CoolSiC[™] MOSFET G2 650 V & 1200 V Empowering the next generation of high-performance systems

Online media briefing Dr. Peter Friedrichs

1	CoolSiC [™] MOSFET G2 - entering a new performance era	4
2	Benchmarking results	12
3	Portfolio overview and roll-out plan	15
4	Progress news Kulim wafer fab	21
5	WBG developer forum 2024 in April	24
6	Q&A	26

ਵ≣'

Striving for excellence in SiC MOSFETs by trench technology

Copyright © Infineon Technologies AG 2024. All rights reserved.

5

CoolSiC[™] Generation 1

- Established the benchmark in efficient power conversion
- Solved the gate oxide reliability risk in SiC
 MOSFETs using a trench gate
- Overcame common SiC MOSFET limitations in control and drive
- Made all industry-standard packages available

Reliable performance

CoolSiC[™] Generation 2

- Securing price-performance leap
- Maintaining G1 high reliability
- Adding new robustness features for maximizing each \$ invested in SiC-based power systems
- Advancing the packaging technology for more powerful products

Unmatched industry leadership

CoolSiC™ MOSFETs entering a new era with G2

CoolSiC™ G2: a new level of performance in full-load operation

Application conditions with G1 (IMBG120R030M1H) and G2 (IMBG120R026M2H): DC-AC inverter or AFE stage. $I_{RMS} = 20 \text{ A}$, $f_{sw} = 40 \text{ kHz}$, $R_G = 10 \Omega$, $T_{vj} = 100^{\circ}$ C. dead time = 200ns Application conditions with G1 (IMBG120R030M1H) and G2 (IMBG120R026M2H): DC-DC stage, $I_{RMS} = 20$ A, $f_{sw} = 100$ kHz, $R_G = 10 \Omega$, $T_{vj} = 100$ °C, dead time = 200 ns, soft-switching operation CoolSiC[™] G2 in light-load condition: significant improvement of power losses

Application conditions: DC-AC inverter or AFE stage with G1 (IMBG120R030M1H) and G2 (IMBG120R026M2H). I_{RMS} = 5 A, f_{sw} = 40 kHz, R_G = 10 Ω. T_{vi}= 100°C, dead time = 200ns

CoolSiC™

Enhancement of thermal capabilities in small package form factor

- New chip technology means heat concentrated to a smaller area
- Innovative chip technology needs innovative interconnection
- CoolSiC[™] G2 comes with improved .XT technology

Comparison is made with G1 and G1 products having equal R_{DS(on)} at T_{vi}= 100 °C.

Raising the bar for the power possible in SMD

- CoolSiCTM G2 trench technology in combination with .XT interconnect enables an 8 mΩ rated 1200V SiC MOSFET in D2PAK-7 package
- The highest output capability in D2PAK-7 form factor enables higher system power or reduced paralleling of devices

*Status January 2024, based on datasheet comparison 1200 V SiC MOSFETs in the internet: IMBG120R008M2H versus NTBG014N120M3P. Calculation based on conduction losses, I_D @ 90°C IMS, R_{th_IMS}= 1 K/W, 800 V DC bus

CoolSiC[™] – another great example for Infineon's Quality Leadership

dpm – defects per million for GIP SiC products

Data based on G1 SiC power switches sold

- Infineon's SiC power switches never caused any "spill" or severe incident on customer side
- The product returns for SiC are even below siliconbased power switches, a very mature technology
- This counts for discrete devices as well as for power modules
- Infineon's CoolSiC[™] provides the same or even better quality level as silicon to our customers

1	CoolSiC MOSFET G2 - entering a new performance era	4
2	Benchmarking results	12
3	Portfolio overview and roll-out plan	15
4	Progress news Kulim wafer fab	21
5	WBG developer forum 2024 in April	24
6	Q&A	26

Unveiling a new performance budget with CoolSiC[™] G2

Figures-of-merit (FOM) comparison: lower is better for energy efficiency optimization

Infineon products: IMBG120R030M1H, IMBG120R026M2H.

Other SiC MOSFETs: value of parameters taken from datasheet in internet for the latest generations of 1200 V SiC MOSFETs in D2PAK 7pin: C3M0032120J1, SCT4018KW7, NTBG030N120M3S, SCT025H120G3AG, Q_{GD} = total charge associated to C_{RSS} at given conditions, Q_{oss} = total charge associated to C_{RSS} at given conditions. E_{OSS} = total energy associated to C_{OSS} at given conditions.

1	CoolSiC MOSFET G2 - entering a new performance era	4
2	Benchmarking results	12
3	Portfolio overview and roll-out plan	15
4	Progress news Kulim wafer fab	21
5	WBG developer forum 2024 in April	24
6	Q&A	26

CoolSiC overall portfolio offering

Industrial grade						Automotive grade							
pacl	CoolSiC™ Diode	CoolSiC™ Hybrid		CoolSiC™ MOSFET				CoolSiC™ Diode	CoolSiC™ Hybrid CoolSiC™ MOSF			OSFET	
kage opt	Discrete	Discrete	Module	Discrete	IPM	Module	HP Module	Discrete	Discrete	Discrete	Module		
voltages			A CONTRACTOR									Ì	-
400V													
600 V													
650 V													
750 V													
1200 V													
1700 V													
2000 V													
3300 V													
Continuous extension of portfolio													
G1 mass G2 mass	production	G1 coming so G2 coming so	99////// 99//////					G1 mass produ G2 mass produ	uction	coming soon	Statu	s: March 2	2024

CoolSiC[™] G2 ON THE ROAD! SAIC launched IM LS6 with 2nd generation of CoolSiC[™] HybridPACK[™]

2nd generation

AURIX[™] TC389 MCU

LV MOSFET IPDxx

Power supply TLF35584

Drive FS02

CoolSiCTM HybridPACKTM

- **One Inverter One** Infineon: one stop shop for all Inverter semi component
- **Best power scalability** in the market, easy platform migration and less design-in effort

—

_

_

_

Near-term roll-out of CoolSiC[™] MOSFET G2 discretes industrial grade: 400 V, 650 V and 1200 V

and more

Package evolution which enables high volume assembly and PCB design improvement at expensive assembly location

Significant production cost reduction with simplified design 1.2 kV SiC Servo Motor Drive Demonstrator

Standard cooling assembly

- IMS board used for power components
- FR4 PCB used for IC/driver/magnetics components

Top-side cooling assembly

Stack: FR4 + 💉

IMS board eliminated

- Single FR4 PCB used on both sides for **all** power components
- Reduced stray inductance

- 65% Rth

1	CoolSiC MOSFET G2 - entering a new performance era	4
2	Benchmarking results	12
3	Portfolio overview and roll-out plan	15
4	Progress news Kulim wafer fab	21
5	WBG developer forum 2024 in April	24
6	Q&A	26

Market share target in SiC by end of decade underpinned by significant capacity expansion

Building the world's largest 200-millimeter SiC power fab

Rationale

- Undisputed leadership position in power systems across all materials based on technology and scale
- Expanding the third module at the existing site in Kulim offers significant advantages economies of scale, competitive local cost position, implementation speed and reliability from existing employees and infrastructure
- **Modular setup** allows for flexibility in ramp-up phase

1 Total revenue potential comprises Villach, Kulim 3 phase 1 and phase 2 incl. 200-millimeter conversion

1	CoolSiC MOSFET G2 - entering a new performance era	4
2	Benchmarking results	12
3	Portfolio overview and roll-out plan	15
4	Progress news Kulim wafer fab	21
5	WBG developer forum 2024 in April	24
6	Q&A	26

Wide-Bandgap Developer Forum 2024

16 April 2024, 8 am CEST Full-day virtual event

10 am – 10:30 am CET CoolSiC[™] trench MOSFETs the next generation – new levels of system performance on the horizon 10:30 am – 11:00 am CET

<u>Guest speaker</u>: Wide-Bandgap semiconductors and applied use cases in future e-drive train

Jian Wang, Executive director of SMPV & head of SAIC E-propulsion group

Dr. Peter Friedrichs, Vice President SiC

Register for free

Questions & answers

Please place your questions into Slido in Webex for the Q&A session.

www.infineon.com/coolsic-g2