroller and DSP architectures, as well as super-integration of memory and logic. 
Embedded applications are evolving towards a single System-On-a-Chip (SOC) 
comprising of a unified microcontroller-DSP core (32 bits), data and program memory 
(RAM, ROM, OTP, etc.), and custom application-specific logic (ASIC):

Figure 1 System-on-a-Chip for Embedded Applications

The single core provides virtual multiprocessing, eliminating the need for multiple 
controllers and DSPs. On-chip memories enhance performance and reduce system 
power dissipation, while the integration of system peripherals and customer-specific 
logic increases the overall system performance at a reduced cost. This single core 
scenario is imperative for embedded systems, as more and more applications demand 
higher system performance at a reasonable price. With cost-effective processor 
performance, more work can be off-loaded from hardware to software tasks running on 
these powerful, multi-tasking CPUs.

The resident (‘off-the-shelf’) Real-Time Operating System (RTOS) has a compact kernel 
with appropriate plug-ins for debug and communications for example. The application 
layer on top of the RTOS is automatically generated with the help of App-builder 
programs that draw on rich library routines such as DSP, floating-point and peripheral 
management. 

µC + DSP

MCA05095

DRAM/SRAM

PERIPHERAL/ASIC

ROM/
OTP

FLASH

http://www.infineon.com/business/offices/index1.htm


TriCore 1.3
32-bit Unified Processor Core

TriCore Family Architecture   

Architecture Overview Handbook 7 V1.3.3, 2002-05

The elements for tomorrow’s embedded systems exist today. The TriCore Instruction Set 
Architecture (ISA) from Infineon is the first single-core 32-bit microcontroller-DSP 
architecture optimized for real-time embedded systems.

TriCore unifies the best of 3 worlds: the real-time capabilities of microcontrollers, the 
computational power of DSPs and the highest performance/price features of a RISC 
load/store architecture onto a compact, re-programmable core. 

Figure 2 TriCore Architecture

TriCore is supported by Infineon’s comprehensive library of peripheral module options 
(such as DMA and Debug), while both the type (SRAM, DRAM, ROM, FLASH or OTP) 
and size of on-chip memory are configurable. The core and peripherals are easily 
connected to yield a high-performance, cost-effective System-On-a-Chip (SOC), tailored 
to individual applications. 

Bit-field, Bit-logical
Min/Max Comparison
Branch

MAC, Saturated Math,
DSP Addressing Modes,
SIMD Packed Arithmetic

Arithmetic, Logic
Address Arithmetic
& Comparison,
Load/Store, Context Switch

Load/Store
Arithmetic
Branch

Floating
Point

MCA05096



TriCore 1.3
32-bit Unified Processor Core

TriCore Family Architecture

Architecture Overview Handbook 8 V1.3.3, 2002-05

   

The key benefits to using the TriCore for a real-time embedded system are:

• The single architecture merges both DSP and microcontroller features without 
sacrificing the performance of either.

• Fast task switching (via an internal wide bus to on-chip memory) allows TriCore to be 
used effectively as a virtual multiprocessor. It can switch for example, from a DSP to 
a microcontroller task in two cycles.

• Large on-chip memory blocks (RAM, ROM, DRAM, OTP, FLASH) result in higher 
performance, more reliable operation, and reduced system power consumption.

• The architecture allows direct control of on-chip peripherals without additional glue 
logic. TriCore supports a lean but powerful memory protection and on-chip debug 
support scheme.

• A freely intermixed 16-bit and 32-bit instruction format reduces code size for an 
application by approximately 30 to 40%.

• Interrupts are processed as injected calls and are handled by the same mechanism.

TriCore uses a RISC-like register model and load/store architecture to support HLL 
(High-Level Language) compilers and their optimization strategies. Fast context 
switching and low interrupt latencies enable a flexible distribution of processor 
performance among concurrent tasks and effective control of peripheral events, while 
integrated debug hardware eases the software development cycle. 

The TriCore architecture can automatically save or store half the register context upon 
an interrupt within two cycles. The architecture therefore provides fast interrupt response 
without the need for major housekeeping before entering the real interrupt service 
routine. The ISA is also capable of interacting with different system architectures, 
including multiprocessing. This flexibility at the implementation and system levels allows 
different trade-off’s between performance and cost at any point in time.

The native microcontroller-DSP capabilities of the architecture allow the microcontroller 
and DSP performance of each TriCore core to be tuned by software. For example, the 
performance of a 300-MHz TriCore-1.3 core with a sustained 450MIPS rating is 280 
microcontroller MIPS + 170 DSP MIPS, or 200 microcontroller MIPS + 250 DSP MIPS, 
depending on how the system designer implements load-sharing in software.



TriCore 1.3
32-bit Unified Processor Core

TriCore Family Architecture   

Architecture Overview Handbook 9 V1.3.3, 2002-05

2.1.1 Feature Summary

The key features of the TriCore Instruction Set Architecture (ISA) are:

• 32-bit architecture
• 4-Gbyte virtual or physical data, program and input/output (I/0) address space
• 16-bit and 32-bit instructions for reduced code size
• Low interrupt latency with fast context switch using wide pathway to on-chip memory 
• Dedicated interface to application-specific co-processors to allow the addition of 

customised instructions
• Zero overhead loop capabilities
• Dual single-clock-cycle 16 x 16 multiply-accumulate unit (with optional saturation)
• Optional Floating-Point Unit (FPU) and Memory Management Unit (MMU)
• Extensive bit handling capabilities
• Single Instruction Multiple Data (SIMD) packed data operations
• Flexible interrupt prioritization scheme
• Byte and bit addressing
• Little-endian byte ordering for data memory and CPU registers
• Memory protection
• Debug support

2.2 TriCore Instruction Categories

TriCore architecture offers a flexible set of instruction formats to optimize code space. 
Although the architecture is 32 bits, there are 16-bit instruction formats available to code 
the most frequently required instructions in a reduced amount of memory space. This 
reduces the instruction code space by an average of one third or more, compared to 
conventional RISC architectures. 

TriCore instructions are subdivided into the following categories.

Note: See “Instruction Set Highlights” on Page 22 for more details.

• Branch • Arithmetic (Integer, DSP and SIMD Packed Arithmetic)

• Load/Store • Comparison

• System • Bit Manipulation

• 16-Bit Subset • Address Arithmetic and Address Comparison



TriCore 1.3
32-bit Unified Processor Core

TriCore Family Architecture

Architecture Overview Handbook 10 V1.3.3, 2002-05

   

2.3 Target Applications

TriCore has been optimized to meet the requirements of embedded applications such as 
computer peripherals, automotive power-train controllers, vehicle dynamics systems, 
cellular communications and networking equipment. 

An increasing number of embedded designs employ both a microcontroller or 
microprocessor and a DSP or hard-wired ASIC, but a single TriCore device can replace 
both of these components because of its inherent microcontroller-DSP capabilities and 
its ability to switch between those tasks at breakneck speed. 



TriCore 1.3
32-bit Unified Processor Core

TriCore Programming Model   

Architecture Overview Handbook 11 V1.3.3, 2002-05

3 TriCore Programming Model
This section discusses those aspects of the TriCore architecture that are visible to 
software: the supported data types and formats, the various addressing modes that the 
architecture provides and the memory model.

3.1 Architectural Registers

The TriCore architectural registers (Figure 3) consist of 32 General-Purpose Registers 
(GPRs), two 32-bit registers with program status information (PCXI and PSW), and a 
Program Counter (PC). 

Four GPRs have special functions: 

• D15 is used as an implicit data register
• A10 is the stack pointer (SP)
• A11 is the return address register
• A15 is the implicit base address register

PCXI, PSW, and PC are Core Special Function Registers (CSFRs). The PCXI and PSW 
registers contain status flags, previous execution and protection information.

Figure 3 Architectural Registers (GPRs)

Address Data System

31 0 31 0 31 0

D15 (Implicit Data) PCXIA15 (Implicit Base Address)

D14 PSWA14

D13 PCA13

A12

A11 (Return Address)

A10 (Stack Return)

D12

D11

D10

A9 (Global Address reg.)

A8 (Global Address reg.)

A7

A6

A5

A4

A3

A2

A1 (Global Address reg.)

A0 (Global Address reg.)

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0



TriCore 1.3
32-bit Unified Processor Core

TriCore Programming Model

Architecture Overview Handbook 12 V1.3.3, 2002-05

   

3.2 Data Types and Formats

The TriCore instruction set supports operations on booleans, bit strings, characters, 
signed fractions, addresses, signed and unsigned integers, and single-precision floating-
point numbers. Most instructions work on a specific data type, while others are useful for 
manipulating multiple data types.

The General-Purpose Registers (GPRs) are all 32-bits wide, and most instructions 
operate on word (32-bit) values. This means that when data with fewer bits than a word 
is loaded from memory, it must be sign or zero-extended before operations can be 
applied to the full word. The sign or zero extension is carried out concurrently, as part of 
the load operation.

The data memory and CPU registers store data in little-endian byte order (the least-
significant bytes are at lower addresses). Little-endian memory referencing is used 
consistently for data and instructions. When the TriCore system is connected to an 
external big-endian device, translation between big- and little-endian format is performed 
by the bus interface.

Alignment requirements are different for addresses and data. Addresses (32-bits) must 
be aligned on a word boundary to permit transfers between address registers and 
memory. For transfers between data registers and memory, data may be aligned on any 
halfword boundary, regardless of size. Bytes may be accessed in any valid byte address 
with no alignment restrictions. 

• Boolean • Bit String • Character • IEEE-754 
single-precision 
floating-point

• Address • Signed/Unsigned 
Integer

• Signed Fraction



TriCore 1.3
32-bit Unified Processor Core

TriCore Programming Model   

Architecture Overview Handbook 13 V1.3.3, 2002-05

3.3 Memory Model

The TriCore architecture can access up to 4 Gbytes of unified program and I/O (Input/
Output) memory. The address width is 32-bits. 

The address space is divided into 16 regions or segments (0 through 15). Each segment 
is 256-Mbytes. 

The upper four bits of an address select the specific segment. The first 16-Kbytes of each 
segment can be accessed using either absolute addressing or absolute bit addressing 
with the bit set and bit clear instructions.

Figure 4 shows the TriCore architecture’s address space mapping. 

Figure 4 Address Map & Memory Model

Segment

7

8

9

10

reserved for MMU (Memory Management Unit)

Cached Memory

Cached Memory

Non-cached External Memory

0

11

12

13

14

15

Non-cached Memory

Cached Local Memory

Non-cached Local Memory

Non-cached External Peripherals

Non-cached Internal Peripherals



TriCore 1.3
32-bit Unified Processor Core

TriCore Programming Model

Architecture Overview Handbook 14 V1.3.3, 2002-05

   

3.4 Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple data 
elements within data structures, such as records, randomly and sequentially accessed 
arrays, stacks and circular buffers. Simple data elements are 8, 16, 32 or 64 bits wide.

The TriCore architecture supports seven addressing modes (Table 1). These 
addressing modes offer efficient compilation of C/C++ programs, easy access to 
peripheral registers and the efficient implementation of typical DSP data structures 
(circular buffers for filters and bit-reversed indexing for FFTs).

Addressing modes which are not directly supported in the hardware can be synthesized 
through short instruction sequences using indexed addressing, PC-relative addressing, 
or extended absolute addressing.

Table 1 TriCore Architecture Addressing Modes

Addressing Mode Address Register Use Offset Size (bits)

Absolute None 18

Base + Short Offset Address Register 10

Base + Long Offset Address Register 16

Pre-increment Address Register 10

Post-increment Address Register 10

Circular Address Register Pair 10

Bit-reverse Address Register Pair —



TriCore 1.3
32-bit Unified Processor Core

Tasks and Contexts   

Architecture Overview Handbook 15 V1.3.3, 2002-05

4 Tasks and Contexts
A Task is an independent thread of control. There are two types of task: Software-
Managed Tasks (SMTs) and Interrupt Service Routines (ISRs). 

Software-managed tasks are created through the services of a real-time kernel or OS, 
and are dispatched under the control of scheduling software. SMTs are sometimes 
referred to as ‘user’ tasks, assuming that they will execute in user mode. Interrupt 
Service Routines are dispatched by hardware in response to an interrupt. In this 
architecture ISR only refers to the code that is invoked directly by the hardware. 

Each task is allocated its own permission level, depending on the task’s function. 
Individual permissions are enabled/disabled primarily through the IO mode bits in the 
Processor Status Word (PSW).

Associated with any task are a set of state elements known collectively as the task’s 
Context. The Context is everything the processor needs in order to define the state of 
the associated task and enable its continued execution. It includes the CPU general 
registers that the task uses, the task’s program counter (PC), and its Program Status 
Information (PCXI and PSW). The TriCore architecture efficiently manages and 
maintains the tasks’ contexts through hardware.

The Context is subdivided into the Upper Context and the Lower Context. 

The Upper Context consists of the upper address registers A10 - A15, and the upper 
data registers D8 - D15. These registers are designated as non-volatile, for purposes of 
function calling. The upper context also includes PCXI and PSW. 

The Lower Context consists of the lower address registers A2 through A7, and the 
lower data registers D0 through D7, together with the PC. 

Registers A0 and A1 in the lower address registers and A8 and A9 in the upper address 
registers are defined as System Global Registers. These registers are not included in 
either Context partition, and are not saved or restored across calls or interrupts. They 
are normally used by the operating system normally to reduce system overhead.

The TriCore architecture uses linked lists of fixed-size Context Save Areas (CSAs). A 
CSA is 16 words of on-chip memory storage, aligned on a 16-word boundary. Each CSA 
can hold exactly one upper or one lower context. CSAs are linked together through a Link 
Word.



TriCore 1.3
32-bit Unified Processor Core

Tasks and Contexts

Architecture Overview Handbook 16 V1.3.3, 2002-05

   

The TriCore architecture saves and restores context much more quickly than 
conventional microprocessors and microcontrollers. Its unique memory subsystem 
design with a wide data path, allows the TriCore architecture to perform rapid data 
transfers between processor registers and on-chip memory. 

Context switching occurs when an event or instruction causes a break in program 
execution, which then results in the CPU needing to resolve this event before continuing 
with the program. 

The events and instructions which will cause a break in program execution are:

1. Interrupt or service requests

2. Traps

3. Function calls



TriCore 1.3
32-bit Unified Processor Core

Interrupt System   

Architecture Overview Handbook 17 V1.3.3, 2002-05

5 Interrupt System

5.1 Overview

A key feature of the TriCore architecture is its powerful and flexible interrupt system. The 
interrupt system is built around programmable Service Request Nodes (SRNs). 

A service request is defined as an interrupt request or a DMA (Direct Memory Access) 
request. A service request may come from an on-chip peripheral, external hardware or 
software. 

Conventional architectures handle service requests by loading a new Program Status 
(PS) from a vector table in data memory. With the TriCore architecture however, service 
requests jump to vectors in code memory. This procedure reduces response time for 
service requests. The first instructions of the Interrupt Service Routine (ISR) execute at 
least three cycles earlier than they would otherwise. 

5.2 Interrupt Priority

Service Requests are prioritized to enable nested interrupts. The rules for prioritization 
are: 

• A Service Request can interrupt the servicing of a lower priority interrupt.
• Interrupt sources with the same priority cannot interrupt each other.
• The Interrupt Control Unit (ICU) determines which source will win arbitration based on 

the priority number. 

All Service Requests are assigned Priority Numbers (SRPNs). Even the CPU has its own 
priority number. Different service requests must be assigned different priority numbers.

The maximum number of interrupt sources is 255. Programmable options range from 
one priority level with 255 sources, up to 255 priority levels with one source each.

Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is 
feasible because interrupt numbers are not hardwired to individual sources, but are 
assigned by software executed during the power-on boot sequence.

The interrupt examples on the following page provide illustrations of three Task 1 
interruptions.



TriCore 1.3
32-bit Unified Processor Core

Interrupt System

Architecture Overview Handbook 18 V1.3.3, 2002-05

   

5.3 Interrupt Examples

Figure 5 Simple Interrupt

For a simple interrupt, TriCore automatically saves the Upper Context on entering the 
Interrupt Service Routine (ISR). The Upper Context Registers can then be used within 
the ISR. When the Return from Execution instruction is issued, the Upper Context from 
the time of the interrupt is automatically restored. 

Figure 6 General Interrupt

In the general interrupt the Upper Context is automatically stored. The ISR explicitly 
saves the Lower Context using the SVLCX instruction. Both Upper and Lower Context 
Registers can be used within the rest of the ISR. Before returning to Task 1, the Restore 
Lower Context instruction (RSLCX) is issued, followed by a return from exception (RFE). 
This automatically restores the Upper Context. 

MCA05099

Interrupt Service Routine

Interrupt

Task A Task A

Time

Save
Upper Context A

Restore
Upper Context A

MCA05100

Interrupt Service Routine

Interrupt

Task A Task A

Time

Save
Upper Context A
Lower Context A

Restore
Upper Context A
Lower Context A



TriCore 1.3
32-bit Unified Processor Core

Interrupt System   

Architecture Overview Handbook 19 V1.3.3, 2002-05

Figure 7 Simple Interrupt with Context Switch

In the ISR, explicit Upper and Lower Context values are loaded from memory using the 
LDUCX and LDLCX instructions. These values were saved from a previous call or 
interrupt for explicit use in the ISR. At the end of the ISR, new values to be used in a 
subsequent ISR call are stored explicitly using the STUCX and STLCX instructions.

MCA05101

Interrupt Service Routine

Interrupt

Task A Task A

Time

Save
Upper Context A
Lower Context A

Restore
Upper Context A
Lower Context A

Load
Upper Context B
Lower Context B

Store
Upper Context B
Lower Context B



TriCore 1.3
32-bit Unified Processor Core

Trap System

Architecture Overview Handbook 20 V1.3.3, 2002-05

   

6 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an 
instruction exception, or illegal access for example. 

The TriCore architecture contains eight trap classes. These traps are further classified 
as synchronous or asynchronous, hardware or software. Each trap is assigned a Trap 
Identification Number (TIN) that identifies the cause of the trap within its class. 

The eight trap classes are:

• MMU (Memory Management Unit)
• Internal Protection
• Instruction Errors
• Context Management
• Assertion
• System Bus & Peripheral Errors
• System Call
• NMI (Non-Maskable Interrupt)



TriCore 1.3
32-bit Unified Processor Core

Protection System   

Architecture Overview Handbook 21 V1.3.3, 2002-05

7 Protection System
The Protection System is used to assign access permissions to memory regions for data 
and code. These Protection capabilities are used to protect core system functionality 
from bugs that may have slipped through testing. 

TriCore’s Protection System provides the essential features to isolate errors, and 
protects critical system functions against both software and transient hardware errors.

TriCore’s embedded architecture allows each task to be allocated the specific 
permission level it needs to perform its function. The three permission levels are:

• User-0 Mode
– for tasks that do not access peripheral devices. 

• User-1 Mode
– for tasks that access common, unprotected peripherals. 

Interrupts can be disabled for a short period at this level. 
• Supervisor Mode

– permits read/write access to system registers and protected peripheral devices.

The memory protection model for the TriCore architecture is based on address ranges, 
where each address range has an associated permission setting.

Address ranges and their associated permissions are specified in two to four identical 
sets of tables residing in Core SFR (CSFR) space. Each set is referred to as a 
Protection Register Set (PRS). 

When the Protection System is enabled, TriCore checks every load/store or instruction 
fetch address for legality before performing the access. To be legal, the address must 
fall within one of the ranges specified in the currently selected PRS, and permission for 
that type of access (read, write, execute) must be present in the matching range. 

7.1 Memory Management Unit (MMU)

TriCore can also make use of an optional Memory Management Unit (MMU). 

From MMUs standpoint, TriCore’s memory space has the following characteristics:

• Two addressing modes: physical or virtual 
(where physical attributes override virtual attributes).

• 4-GByte physical address space.
• 4-GByte virtual address space.

When the MMU is present, the protection will depend on whether TriCore is in virtual or 
physical mode: 

• In physical mode TriCore native protection system is used.
• In virtual mode (when the lower 7 segments are used) the MMU is active.



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 22 V1.3.3, 2002-05

   

8 Instruction Set Highlights
This section provides high-level details on the TriCore Instruction Set. Complete 
information on all instructions can be found in the TriCore Architecture Manual.

8.1 Instruction Set Summary

Note: Shaded entries indicate 16-bit instructions.

Table 2 TriCore Instruction Set Summary 

Mnemonic Definition

ABS Absolute value 

ABSDIF Absolute value of difference 

ABSDIFS Absolute value of difference with saturation

ABSS Absolute value with saturation

ADD Add 

ADDC Add carry

ADDI Add immediate

ADDIH Add immediate high word

ADDS Add with saturation

ADDSC Add scaled address

ADDX Add and generate carry

AND Logical AND

AND.comp Compare, AND and accumulate

AND.logic Bit and logical accumulate

ANDN Logical AND Not

BISR Begin ISR

BMERGE Merges even/odd

BSPLIT Split in even/odd

CACHEA.I Cache Address Invalidate

CACHEA.W Cache Address Writeback

CACHEA.WI Cache Address Writeback and Invalidate

CADD Conditional ADD 

CADDN Conditional ADD Not

CALL Call 

CALLA Call absolute

CALLI Call indirect



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 23 V1.3.3, 2002-05

CLO Count leading ones

CLS Count leading signs

CLZ Count leading zeros

CMOV Conditional move 

CMOVN Conditional move Not

CSUB Conditional subtract 

CSUBN Conditional subtract Not

DEBUG Debug

DEXTR Double extract

DISABLE Disable interrupt

DSYNC Synchronize data

DVADJ Divide adjust

DVINIT Divide initialization word

DVSTEP Divide step

ENABLE Enable interrupt

EQ Equal

EQANY Multiple compare

EQZ Equal zero address

EXTR Extract bit field

GE Greater than or equal 

IMASK Insert mask 

INS Insert bit 

INSERT Insert 

INSN Insert bit Not

ISYNC Synchronize instructions

IXMAX Finds maximum value in signed array

IXMAX.U Finds maximum value in unsigned array

IXMIN Finds minimum value in signed array

IXMIN.U Finds minimum value in unsigned array

J Jump unconditional

JA Jump unconditional absolute

JEQ Jump if equal

JGE Jump if greater than or equal

Table 2 TriCore Instruction Set Summary  (continued)

Mnemonic Definition



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 24 V1.3.3, 2002-05

   

JGEZ Jump if greater than or equal to zero

JGTZ Jump if greater than zero

JI Jump indirect

JL Jump and link 

JLA Jump and link absolute

JLEZ Jump if less than or equal to zero

JLI Jump and link immediate

JLT Jump if less than

JLTZ Jump if less than zero

JNE Jump if not equal

JNED Jump if not equal and decrement

JNEI Jump if not equal and increment

JNZ Jump if not equal to zero

JZ Jump if zero

LD Load

LDLCX Load lower context 

LDMDST Load modify store

LDUCX Load upper context 

LEA Load Effective address

LOOP Loop

LOOPU Loop unconditional

LT Less than

MADD(S) Multiply-Add (S = with Saturation)

MADDM(S).H Packed Multiply-Add Q Format - Multiprecision

MADDR(S).H Packed Multiply-Add Q Format w/ Rounding

MADDR(S).Q Multiply-Add Q Format with Rounding

MADDSU(S).H Packed Multiply-Add/Sub Q Format

MADDSUM(S).H Packed Multiply-Add/Sub Q Format - Multiprecision

MADDSUR(S).H Packed Multiply-Add/Sub Q Format w/ Rounding

MAX Maximum value

MFCR Move from Core Register

MIN Minimum value

MOV Move

Table 2 TriCore Instruction Set Summary  (continued)

Mnemonic Definition



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 25 V1.3.3, 2002-05

MOVH(.A) Move halfword to address

MSUB(S) Multiply-Subtract (S = with Saturation)

MSUBAD(S).H Packed Multiply-Sub/Add Q Format

MSUBADM(S).H Packed Multiply-Sub/Add Q Format - Multiprecision

MSUBADR(S).H Packed Multiply-Sub/Add Q Format w/ Rounding

MSUBM(S).H Packed Multiply-Subtract Q Format - Multiprecision

MSUBR(S).H Packed Multiply-Subtract Q Format w/ Rounding

MSUBR(S).Q Multiply-Subtract Q Format w/ Rounding

MTCR Move to Core Register

MUL(S) Multiply (S = with Saturation)

MUL(S).U Multiply Unsigned (S = with Saturation)

MUL.H Packed Multiply Q Format

MUL.Q Multiply Q Format

MULM.H Packed Multiply Q Format - Multiprecision

MULR.H Packed Multiply Q Format with Rounding

MULR.Q Multiply Q Format with Rounding

NAND Logical NAND

NE Not equal

NEZ.A Not equal zero address

NOP No operation

NOR Logical NOR

NOT Bitwise complement

OR Logical OR

OR.comp Compare, OR and accumulate

OR.logic Bit OR logical accumulate

ORN Logical OR Not

PACK Translates in floating-point format

PARITY Computes parity

RET Return from call

RFE Return from Exception

RSLCX Restore lower context

RSTV Reset overflow flags 

RSUB Reverse subtract

Table 2 TriCore Instruction Set Summary  (continued)

Mnemonic Definition



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 26 V1.3.3, 2002-05

   

RSUBS Reverse subtract with saturation

SAT Saturate result

SEL Select

SELN Select Not

SH Shift 

SH.comp Compare accumulate and shift

SH.logic Bit shift logical accumulate

SHA Arithmetic shift

SHAS Arithmetic shift with saturation

ST Store

STLCX Store lower context 

STUCX Store upper context 

SUB Subtract

SUBC Subtract with carry

SUBS Subtract signed with saturation

SUBX Subtract extended

SVLCX Save lower context

SWAP Swap

SYSCALL System call

TLBDEMAP Uninstall a mapping in the MMU

TLBFLUSH Flush mappings from MMU

TLBMAP Install a mapping in the MMU

TLBPROBE.A Probe the MMU for a virtual address

TRAPSV Trap on sticky overflow

TRAPV Trap on overflow

UNPACK Translates from floating-point format

XNOR Logical exclusive NOR

XOR Logical exclusive OR

XOR.comp Compare, XOR and accumulate

Table 2 TriCore Instruction Set Summary  (continued)

Mnemonic Definition



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 27 V1.3.3, 2002-05

8.2 16-bit and 32-bit Instructions

The TriCore architecture supports both 16- and 32-bit instruction formats. 

All instructions have a 32-bit format, but the 16-bit instructions are a subset of the 32-bit 
instructions, chosen because of their frequency of use and included to reduce code 
space. 

The 16-bit instructions employ one or more of the following methods to allow encoding 
in 16 bits:

• 2-operand alternative to 3-operand ALU instructions 
(destination = second source operand)

• Implicit source, destination, or base address operand
• Small constants
• Short branch displacements
• Short load/store offsets

Note: The width of the address/data is implicit in the opcode.

8.3 Load and Store Instructions

The load and store instructions move data (8,16, 32 or 64 128 bits) between registers 
and memory, using the seven addressing modes shown in Table 1. 

The addressing mode determines the effective byte address for the load or store 
instruction and any update of the base pointer Address register.

8.4 Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information 
about the result of the arithmetic operations is recorded in five status flags. These 
instructions are further categorized into integer arithmetic, DSP arithmetic and packed 
arithmetic instructions.

8.4.1 Integer Arithmetic

Move

– MOV sign-extends the value to 32 or 64 bits
– MOV.U zero-extends to 32 bits
– MOVH loads a 16-bit constant into the most-significant 16 bits of the register and

zero fills the least-significant 16 bits 

Addition and Subtraction

– ADD no saturation
– ADDS signed saturation



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 28 V1.3.3, 2002-05

   

– ADDS.U unsigned saturation
– ADDX extended precision addition
– ADDC Add with Carry
– ADDI Add Immediate
– ADDIH Add Immediate High Word

Because the large immediate of ADDI is sign-extended, it may be used for both addition 
and subtraction.

The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using 
zero as the constant yields negation as a special case.

Multiply and Multiply-Add

Multiplication of two 32-bit integers that produce a 32-bit result can be handled using:

– MUL (Multiply Signed)
– MULS (Multiply Signed with Saturation)
– MULS.U (Multiply Unsigned with Saturation). 

The following instructions produce the full 64-bit result, which is stored to a register pair:

– MULM (Multiply with Multiword Result) used for signed integers
– MULM.U (Multiply with Multiword Result Unsigned) used for unsigned integers.

Note: Special multiply instructions are used for DSP operations.

– MADD (Multiply-Add instruction)

The multiply-add instruction (MADD) multiplies two signed operands, adds the result to 
a third operand, and stores the result in a destination. Because the third operand and the 
destination do not use the same registers, the intermediate sums of a multi-term, 
multiply-add instruction can be saved without requiring any additional register moves.

– MADDS (Multiply-Add with Saturation)
– MADDS.U (Multiply-Add with Saturation Unsigned) 

The MADD, MADDS (Multiply-Add with Saturation), and MADDS.U (Multiply-Add with 
Saturation Unsigned) instructions operate on and produce 32-bit integers; MADDS and 
MADDS.U will saturate on signed and unsigned overflow, respectively. 

– MADDM (Multiply-Add with Multiword Result)
– MADDM.U (Multiply-Add with Multiword Result Unsigned)
– MADDMS (Multiply-Add Multiword with Saturation)
– MADDMS.U (Multiply-Add Multiword with Saturation Unsigned) 

MADDM, MADDM.U, MADDMS and MADDMS.U can be used to add the 64-bit product 
to a 64-bit source and produce a 64-bit result. 



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 29 V1.3.3, 2002-05

– MSUB (Multiply-Subtract instruction)

The set of Multiply-Subtract (MSUB) instructions, which supports the accumulation of 
products using subtraction instead of addition, provides the same set of variations as the 
MADD instructions.

Division

– DVADJ (Divide Adjust)
– DVINIT (Divide Initialization)

The core ISA for TriCore has no direct support for division. However, all implementations 
to date have included ISA extensions in the form of instructions for a tightly-coupled co-
processor to support divide operations. 

Division is a multi-cycle operation - to reduce interrupt lockout time, division is performed 
in steps. One divide step operation develops eight bits of quotient in four cycles, for 
current implementations. The number of steps can be varied, depending on the width of 
the quotient expected. 

Setup for a sequence of divide steps is accomplished with a DVINIT instruction, while a 
DVADJ (divide adjust) performs a final adjustment for negative quotients. 

Absolute Value, Absolute Difference

– ABS (Absolute Value)
– ABSDIF (Absolute Difference)

The ABS and ABSDIF instructions compute the absolute value of a signed number or 
absolute value of the difference between two signed numbers, respectively. Each 
instruction has a version that saturates when the result is too large to be represented as 
a signed number. 

Min, Max, Saturate

– MIN (Minimum)
– MAX (Maximum)

The MIN and MAX instructions calculate the minimum or maximum value between two 
operands, respectively.
 

– SAT (Saturate)

The SAT instructions saturate the result of a 32-bit calculation before storing it in a byte 
or halfword in memory or a register.



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 30 V1.3.3, 2002-05

   

Conditional Instructions

– CADD (Conditional Add)
– CADDN (Conditional Add Not) 
– CSUB (Conditional Subtract)
– CSUBN (Conditional Subtract Not)
– SEL (Select)
– SELN (Select Not)

The Conditional Instructions provide efficient alternatives to conditional jumps around 
very short sequences of code. All conditional instructions use a condition operand that 
controls the execution of the instruction. The condition operand is a data register, with 
any non-zero value interpreted as TRUE, and a zero value interpreted as FALSE. 

Logical

The TriCore architecture provides a complete set of two-operand, bit-wise logic 
operations: 

– AND
– OR
– XOR
– AND
– NOR
– XNOR

There are also negations of one of the inputs:

– ANDN
– ORN

Count Leading Zeroes, Ones, & Signs

Three Count Leading instructions provide efficient support for normalization of numerical 
results, prioritization, and certain graphics operations: 

– CLZ (Count Leading Zeros)
– CLO (Count Leading Ones)
– CLS (Count Leading Signs)

These instructions determine the amount of left shifting necessary to remove redundant 
zeros, ones or signs. 

The Count Leading instructions are useful for parsing certain Huffman codes and bit 
strings consisting of boolean flags, since the code or bit string can be quickly classified 
by determining the position of the first one (scanning from left to right).



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 31 V1.3.3, 2002-05

Shift

The shift instructions support multi-bit left and right shifts. The shift amount is specified 
by a signed integer (n), which may be the contents of a register or a sign-extended 
constant in the instruction.

Bit-Field Extract and Insert

The TriCore architecture supports two bit-field extract instructions:

– EXTR
– EXTR.U

The EXTR.U and EXTR instructions extract w (width) consecutive bits from the source, 
beginning with the bit number specified by the pos (position) operand. 

The width and position can be specified by two immediate values, by a data register and 
an immediate value, or by a data register pair. 

8.4.2 DSP & Packed Arithmetic

DSP arithmetic instructions operate on 16-bit, signed fractional data in the 1.15 format 
(also known as Q15) and 32-bit signed fractional data in 1.31 format (also known as 
Q31). 

Data values in this format have a single, high-order sign bit, with a value of 0 or -1, 
followed by an implied binary point and fraction. Their values are in the range [-1, 1).

16-bit DSP data is loaded into the most significant half of a data register, with the 16 
least-significant bits set to zero. The left alignment of 16-bit data allows it to be directly 
added to 32-bit data in 1.31 format. All other fractional formats can be synthesized by 
explicitly shifting data as required.

Operations created for this format are multiplication, multiply-add and multiply-subtract. 
The signed fractional formats 1.15 and 1.31 are supported with the MUL.Q and MULR.Q 
instructions. These instructions operate on 2 left-justified, signed fractions, and return a 
32-bit signed fraction.

Scaling

The multiplier result can be shifted in two ways:

• Left shifted by 1
– 1 sign bit is suppressed and the result is left-aligned, thus conserving the input

format.

• Not shifted
– The result retains its 2 sign bits (2.30 format). 
– This format can be used with IIR filters, in which some of the coefficients are

between 1 and 2, and to have 1 guard bit for accumulation.



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 32 V1.3.3, 2002-05

   

Special case = -1 * -1 => +1 

When multiplying the two maximum negative values (-1), the result should be the 
maximum positive number (+1). For example, 

0x8000 * 0x8000 = 0x4000 0000 [8.1]

This is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = +1 (2.30 format) [8.2]

However, when the result is shifted left by 1, the result is 0x8000 0000, which is 
incorrectly interpreted as: 

-1(1.15 format) * -1(1.15 format) = -1 (1.31 format) [8.3]

To avoid this problem the result of a Q format operation (-1 * -1) that has been left-shifted 
by 1 (left-justified), is saturated to the maximum positive value:

0x8000 * 0x8000 = 0x7FFF FFFF [8.4]

This is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = (nearest representation of)+1 (1.31 format) [8.5]

This operation is completely transparent to the user and does not set the overflow flags.

Guard bits

When accumulating sums (in filter calculations for example) guard bits are often required 
to prevent overflow. The instruction set directly supports the use of 1 guard bit when 
using a 32-bit accumulator. When more guard bits are required, a register pair (64 bits) 
can be used.

Rounding

Rounding is used to retain the 16-bit most-significant bits of a 32-bit result. Rounding is 
combined with the MUL, MADD and MSUB instructions, and is implemented by adding 
1 to bit 15 of a 32-bit register.

Overflow & Saturation

Users can select normal or saturating instruction forms for multiply, multiply-add, and 
multiply-subtract. The normal forms set the overflow flag in the PSW (Processor Status 
Word (PSW) but do not produce a saturated result. The saturating forms produce 



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 33 V1.3.3, 2002-05

saturated values when overflow occurs. Variants are supported for both signed and 
unsigned operations. 

Sticky Advance Overflow (SAV) & Block Scaling in FFT

The Sticky Advance Overflow (SAV) bit, which is set whenever an overflow “almost” 
occurred, can be used in block scaling of intermediate results during an FFT (Fast 
Fourier Transformation) calculation. 

Before each pass of applying a butterfly operation, the SAV bit is cleared. After the pass 
the SAV bit is tested. If it is set then all of the data is scaled (using an arithmetic right 
shift) before starting the next pass. This procedure gives the greatest dynamic range for 
intermediate results without the risk of overflow.

8.4.3 Packed Arithmetic

The packed arithmetic instructions partition a 32-bit word into several identical objects 
which can then be fetched, stored and operated on in parallel. These instructions in 
particular, allow the full exploitation of the 32-bit word of the TriCore architecture in signal 
and data processing applications. The TriCore architecture supports two packed 
formats: Packed Halfword and Packed Byte.

Packed Halfword Data Format

This format (Figure 8) divides the 32-bit word into two, 16-bit (halfword) values. 
Instructions which operate on data in this way are denoted in the instruction mnemonic 
by the “.H” and “.HU” data type modifiers. 

Figure 8 Packed Halfword Data Format

MCA05102

Halfword 1 Halfword 0 Operand m

Halfword 1 Halfword 0 Operand n

Destination 1 Destination 0 Result

Operation



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 34 V1.3.3, 2002-05

   

Packed Byte Data Format

This packed format (Figure 9) divides the 32-bit word into four 8-bit values. Instructions 
which operate on the data in this way are denoted by the “.B” and “.BU” data type 
modifiers. 
 

Figure 9 Packed Byte Data Format

The loading and storing of packed values into data registers is supported by the normal 
Load Word and Store Word instructions (LD.W and ST.W). The packed objects can then 
be manipulated in parallel by a set of special packed arithmetic instructions that perform 
arithmetic operations such as addition, subtraction and multiplication. 

Addition is performed on individual packed bytes or halfwords using the ADD.B and 
ADD.H instructions and their saturating variations ADDS.B and ADDS.H. 

ADD.B ignores overflow/underflow within individual bytes. ADDS.B will saturate 
individual bytes to the most positive, 8-bit signed integer (127) on individual overflow, or 
to the most negative, 8-bit signed integer (-128) on individual underflow. 

Similarly, the ADD.H instruction ignores overflow/underflow within individual halfwords, 
while the ADDS.H will saturate individual halfwords to the most positive, 16-bit signed 
integer (215-1) on individual overflow, or to the most negative 16-bit signed integer (-215) 
on individual underflow. 

Saturation for unsigned integers is also supported by the ADDS.BU and ADDS.HU 
instructions.

Besides addition, arithmetic on packed data includes subtraction, multiplication, 
absolute value and absolute difference.

MCA05103

Byte 3 Operand m

Operand n

Destination 3 Result

Operation

Destination 2

Byte 2

Destination 1

Byte 1

Destination 0

Byte 0

Byte 2 Byte 1 Byte 0Byte 3



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 35 V1.3.3, 2002-05

8.5 Comparison Instructions

The compare (and conditional jump) instructions use a compare operation on the 
contents of two registers. The boolean result (1 = true and 0 = false) is stored in the least-
significant bit of a data register. The remaining bits in the register are cleared to zero.

Figure 10 illustrates the operation of the LT (Less Than) compare instruction.

Figure 10 Less Than (LT) Comparison

MCA05104

A < B ?

Data 1 Data 2

Destination

Operation



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 36 V1.3.3, 2002-05

   

8.6 Bit Operations

Some TriCore instructions operate on single bits. There are eight instructions for 
combinatorial logic functions with two inputs, and twelve instructions with three inputs.

8.6.1 Two-Input Boolean Operations 

The one-bit result of a two-input function is stored in the least-significant bit of the 
destination data register and the most-significant 31 bits are set to zero (see Figure 11). 
The source bits can be any bit of any data register. 

The available Boolean operations are: 

– AND
– NAND
– OR
– NOR
– XOR
– XNOR
– ANDN
– ORN

Figure 11 Two-Input Boolean Operations

MCA05105

Boolean

Data 1 Data 2

Destination

Operation

Bit n Bit m



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 37 V1.3.3, 2002-05

8.6.2 Three-Input Boolean Operations

The three-input Boolean operations are used to evaluate complex Boolean operations 
where the output of a two-input instruction together with the least-significant bit of a third 
data register, forms the input to a further operation. The result is written to bit 0 of the 
third data register with the remaining bits unchanged (Figure 12). 

The available Boolean operations are: 

– AND.AND.T
– AND.ANDN.T
– AND.NOR.T
– AND.OR.T
– OR.AND.T
– OR.ANDN.T
– OR.NOR.T
– OR.OR.T

Figure 12 3-Input Boolean Operation

MCA05106

Boolean

Data 1 Data 2

Destination

Operation

Bit n Bit m



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights

Architecture Overview Handbook 38 V1.3.3, 2002-05

   

8.7 Address Arithmetic and Address Comparison

The TriCore architecture provides selected arithmetic operations on the address 
registers. These operations supplement the address calculations inherent in the 
addressing modes used by the load and store instructions. 

As with the comparison instructions that use the data registers, the comparison 
instructions using the address registers put the result of the comparison in the least-
significant bit of the destination data register and clear the remaining register bits to 
zeros. An example using the Less Than (LT.A) instruction is shown here in Figure 13. 

Figure 13 LT.A Comparison Operation

8.8 Branch Instructions

Branch instructions change the flow of program control by modifying the value in the PC 
register. There are two types of branch instructions: conditional and unconditional. 
Whether or not a conditional branch is taken depends on the result of a Boolean compare 
operation, rather than on the state of condition codes.

8.9 System Instructions

System Instructions can access and control various system services, including interrupts 
and TriCore’s debugging facilities. Some instructions can be executed only in supervisor 
mode, such as MTCR for example, to write to a control register. Other instructions can 
be executed in either supervisor or user mode. There are also instructions that read and 
write the PSW and PCXI registers for both user and supervisor-only mode programs. 
The Load/Store Upper/Lower Context instructions explicitly save and restore a task’s 
upper and lower contexts. 

MCA05107

A < B ?

Address 1 Address 2

Destination

Operation



TriCore 1.3
32-bit Unified Processor Core

Instruction Set Highlights   

Architecture Overview Handbook 39 V1.3.3, 2002-05

8.10 16-bit Instructions

The 16-bit instructions are a subset of the 32-bit instruction set, chosen because of their 
frequency of use. They significantly reduce static code size and thus reduce the cost of 
code memory and provide a higher effective instruction bandwidth. Because the 16-bit 
and 32-bit instructions all differ in the primary opcode, the two instruction sizes can be 
freely intermixed. 

The 16-bit instructions are formed by imposing one or more of the following format 
constraints: 

• Smaller constants
• Smaller displacements
• Smaller offsets
• Implicit source, destination or base address registers
• Combined source and destination registers (the two-operand format)

The 16-bit load and store instructions support only a limited set of addressing modes.



TriCore 1.3
32-bit Unified Processor Core

TriCore-1.3 Architecture Summary

Architecture Overview Handbook 40 V1.3.3, 2002-05

   

9 TriCore-1.3 Architecture Summary
The TriCore-1.3 core implements a Harvard architecture with separate address and data 
buses for program and data memories. Instruction fetches can be handled in parallel with 
data accesses. The superscalar core consists of two major pipelines with four stages 
each, and one minor pipeline for loop control. The three pipelines operate in parallel, 
allowing up to three instructions to execute in one cycle.

The core is a RISC Load/Store machine. All arithmetic instructions use registers. There 
are two General-Purpose Register Files; one comprised of 16 address registers and the 
other comprised of 16 data registers. The TriCore Instruction Set Architecture (ISA) 
provides a set of Load/Store instructions that fetch the data from the memory and store 
it back to the memories. This configuration allows fast interrupt response.

The TriCore-1.3 core’s Integer Execute Unit consists of a dual Multiply Accumulate 
Module (MAC), an Arithmetic and Logic Unit (ALU), and a small tightly coupled Co-
processor interface with access to the Register File. The TriCore-1.3 core can process 
two 16 x 16 Multiply-Accumulates per clock cycle.

The Flexible Peripheral Interconnect Bus (FPI Bus) easily connects the core to memory, 
internal and external peripherals, or other CPUs for example. The internal memory 
interfaces (both data and instruction) are both connected to the LMB Bus through 
individual interfaces. The Scratchpad RAMs (SPRs) ensure the timing of critical routines 
without having to rely on the caches.

The minimum TriCore implementation consists of a CPU core. However, depending on 
individual design requirements, peripheral and memory modules can be added to the 
core design from Infineon’s own or another preferred library. These modules normally 
connect via the FPI Bus (Flexible Peripheral Interconnect Bus). High-performance 
memory can also connect directly to the Local Memory Bus hub (LMBh). 

The core interfaces to the FPI bus through the LFI bridge for easy interconnection to all 
kinds of internal and external peripherals, memories and different active bus agents, 
such as CPUs and DMA/PCP controllers. Figure 14 shows the CPU core with optional 
data and instruction memories. 

The following sections of this chapter discuss the core and the optional modules that can 
comprise a TriCore-1.3 SOC (System-On-a-Chip).

9.1 Program and Data Memories

TriCore implements a Harvard architecture with separate program and data memories. 
The Program and Data memory blocks contain Scratch Pad RAMs (SPR) and/or cache 
memory ($). On each side the combined maximum is 64k of memory. 

The cache memory, on each side, is 2-way associative and can hold up to 16k bytes in 
4k increments. The total amount of memory as well as the partition between SPR and 
cache, can be customised for individual requirements at build time.



TriCore 1.3
32-bit Unified Processor Core

TriCore-1.3 Architecture Summary   

Architecture Overview Handbook 41 V1.3.3, 2002-05

9.2 TriCore Bus Interfaces

The minimum TriCore implementation consists of a CPU core. However, depending on 
individual design requirements, peripheral and memory modules can be added to the 
core design from Infineon’s own or another preferred library. These modules normally 
connect via the FPI (Flexible Peripheral Interconnect Bus). High-performance memory 
can also connect directly to the Local Memory Bus hub (LMBh). The core interfaces to 
the FPI bus through the LFI bridge for easy interconnection to all kinds of internal and 
external peripherals, memories and different active bus agents, such as CPUs and DMA/
PCP controllers. 

Figure 14 shows the CPU core with optional data and instruction memories. 

The following sections of this chapter discuss the core and the optional modules that can 
comprise a TriCore 1.3 SOC (System-On-a-Chip). 

Figure 14 TriCore-1.3 Microprocessor Core

MP_System

P_MEM

LMBh

LFI

CPS

M
E
M
O
R
Y

Flexible Peripheral Interface (FPI) Bus

D_MEM

TAG RAMS / MMU

PMI CPU DMI

M
E
M
O
R
Y



TriCore 1.3
32-bit Unified Processor Core

TriCore-1.3 Architecture Summary

Architecture Overview Handbook 42 V1.3.3, 2002-05

   

9.3 Local Memory Bus Hub (LMBh)

The LMBh is optimized for speed in order to support devices requiring a fast response 
time. Local memory (acting like level 2 cache) can be connected to this hub to give PMI 
and DMI fast access. 

The Local Memory Bus (LMB) is a synchronous, pipelined, split bus with variable block 
size transfer support. Additional features include:

• 32-bit address, 64-bit data
• Central simple per-cycle arbitration
• Slave controlled wait state insertion
• Multi-master capability
• Burst mode read/write to memories.

The LMB can also be configured to use off-chip memories.

9.4 CPU Processor Slave (CPS)

The CPS contains two main blocks: the Interrupt Control Unit (ICU) and the Debug Trace 
unit. The ICU provides the interface between the CPU and the interrupt system. It can 
handle up to 255 interrupts per system. The Debug Trace unit allows real time tracing of 
program or data.

9.5 LMB to PFI Interface (LFI)

The LFI bridges the FPI to the LMB via FIFOs. These de-couple the transfer of data 
between the two busses, allowing each bus to operate at its own optimal rate.

LFI’s features include:

• Burst/Single transactions, from FPI to LMB
• Burst/Single transactions from LMB to FPI
• Transactions are pipelined on each side of the bridge
• Programmable split LMB to FPI read transactions
• Supports all FPI data sizes
• Can handle abort, error and retry conditions on both sides of the bridge



TriCore 1.3
32-bit Unified Processor Core

TriCore-1.3 Architecture Summary   

Architecture Overview Handbook 43 V1.3.3, 2002-05

9.6 FPI Bus Overview

The FPI Bus (Flexible Peripheral Interconnect Bus) is an on-chip bus designed to be 
used in modular, highly integrated system chips. The FPI Bus is designed for memory 
and I/O mapped data transfers between its bus agents, where bus agents are on-chip 
function blocks (modules) that are equipped with an FPI Bus interface. It is a de-
multiplexed bus with up to 32 address bits and 64 data bits. Peak throughput is 800 
Mbytes/s at 100 MHz. 

There is no limit to the number of peripheral modules that can be connected to the FPI 
Bus. Additional features include:

• Multimaster capability (up to 16 masters)
• De-multiplexed operation
• Clock synchronous
• 8-/16-/32- and 64-bit data transfers
• Broad range of transfer types from single to multiple data transfers
• Flexible bus protocol, which can be tailored to your application needs

There are three types of agents possible on the FPI Bus (see Figure 15):

• Master agents which can initiate and control transactions
• Slave agents, which only support simple read and write of registers and are not 

actively operating on the bus protocol. 
• Master-Slave Agents, which support advanced features like split read transfer support 

and error handling. Depending on the type of transaction these agents may act as 
master, slave or both.

Figure 15 Examples of Modules within an FPI Bus-Based System

Bus Bridge

MCA05109

FPI Bus Controller

Arbitration
Address Decoding

Slave I/F

Memory Module

Slave I/F

Peripheral Module
B

Slave I/F

Peripheral Module
A

Master/Slave I/F

Access Control

Master/Slave I/F

External Bus I/F
CPU Core Module

Master/Slave I/F

FPI Bus



TriCore 1.3
32-bit Unified Processor Core

TriCore Software Development Tools

Architecture Overview Handbook 44 V1.3.3, 2002-05

   

10 TriCore Software Development Tools
The TriCore architecture is well supported by a robust set of hardware and software 
development tools (Figure 16). These tools include the TriCore Instruction Set Simulator 
(TSIM), compiler-assembler debugger tool chain, real-time operating systems and 
emulators. The instruction set architecture was developed in close consultation with the 
third party providers of these tools and the TriCore Instruction Set Simulator (TSIM) is 
bundled together with complete (debugger-compiler-assembler-linker-loader) tool 
chains from several vendors. 

Information on all of the Development Tools and vendors can be found at the SPACE 
program website: www.spacetools.com. 

Evaluation kits (PC and UNIX versions) are available free of cost to qualified customers. 
System designers can not only perform price-performance trade-off’s on this instruction 
accurate simulator, but can also begin their software development and debugging.

Figure 16 TriCore Development Tools

MCA05110

Evaluation/
Target
Board

Generate
PROM
Code

Debugger

Object
FilesLinkerAssembler

Link Library
Modules

Simulator

ICE
C

Complier

C/C++

Source Input
Assembly

http://www.spacetools.com


TriCore 1.3
32-bit Unified Processor Core

TriCore Software Development Tools   

Architecture Overview Handbook 45 V1.3.3, 2002-05

10.1 TSIM - TriCore Instruction Set Simulator

TSIM is a configurable, instruction-accurate model of the TriCore-1.3 core architecture 
that is integrated into all supported source-level debuggers. TSIM provides a simulation 
environment that models the TriCore core, memory configuration and interrupt 
mechanism. TSIM is useful for performance and trade-off analysis, and for developing 
and debugging a customized design. 

The TriCore-1.3 core can be reprogrammed to evaluate an implementation approach by 
changing the memory parameters in the TSIM memory configuration file (MConfig). 
Interrupt events can be specified in the TSIM interrupt configuration file (IConfig) to 
evaluate interrupt operation and performance. 

The TSIM peripheral configuration file (PConfig) tells your program how to communicate 
with the external peripherals used in a given implementation.

Figure 17 shows an overview of the simulation environment.

Figure 17 TSIM Simulation Environment

Please refer to Infineon’s TriCore Instruction Set Simulator User’s Guide for more 
information.

Complied/Assemled
Application Test Program

Memory Configuration TSIM
MConfig If Used

Interrupt Configuration TSIM
IConfig If Used

Peripheral Configuration TSIM
PConfig (must be used)

TSIM
Output File

MCA05111



TriCore 1.3
32-bit Unified Processor Core

DSP Example

Architecture Overview Handbook 46 V1.3.3, 2002-05

   

11 DSP Example
The TriCore-1.3 superscalar architecture consists of three units - the Integer Execution 
Unit, the Load/Store Unit and the Loop Unit, allowing the issue of up to three instructions 
per clock cycle. Figure 18 shows the different possible instruction issue combinations. 

The highest issue rate is achieved when a load/store, integer and loop instruction are all 
available. This issue rate is easy to reach during the inner loop of many DSP routines, 
allowing TriCore to deliver a sustained DSP throughput of 2 16x16 MACs per clock. The 
following is an example of how this works:

Figure 18 Superscalar Instruction Issue

Triple Issue

Dual Issue

Dual Issue

Dual Issue

Single Issue

Single Issue

Single Issue

From Instruction Fetch-Stage (IF), maximum 

Arithmetic

Arithmetic

Arithmetic

Load/Store

Load/Store/Loop

Load/Store

Load/Store

Loop

Loop

Loop

Execution Slot 1 Execution Slot 2 Execution Slot 3

Arithmetic

Integer Execution Unit Load/Store Unit Loop Unit



TriCore 1.3
32-bit Unified Processor Core

DSP Example   

Architecture Overview Handbook 47 V1.3.3, 2002-05

This superscalar implementation can process two 16x16 Multiply-Accumulates per clock 
cycle. Assume for example, that the following equation needs to be calculated:

If n=255 (as in a 256-tap filter), the table below summarizes the execution unit utilization, 
assuming 16-bit fixed point data. In this example, eight 16x16 MACs are calculated for 
each loop iteration:

In this example, 16-bit operands are moved four-at-a-time into two 32-bit registers using 
64-bit load operations. Eight operands are moved into four registers, then two dual-MAC 
operations process them. 

In parallel with this processing, the next 8 operands are moved into four other registers. 
These other registers are then used in the next two MAC operations. While the next two 
MACs are being performed, the first set of registers is loaded with the next 8 operands. 
The loads and MACs are therefore interleaved, with loads "ping-ponging" between two 
sets of registers. Sustained dual-MAC DSP throughput is therefore obtained.

Clock Integer Unit Load/Store Unit Loop Unit

clock 1 - Load C0, C1, C2, C3 -

clock 2 - Load X0, X1, X2, X3 -

clock 3 MAC C0X0, MAC C1X1 Load C4, C5, C6, C7 Loop Start

clock 4 MAC C2X2,, MAC C3X3 Load X4, X5, X6, X7 -

clock 5 MAC C4X4, MAC C5X5 Load C8, C9, C10, C11 -

clock 6 MAC C6X6,,MAC C7X7 Load X8, X9, X10, X11 Loop

... ... ... -

clock 130 MAC C254X254, MAC C255X255 - -

clock 131 - Store Result -

cixi

0=

n

∑ c0x0 c1x1 … cn+ + +=



TriCore 1.3
32-bit Unified Processor Core

Glossary

Architecture Overview Handbook 48 V1.3.3, 2002-05

   

12 Glossary

Reference Definition

API Application Program Interface - A set of routines, protocols and tools 
for building software applications

ASIC Application Specific Integrated Circuit

Ax Address Registers

BCU Bus Control Unit

BIST Built-In Self Test

BIV Base Address of Interrupt Vector Table

BPI Bus Peripheral Interface

BTV Base Address of Trap Vector Table 

Context Every Task has a Context. The Context is everything the processor 
needs in order to define the state of the associated task and enable its 
continued execution. Context’s are subdivided into Upper & Lower 
Contexts. Upper consists of upper Address (A10 - A15) and Data (D8 
- D15) Registers and Lower is the lower Address (A2 - A7) and Data 
(D0 - D7) Data Registers.

CPM Code Protection Mode

CPR Code Segment Protection Register

CPS CPU Slave

CPU Central Processing Unit

CREVT Emulator Resource Protection Event Specifier Register

CSA Context Save Area - Each CSA can hold 1 upper or 1 lower Context 
(see Context). CSAs are linked together through a Link Word

CSFR Core Special Function Register (SFR)

CVE Core Verification Environment

DBGSR Debug Status Register

DCU Data Control Unit

DCX Debug Context

DFF D-type Flip Flop

DMA Direct Memory Access - A technique for transferring data directly 
between two peripherals (usually memory and an I/O device) with only 
minimal intervention by the processor. DMA transfers are managed by 
a third peripheral called a DMA controller 



TriCore 1.3
32-bit Unified Processor Core

Glossary   

Architecture Overview Handbook 49 V1.3.3, 2002-05

DMS Debug Monitor Start Address

DMU Data Memory Unit

DPM Data Protection Mode

DPR Data Segment Protection Register

DRAM Direct Random Access Memory

DSP Digital Signal Processing

Dx Data Registers

EBU External Bus Unit

EMU Emulation Monitoring Unit

EXEVT External Break Input Event Specifier Register

FFT Fast Fourier Transformations

FLASH also known as ‘Flash RAM’ - constantly powered, non-volatile memory 
that can be erased and re-programmed.

FPI Flexible Peripheral Interface - Used for on-chip interconnections, 
connecting the core with peripherals including ports and the External 
Bus Controller. 

FPU Floating Point Unit

GDI Graphical Device Interface

GPR General Purpose Register

HDL Hardware Definition Language - used in engineering to describe the 
design and testbench of a system. HDL Software simulators are then 
used to verify the Design with the testbench. See also VHDL 

HLL High Level Language

IC Integrated Circuit

ICR Interrupt Unit Control Register

ICU Interrupt Control Unit

ID Identity / Identification

IEEE Institute of Electrical & Electronics Engineers

I/F Interface

IIR Infinite Impulse Response 
A digital filter with internal registers that hold past output of the filter

ISA Instruction Set Architecture

ISP Interrupt Stack Pointer

Reference Definition



TriCore 1.3
32-bit Unified Processor Core

Glossary

Architecture Overview Handbook 50 V1.3.3, 2002-05

   

ISR Interrupt Service Routine

JTAG Joint Test Action Group

LCU LMB Control Unit

LDCUX Instruction to Load Upper Context from memory

LDLCX Instruction to Load Lower Context from memory

LEADDR LMB Error Address

LEATT LMB Error Attributes

LEDAT LMB Error Data

LFI LMB to FPI Interface: A bridge between the two main buses, LMB and 
FPI

LMB Local Memory Bus - a high speed, high bandwidth local memory bus 
supporting devices with fast response times, targeted at providing the 
local CPU with fast access to local memory

LMBH Local Memory Bus (LMB) Hub

LMU Local Memory Unit

MAC Multiply and Accumulate

MCU MicroController Unit

MIPS Million Instructions Per Second

MMU Memory Management Unit - translates virtual addresses issued by the 
load / store, instruction fetch unit into physical addresses to feed into 
the PMU and DMU respectively.

MP MicroProcessor

MTCR Move To Control Register

OCDS On-Chip Debug Support

OTP One-Time Programmable

PDA Personal Digital Assistant

PC Program Counter

PCP Peripheral Control Processor - an I/O control processor that performs 
tasks typically handled by a dedicated DMA controller and CPU 
interrupt service routines. The PCP off-loads the CPU from time-critical 
interrupts, easing implementation of systems based on Operating 
Systems. PCP is optimized to efficiently support DMA-type bus 
transactions to and from arbitrary devices and memory addresses.

PCXI Previous Context Information Register

Reference Definition



TriCore 1.3
32-bit Unified Processor Core

Glossary   

Architecture Overview Handbook 51 V1.3.3, 2002-05

PMU Program Memory Unit

PRS Protection Register Set

PSW Processor Status Word

PTE Page Table Entry

RAM Random Access Memory

RFE Return From Exception

RISC Reduced Instruction Set Computer. 
Describes the architecture of a processor family. 

ROM Read Only Memory

RSLCX Restore Lower Context instruction

RSTV Reset Overflow Bits

RTL Register Transfer Level - Describes a System in terms of registers, 
combinational circuitry, low-level buses and control circuits. It is used 
for developing and testing internal architecture and control logic within 
an IC component, so that the design satisfies the required functionality 
and timing constraints of the IC.
(source - RASSP Taxonomy Working Group)

RTOS Real-Time Operating System

SAV Sticky Advance Overflow

SFR Special Function Register

SIMD Single Instruction Multiple Data

SMT Software Managed Tasks

SOC System-On-a-Chip

SP Stack Pointer

SPR Scratch Pad RAM

SRAM Static Random Access Memory

SRN Service Request Node

SRPN Service Request Priority Number

STLCX Store Lower Context instruction

STPG Statis Test Pattern Generation

STUCX Store Upper Context

SVLCX Save Lower Context instruction

SYSCON System Control Register

Reference Definition



TriCore 1.3
32-bit Unified Processor Core

Glossary

Architecture Overview Handbook 52 V1.3.3, 2002-05

   

Task Refers to an independent thread of control. There are two types of 
tasks: Software Managed Tasks (SMTs) and Interrupt Service 
Routines (ISRs)

TC Abbreviation for TriCore (i.e. TC2 - TriCore v2.0)

TFA Translation Fault Address

TIN Trap Identification Number - Identifies the cause of a trap within its 
class (TriCore has 8 Trap classes).

TLB Translation Lookaside Buffer

TOS Type Of Service

TPA Translation Physical Address

TPX Translation Page Index

TSIM TriCore Instruction Set Simulator (Tricore SIMulator) - A configurable, 
instruction-accurate model of the TriCore core architecture, providing 
a simulation environment that models the core, memory configuration 
and interrupt mechanism. Used for debugging and developing 
customized designs

VHDL Very High Definition Language

VHDL VHSIC Hardware Description Language - The standard for the design 
and description of electronic systems

Reference Definition



((53))



h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly 
defined processes, which are both constantly under review and 
ultimately lead to good operating results.
Better operating results and business excellence mean less 
idleness and wastefulness for all of us, more professional 
success, more accurate information, a better overview and, 
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher


	1 Preface
	2 TriCore Family Architecture
	2.1 Overview
	2.1.1 Feature Summary

	2.2 TriCore Instruction Categories
	2.3 Target Applications

	3 TriCore Programming Model
	3.1 Architectural Registers
	3.2 Data Types and Formats
	3.3 Memory Model
	3.4 Addressing Modes

	4 Tasks and Contexts
	5 Interrupt System
	5.1 Overview
	5.2 Interrupt Priority
	5.3 Interrupt Examples

	6 Trap System
	7 Protection System
	7.1 Memory Management Unit (MMU)

	8 Instruction Set Highlights
	8.1 Instruction Set Summary
	8.2 16-bit and 32-bit Instructions
	8.3 Load and Store Instructions
	8.4 Arithmetic Instructions
	8.4.1 Integer Arithmetic
	8.4.2 DSP & Packed Arithmetic
	8.4.3 Packed Arithmetic

	8.5 Comparison Instructions
	8.6 Bit Operations
	8.6.1 Two-Input Boolean Operations
	8.6.2 Three-Input Boolean Operations

	8.7 Address Arithmetic and Address Comparison
	8.8 Branch Instructions
	8.9 System Instructions
	8.10 16-bit Instructions

	9 TriCore-1.3 Architecture Summary
	9.1 Program and Data Memories
	9.2 TriCore Bus Interfaces
	9.3 Local Memory Bus Hub (LMBh)
	9.4 CPU Processor Slave (CPS)
	9.5 LMB to PFI Interface (LFI)
	9.6 FPI Bus Overview

	10 TriCore Software Development Tools
	10.1 TSIM - TriCore Instruction Set Simulator

	11 DSP Example
	12 Glossary

