

Application note Please read the Important Notice and Warnings at the end of this document V 2.2

www.infineon.com page 1 of 34 2024-04-01

AN_2011_PL38_2011_134235

Programming guide for XENSIVTM PAS CO2

Target application: demand control ventilation

About this document

Scope and purpose

This application note serves as a programming starting guide and will focus on the setup and communication of
the XENSIVTM PAS CO2 sensor driven by a microcontroller. Main focus will be the I2C functionality along with a

quick example of how to set up communication and start basic measurement using the Cypress PSoC® 6 WiFi-BT

Pioneer Kit and the Arduino Due.

Intended audience

Application engineers, system engineers and system architects of HVAC systems.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 2

1.1 Introduction to the I2C bus .. 3

1.2 I2C communication protocol ... 3

2 I2C application circuit ... 5

3 Initialization sequence.. 6

4 Quick start with the PSoC® 6 WiFi-BT Pioneer Kit ... 7
4.1 Bridge Control Panel ... 8

4.2 Basic code for starting measurement .. 10

4.3 Additional functionality .. 12

5 Quick start with the Arduino Due .. 14
5.1 Arduino IDE .. 14
5.2 Basic Arduino code for starting measurement .. 16

5.3 Arduino library ... 20

6 UART interface .. 22

6.1 Write transactions ... 23
6.2 Read transactions .. 24
6.3 Arduino examples .. 25

7 PWM interface ... 29

Revision history... 33

Application note 2 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Introduction

1 Introduction

The XENSIVTM PAS CO2 sensor is a real carbon dioxide (CO2) sensor in an unprecedentedly small form factor.

Designed on the basis of a unique photoacoustic spectroscopy (PAS) concept, the sensor saves more than 75

percent space compared to existing commercial real CO2 sensors. Its direct ppm readings, SMD capability and

simple design allow for quicker and easier integration into customers’ systems in low- and high-volume
applications alike.

The photoacoustic principle can be traced back to over 100 years ago, first discovered by Alexander Graham Bell

in 1880. The photoacoustic effect involves the formation of sound waves (pressure changes) following light
absorption in a material sample. The sound signal is quantified by detectors such as microphones. In order to
obtain this effect, the light intensity must vary. A PAS gas sensor is based on the principle that gases absorb light

in a specific wavelength of the infrared spectrum. CO2 molecules, for example, have strong absorption in the λ =

4.2 µm wavelength.

The XENSIVTM PAS CO2 sensor module integrates, on the same PCB, the PAS transducer, a microcontroller for
signal processing, algorithms and a MOSFET. As depicted in the block diagram, the PAS transducer includes: i) a

proprietary infrared emitter with blackbody radiation, which is periodically chopped by the MOSFET; ii) a narrow-
band optical filter passing the CO2 specific wavelength λ = 4.2 µm, significantly improving the sensor selectivity

compared to other gases, including humidity; and iii) Infineon’s high-SNR (signal-to-noise ratio) MEMS

microphone XENSIVTM IM69D130, detecting the pressure changes generated by the CO2 molecules. All the

components are developed and designed in-house in accordance with Infineon’s high-quality guidelines. The
sensor therefore benefits from Infineon’s illustrious record of accomplishments in MEMS design and acoustic

capabilities, resulting in it being best-in-class for price/performance.

The XENSIVTM PAS CO2 sensor is ideal for smart-home and building automation as well as various indoor air

quality IoT devices such as air purifiers, thermostats, weather stations and personal assistants. The sensor
enables end users to track, understand and improve the air quality surrounding them in a timely and highly
energy-efficient manner.

In the following the I2C interface will be explained in detail and at the end of the application note the UART and

PWM interface will be covered.

Figure 1 XENSIVTM PAS CO2 sensor (left) and XENSIVTM PAS CO2 5V sensor (right)

Application note 3 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Introduction

1.1 Introduction to the I2C bus

The I2C bus is a bidirectional two-line bus, enabling communication between any kind of integrated circuit that
supports this protocol, either by hardware or software. Examples of such ICs are LCD controllers, EEPROMs,

RAMs, data converters or general-purpose microcontrollers. The main advantage of this protocol is its two-line
interface, as shown in Figure 2.

Figure 2 Example of an I2C bus configuration

1.2 I2C communication protocol

The word “master” refers to a device that initiates and terminates a transfer and also provides the clock signals

on line SCL. Master devices operate as transmitters or receivers.

At the start of each transfer, a slave is addressed by its own unique address. A transfer consists of a start
condition, the data bits, an acknowledge bit and possibly a stop condition. This concept is shown in Figure 3.

A start condition is defined by a falling edge at SDA while the SCL is high. A stop condition is defined by a rising
edge at SDA while the SCL line is high. When transmitting data, no changes at the SDA line while the clock is high

are permitted, otherwise this will result in a stop or a start condition! In order to avoid this, the master should
change the data at SDA only when the SCL line is low.

After the transmission of the 8 data bits, the master sets the SDA line to high and the slave acknowledges the

transfer by pulling the SDA line to ground. This indicates a successful transfer.

Master-read mode is not exactly the same. The master still provides the clock but the slave now submits the data

(requested by the master) at the SDA line. At the end of the transmission, the master does not acknowledge (SDA
is set and remains high).

For further information the interested reader is referred to the original I2C-bus specification (UM10204 Rev 6, NXP
Semiconductors).

An example for reading the status of the XENSIVTM PAS CO2 sensor is shown in Figure 4. An introduction to the

basic registers will be given in the latter half of this application note. A more detailed description of all available
registers and functions of the XENSIVTM PAS CO2 sensor can be found in a separate application note.

Application note 4 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Introduction

Figure 3 Example of an I2C transaction

Figure 4 I2C transaction for reading the status of the sensor

Application note 5 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

I2C application circuit

2 I2C application circuit

Figure 5 Application circuit example

Table 1 Pin descriptions

1) High level selects UART and low level selects I2C. It is recommended to the user to hard wire the pin to VDD or

GND, depending on the wanted interface.

2) If PWM_DIS is hard wired to GND to enable the PWM output, the device will start in continuous mode and not
idle mode which needs to be considered when changing the measurement period.

3) Values of pull-up resistances should be adjusted according to the overall application and used clock frequency.

*Is referring to XENSIVTM PAS CO2 5V which is using 5 V for the emitter instead of the 12 V compared to XENSIVTM
PAS CO2

Pin Symbol Type Function

1 VDD Power supply (3.3 V) 3.3 V digital power supply

2 RX Input UART receiver pin (3.3 V domain)

3 SCL Input/Output I2C clock pin (3.3 V domain)3)

4 TX_SDA Input/Output UART transmitter pin/I2C data pin (3.3 V domain)3)

5 PWM_DIS Input PWM disable input pin (3.3 V domain)2)

6 GND Ground Ground

7 INT Output Interrupt output pin (3.3 V domain)

8 PSEL Input Communication interface select input pin (3.3 V domain)1)

9 PWM Output PWM output pin (3.3 V domain)

10 VDD12 / VDD5* Power supply (12 V / 5 V*) 12 V / 5 V* power supply for the IR emitter

Application note 6 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Initialization sequence

3 Initialization sequence

In order not to damage the sensor or other components, a certain initialization sequence must be followed:

• Connect all the necessary pins as seen in Figure 5 of the XENSIVTM PAS CO2 Sensor2Go Kit to the
microcontroller (power off).

• Power on the microcontroller (3.3 V supply for the communication).

• Supply 12 V / 5 V* externally for the heater.

• Run script/code (configure settings, start measurement, etc.).

Figure 6 Initialization sequence

When powering off the sensor, the sequence must be reversed.

Note: To prevent race conditions, it is recommended that the logic supply with 3.3 V is fully booted first,

followed by the heater supply with 12 V / 5 V*.

Application note 7 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

4 Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

PSoC® 6 bridges the gap between expensive, power-hungry application processors and low-performance
microcontrollers. The ultra-low-power PSoC 6 microcontroller architecture offers the processing performance
needed by IoT devices, eliminating the tradeoffs between power and performance. The PSoC 6 microcontroller

contains a dual-CPU architecture, with both CPUs on a single chip. It has an ARM® Cortex-M4 for high-
performance tasks, and an ARM® Cortex-M0+ for low-power tasks. With security built in, your IoT system is
protected.

Figure 7 XENSIVTM PAS CO2 Sensor2Go Kit I2C interface connection to the PSoC® 6 WiFi-BT Pioneer Kit

Table 2 Pin connections

3) Power supply tolerance ±10 percent

Position Symbol Connection to the PSoC® 6 WiFi-BT Pioneer Kit

1 GND Ground

2 VDD12 / VDD5* 12 V / 5 V* power supply (externally)3)

3 VDD3.3 3.3 V digital power supply3)

4 RX Not connected

5 TX/SDA I2C data pin (3.3 V domain)

6 SCL I2C clock pin (3.3 V domain)

7 PSEL Ground

8 INT Not connected (in this case)

9 PWM_DIS Ground

10 PWM Not connected (in this case)

11 SWD Not connected (in this case)

12 SWCLK Not connected (in this case)

Application note 8 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

4.1 Bridge Control Panel

Bridge Control Panel is a simple debugging tool that comes with PSoC Programmer. It is used to communicate

with target devices over I2C/UART/SPI serial communication interfaces.

Figure 8 Initialization of the device

After wiring up the XENSIVTM PAS CO2 Sensor2Go Kit and the PSoC® 6 WiFi-BT Pioneer Kit as shown in Figure 7,

the following steps cover initialization and communication with the sensor:

1. Select COM port accordingly (KitProg3).

2. Select 3.3 V in the Power menu.

3. Select I2C protocol.

With the “Toggle power” button you can switch the 3.3 V power supply on and off. Only after the 3.3 V is supplied
can the 12 V / 5 V* be supplied externally safely. Make sure when powering off the 3.3 V supply with the “Toggle
power” button to first power off the external 12 V / 5 V* supply and then the 3.3 V supply to avoid damaging the
device.

1
2 3

Application note 9 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

Figure 9 Testing I2C communication

After powering up both supplies in the respective order it is recommended to first check the basic I2C
communication by pressing the “List” button. The bridge control panel will now list all the available I2C slave

devices available on the bus. Check the terminal for slave address 0x28 (0x50 8 bit), which is the address of

XENSIVTM PAS CO2.

Known issues and mistakes are:

• No slave devices listed when checking for slave response with the “List” button (error message in the terminal:

“No device found”)

− Make sure all wires are properly connected and not loose.

• Bridge control panel is crashing

− Make sure there is no shortage as a result of wrongly connected supply pins.

• Device doesn’t receive commands (e.g. w 28- 01- r 28- FF- p)

− Make sure I2C wires (SDA/SCL) are properly connected and not loose.

The commands are written in the “Editor” window and are sent and executed by pressing “Enter”.

Application note 10 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

4.2 Basic code for starting measurement

In this section the basic operation for starting a measurement with the XENSIVTM PAS CO2 will be described.

After initializing the device according to the sequence in chapter 3 and section 4.1, the first thing recommended
to do is check if the initialization went correctly without any errors. This can be done by checking the sensor
status register. After that, and before starting a measurement, it is recommended to check and set the pressure

compensation. This can be done with the two pressure compensation registers. The default pressure set in
these registers is 1015 hPa. Now everything is set to start a measurement. There are two different measurement
modes available: single-shot measurement and continuous measurement. The mode can be configured in the
measurement mode configuration register. When using the continuous measurement mode, the

measurement period can be defined in the two measurement period configuration registers beforehand.

Either way, after configuring the measurement mode, a measurement sequence is triggered. By reading the

measurement status register it is possible to check if the measurement sequence is completed and thus if a

new CO2 concentration value is available in the CO2 concentration result register.

Sensor status register (SENS_STS, address: 0x01)

1 w 28 01 r 28 x p

If the sensor is initialized correctly the return value is 0xC0.

Pressure compensation registers (PRES_REF_H and PRES_REF_L, address: 0x0B and 0x0C)

1 w 28 0B r 28 x p

2 w 28 0C r 28 x p

3 w 28 0B 03 p

4 w 28 0C F5 p

Registers PRES_REF_L and PRES_REF_H are used to store the ambient atmospheric pressure. The concatenation
of PRES_REF_H (MSB) and PRES_REF_L (LSB) defines the pressure value that shall be considered by the device.
The concatenated pressure value is coded as an unsigned short integer (1 bit = 1 hPa). In this example the

pressure is set to 1013 hPa. For correct operation, the user shall ensure that the pressure value programmed is

within the specified pressure operating range of the device. This valid range of operation is 750 hPa to 1150 hPa.

User also needs to ensure to calculate the correct ambient atmospheric pressure based on the located altitude.

The relationship between altitude and atmospheric pressure is inverse, which means that as altitude increases,
atmospheric pressure decreases. This relationship is due to the density of the air above a given point on Earth's
surface. At sea level, the density of the atmosphere is at its maximum, which results in a higher atmospheric

pressure. As you move higher in altitude, the amount of air above you decreases, which in turn reduces the

density of the atmosphere and the air pressure decreases. This relationship is also affected by changes in

atmospheric conditions, such as temperature and humidity. To calculate the atmospheric pressure at a given
altitude, the following equation can be used:

𝑃 = 𝑃0 ∗ [1 − (
𝐿 ∗ ℎ

𝑇0
)]

𝑔 ∗ 𝑀
𝑅 ∗ 𝐿

Where,

• P is the pressure at the given altitude (in hectopascals)

• 𝑃0 is the pressure at sea level (in hectopascals) with 1013.207 hPa

• L is the temperature lapse rate, which is a constant value of -0.0065
𝐾

𝑚
 up to an altitude of 11 km

Application note 11 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

• h is the altitude above sea level (in meters)

• 𝑇0 is the standard temperature at sea level (in Kelvin), which is a constant value of 288.15 K

• g is the acceleration due to gravity, which is a constant value of 9.80665
𝑚

𝑠2

• M is the molar mass of air, which is a constant value of 0.0289644
𝑘𝑔

𝑚𝑜𝑙

• R is the universal gas constant, which is a constant value of 8.31447
𝐽

𝐾∗ 𝑚𝑜𝑙

For your convenience you can copy paste this equation for further use and insert “h” for the height.

P = 1013.207*(1-((6.5.*h)/(288150))).^5.255; // h .. height in meter

Examples: The device requires a value in hPa as input. As a result, 1000 m altitude would result in 898 hPa and
respectively 2000 m results in 794 hPa.

Measurement period configuration registers (MEAS_RATE_H and MEAS_RATE_L, address: 0x02 and 0x03)

1 w 28 02 00 p

2 w 28 03 0A p

Registers MEAS_RATE_H and MEAS_RATE_L define the measurement period used in continuous mode. The

concatenation of MEAS_RATE_H (MSB) and MEAS_RATE_L (LSB) defines the period. The concatenated value is
coded as a two’s complement signed short integer (1 bit = 1 s). In this example the measuring rate is set to 10 s.

The configurable range is from 0005H (5 s) to 0FFFH (4095 s). When writing to MEAS_RATE_H and MEAS_RATE_L,
the new value is not immediately considered by the device. It is internally latched at the next transition from idle

mode to continuous mode.

Measurement mode configuration register (MEAS_CFG, address: 0x04)

1 w 28 04 02 p

2 w 28 04 01 p

This register defines the operation settings of the device. With code in line 1 a single-shot measurement is
triggered and with code in line 2 the continuous measurement mode is configured. Note that after one
measurement sequence the emitter needs at least 10 s to cool down. Measurement rate values in continuous

mode below 5 s are treated as being equal to 5 s. For single-shot measurement make sure to delay the following
measurement sequence by at least 60 s for accurate readings.

Measurement status register (MEAS_STS, address: 0x07)

1 w 28 07 r 28 x p

This register displays status information of the sensor. Once a measurement sequence is completed and the new
CO2 concentration value is available the return value of this register is 0x10.

CO2 concentration result register (CO2PPM_H and CO2PPM_L, address: 0x05 and 0x06)

1 w 28 05 r 28 x p

2 w 28 06 r 28 x p

Registers CO2PPM_H and CO2PPM_L are used to store the result of the last CO2 concentration measurement. The

concatenation of CO2PPM_H (MSB) and CO2PPM_L (LSB) defines the CO2 concentration value. The concatenated

Application note 12 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

CO2 concentration value is coded as a two’s complement signed short integer (1 bit = 1 ppm). This field is updated

at the end of each measurement sequence. When reading the CO2 concentration value, the user shall first read

registers CO2PPM_H and then CO2PPM_L.

Summary

1 w 28 01 r 28 x p // Read sensor status

2 w 28 0B r 28 x p // Read pressure (MSB)

3 w 28 0C r 28 x p // Read pressure (LSB)

4 w 28 0B 03 p // Set pressure (MSB)

5 w 28 0C F5 p // Set pressure (LSB)

6 w 28 02 00 p // Set measurement period (MSB)

7 w 28 03 0A p // Set measurement period (LSB)

8 w 28 04 02 p // Trigger continuous measurement

9 (w 28 04 01 p) // Trigger single shot measurement

10 w 28 07 r 28 x p // Read measurement status
11 w 28 05 r 28 x p // Read CO2 concentration (MSB)
12 w 28 06 r 28 x p // Read CO2 concentration (LSB)

Attention: Full detailed register map has been covered in a separate application note (see product page)

Note: The pressure compensation register should be updated regularly to compensate for barometric
pressure variation.

4.3 Additional functionality

In this section additional possible functions of the XENSIVTM PAS CO2 will be introduced. The full description of

the available functionality will be covered in a separate application note.

Interrupt pin configuration register (INT_CFG, address: 0x08)

1 w 28 08 18 p // INT configuration as early measurement start notification

This register defines the configuration of pin INT. Pin INT is a multi-purpose output pin that can be configured to
perform several functions. The electrical configuration can be either set as push pull and low active or push pull

and high active.

The following functions can be configured. Alarm threshold violation notification pin, Data Ready notification

pin, sensor busy notification pin and early measurement start notification pin. In this example the interrupt is
configured as push pull and high active early measurement start notification pin. The indication if an interrupt

did occur can be read in the measurement status register as well as the clearing of the sticky bits.

Alarm threshold register (ALARM_TH_H and ALARM_TH_L, address: 0x09 and 0x0A)

1 w 28 09 03 p // Set alarm threshold (MSB)

2 w 28 0A E8 p // Set alarm threshold (LSB)

Registers ALARM_TH_H and ALARM_TH_L define the value used as a threshold for the alarm violation. The
concatenation of ALARM_TH_H (MSB) and ALARM_TH_L (LSB) define the threshold value that shall be considered
by the device. The concatenated value is coded as a two’s complement signed short integer (1 bit = 1 ppm). In
this example the alarm threshold is set to 1000 ppm. The indication if a threshold violation did occur can be read
in the measurement status register.

Application note 13 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the PSoC® 6 WiFi-BT Pioneer Kit

Automatic baseline offset compensation reference (CALIB_REF_H and CALIB_REF_L, address: 0x0D and
0x0E)

1 w 28 0D 01 p // Set baseline reference (MSB)

2 w 28 0E 90 p // Set baseline reference (LSB)

Registers CALIB_REF_H and CALIB_REF_L define the reference value used for the automatic baseline offset
compensation or forced compensation. The concatenation of CALIB_REF_H (MSB) and CALIB_REF_L (LSB) define

the reference value. The concatenated offset value is coded as a 2’s complement signed short integer (1 bit = 1

ppm). In this example the automatic baseline offset compensation reference is set to 400 ppm. For correct
operation, the user shall ensure that the compensation value programmed is within the specified operating
range of the device. This valid range of operation is 350 ppm to 1500 ppm. The automatic baseline offset

compensation or forced compensation can be enabled/disabled in the measurement mode configuration

register and be reset in the soft reset register. More details regarding the automatic baseline offset compensation
and forced compensation are covered in a separate application note (see product page).

Scratch pad register (SCRATCH_PAD, address: 0x0F)

1 w 28 0F 01 p

2 w 28 0F r 28 x p

This register provides a readable and writable address space for data integrity test during runtime. This register

is not associated with a specific hardware functionality.

Soft reset register (SENS_RST, address: 0x10)

1 w 28 10 A3 p // Triggers soft reset

2 w 28 10 DF p // Disables filter

3 w 28 10 FE p // Enables filter

4 w 28 10 BC p // Resets ABOC context

5 w 28 10 FC p // Resets forced compensation

6 w 28 10 CF p // Saves forced compensation immediately

This register is used to trigger a soft reset. It also covers the settings of the filter and resetting the automatic

baseline offset compensation or forced compensation. By default, the filter is enabled and can be disabled by
writing 0xDF to this register. With writing 0xFE the filter is enabled again. The context of the automatic baseline

offset compensation can be reset with writing 0xBC and for the reset of the forced compensation it is 0xFC.

Application note 14 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

5 Quick start with the Arduino Due

Figure 10 XENSIVTM PAS CO2 Sensor2Go Kit I2C interface connection to the Arduino Due4)

The pin connection of the device to the Arduino Due is equivalent to the connection to the PSoC® 6 WiFi-BT

Pioneer Kit. When using another Arduino or other digital pins, make sure that the respective pull-up resistors are
available.

4) Pinout of Arduino Due from https://content.arduino.cc/assets/Pinout-Due_latest.pdf

5.1 Arduino IDE

After installing the Arduino IDE, make sure to install the right package “Arduino SAM Boards” (32-bit ARM® Cortex-
M3) including the Arduino Due with the board manager (see Figure 11). Make sure to select the respective board

and COM port in the Tools dropdown menu (see Figure 12). Use the programming port for uploading sketches
and communicating with the Arduino Due. It is recommended to first check with the “Blink” example if

communication with the Arduino Due is present and responsive. After the communication with the Arduino Due

is set and confirmed, implementation of the code can begin.

Application note 15 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

Figure 11 Arduino IDE settings: board manager

Figure 12 Arduino IDE settings: selecting the port

Application note 16 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

5.2 Basic Arduino code for starting measurement

It is recommended to implement functions for read and write commands. After that the device can be initialized,
checked and operated. A measurement can be started just like with the PSoC® 6 WiFi-BT Pioneer Kit by writing

and reading the responding registers. One thing to note is that it is important to set sufficient delays so that no
command packages get lost or skipped. Following are four Arduino code examples: one for reading the register,
one for writing into the register, and one script each for utilizing these functions to start a single-shot
measurement or continuous mode measurement.

readByte

1 uint8_t readByte(uint8_t regAddress)

2 {

3 Wire.beginTransmission(deviceAddress);

4 Wire.write(regAddress);

5 Wire.endTransmission(false);

6 //request 1 byte from slave

7 if (Wire.requestFrom(deviceAddress, 1U, 1U) > 0)

8 {

9 return Wire.read();

10 }
11 else
12 {
13 return 0x0;
14 }
15 }

writeByte

1 bool writeByte(uint8_t regAddress, uint8_t data)

2 {

3

4 Wire.beginTransmission(deviceAddress);

5 Wire.write(regAddress);

6 Wire.write(data);

7 if (Wire.endTransmission() != 0)

8 {

9 return false;

10 }
11 else
12 {
13 return true;
14 }
15 }

Application note 17 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

Code for starting a single-shot measurement

1 #include <Wire.h>

2

3 #define deviceAddress 0x28

4 #define PERIOD 10000

5

6 void setup() {

7

8 Serial.begin(115200);

9 Wire.begin();

10
11 // Check sensor status
12 uint8_t sts = readByte(0x01);
13 Serial.print("Sensor status: ");
14 Serial.println(sts, HEX);
15
16 // Idle mode
17 writeByte(0x04, 0x00);
18 delay(400);
19
20 // Set pressure
21 writeByte(0x0B, 0x03);
22 writeByte(0x0C, 0xF5);
23 }
24
25 void loop()
26 {
27 // Trigger single measurement
28 writeByte(0x04, 0x01);
29 delay(1150);
30
31 // Get PPM value
32 uint8_t value1 = readByte(0x05);
33 delay(5);
34 uint8_t value2 = readByte(0x06);
35 delay(5);
36
37 // Calculate ppm value
38 int16_t result = value1 << 8 | value2;
39 Serial.print("CO2: ");
40 Serial.print(result);
41 Serial.println(" ppm");
42
43 delay(PERIOD);
44
45 }

Application note 18 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

Code for starting a continuous mode measurement

1 #include <Wire.h>

2 #define deviceAddress 0x28

3

4 void setup() {

5

6 Serial.begin(115200);

7 Wire.begin();

8

9 // Read ID

10 uint8_t id = readByte(0x00);
11 Serial.print("ID: ");
12 Serial.println(id, HEX);
13
14 // Check sensor status
15 uint8_t sts = readByte(0x01);
16 Serial.print("Sensor status: ");
17 Serial.println(sts, HEX);
18
19 // Idle mode
20 writeByte(0x04, 0x00);
21 delay(400);
22
23 // Set measurement rate to 10 s
24 writeByte(0x02, 0x00);
25 writeByte(0x03, 0x0A);
26
27 // Configure continuous mode
28 writeByte(0x04, 0x02);
29 }
30
31 void loop() {
32
33 // Poll measurement status
34 uint8_t meas_sts = readByte(0x07);
35 delay(100);
36
37 if (meas_sts == 0x10) {
38
39 // Get PPM value
40 uint8_t value1 = readByte(0x05);
41 delay(5);
42 uint8_t value2 = readByte(0x06);
43 delay(5);
44
45 // Calculate ppm value
46 int16_t result = value1 << 8 | value2;
47 Serial.print("CO2: ");
48 Serial.print(result);
49 Serial.println(" ppm");
50 }
51 delay(1000);
52 }

Application note 19 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

For the continuous mode, synchronization between application microcontroller and device needs to be
considered. It shall be noted that when a measurement sequence is initiated, the device does not respond to

any incoming frame for the duration of the measurement (~ 1 s) and will instead response with NACK. There are
two options to handle that based on the example.

• Configure the interrupt as data ready and monitor that if the measurement is done

• Repoll the measurement status again after receiving the NACK response (example in the Arduino library
available)

To ensure accurate and reliable measurement, the sensor must be operated within its recommended
measurement rate of 60 seconds. This measurement rate also helps to reduce power consumption and prolong

the longevity of the device. However, for certain use cases and demo purposes, faster measurement intervals
might be necessary. Therefore, an adaptive polling algorithm has been implemented that can be used to adjust
the measurement rate based on the CO2 concentration changes. This algorithm has the benefit of maintaining
accuracy and reducing power consumption while still ensuring fast measurements when required.

Code for adaptive polling

1 PAS_delta_change = 1.0 * (100.0 / (co2ppm_old + 1) * co2ppm) - 100;

2 If (abs(PAS_delta_change) >= 7.0 || abs(co2ppm_old - co2ppm) >= 75)

{

3 if (PERIODIC_MEAS_INTERVAL_IN_SECONDS != 5) {

4 PERIODIC_MEAS_INTERVAL_IN_SECONDS = 5;

5 PAS_ModeSwitch = 1;

6 } else {

7 PAS_ModeSwitch = 0;

8 Serial.println("PAS: already in FAST mode");

9 }

10 } else {
11 if (PERIODIC_MEAS_INTERVAL_IN_SECONDS != 60) {
12 if (PAS_min_FAST_records == 0) {
13 Serial.println("PAS: switch to SLOW mode");
14 PERIODIC_MEAS_INTERVAL_IN_SECONDS = 60;
15 PAS_ModeSwitch = 1;
16 PAS_min_FAST_records = 10;
17 } else {
18 Serial.print("PAS: IGNORE switch to SLOW mode: ");
19 Serial.print(PAS_min_FAST_records);
20 Serial.print(" Polling speed: ");
21 Serial.println(PERIODIC_MEAS_INTERVAL_IN_SECONDS);
22 PAS_min_FAST_records--;
23 }
24 } else {
25 PAS_ModeSwitch = 0;
26 Serial.println("PAS: already in SLOW mode");
27 }
28 }
29 co2ppm_old = co2ppm;
30 if (PAS_ModeSwitch = 1) {
31 err = cotwo.startMeasure(PERIODIC_MEAS_INTERVAL_IN_SECONDS);
32 }

Application note 20 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

The algorithm above is designed to adjust the measurement rate of the sensor based on changes in CO2
concentration. The algorithm starts by calculating the percentage change in CO2 concentration from the

previous measurement using the PAS_delta_change variable. If the absolute value of the change is greater than
or equal to a set threshold value (in this case 7.0) or the difference between the current and previous CO2

concentration is greater than or equal to 75 ppm, the measurement rate is changed to 5 seconds to increase
frequency. If the change is less than the specified threshold, the measurement rate is changed to 60 seconds to

reduce frequency. The algorithm includes a minimum number of fast measurements before transitioning back
to the slow measurement rate. This way, the algorithm ensures that the measurements are taken with an optimal

interval, reducing the number of unnecessary measurements and conserving power while maintaining accuracy
and stability. The code snippet can be integrated in the user’s routine or also in the provided Arduino library.

5.3 Arduino library

The core library is C based and provides a platform-independent driver for the XENSIV™ PAS CO2 sensor. It
provides full access to all features of the sensor. The driver consists of 4 files.

Table 3 Core C driver

Full documentation and overview to the driver can be found on the GitHub.

https://github.com/Infineon/sensor-xensiv-pasco2

And the documentation with detail explanation for all macros, enumerations and functions can be found here:

https://infineon.github.io/sensor-xensiv-pasco2/html/group__group__board__libs.html

The Arduino library is using this core C driver with a C++ wrapper to follow the ecosystem design pattern so that

Arduino users find in this library what they are used to.

Table 4 Arduino library

Source code Description

xensiv_pasco2_ver.h Contains the exact version of the XENSIVTM PAS CO2 sensor

xensiv_pasco2_regs.h Contains the register definitions for interacting with the XENSIVTM PAS CO2

sensor

xensiv_pasco2.h Contains full functions for interacting with the XENSIVTM PAS CO2 sensor

xensiv_pasco2.c Contains full functions for interacting with the XENSIVTM PAS CO2 sensor

Source code Description

pas-co2-pal-ino.cpp Target platform-specific implementation

pas-co2-platf-ino.hpp Default board definition and selection by conditional compiling

pas-co2-ino.hpp Contains functions for interacting with the XENSIVTM PAS CO2 sensor adapted

from the core driver

pas-co2-ino.cpp Contains functions for interacting with the XENSIVTM PAS CO2 sensor adapted

from the core driver

https://github.com/Infineon/sensor-xensiv-pasco2
https://infineon.github.io/sensor-xensiv-pasco2/html/group__group__board__libs.html

Application note 21 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Quick start with the Arduino Due

The Arduino library includes 6 examples which the user can modify and use as a reference.

Table 5 Arduino examples

Full documentation of the Arduino library can be found on the GitHub.

https://github.com/Infineon/arduino-pas-co2-sensor

Example Description

alarm-notification Readout of the sensor CO2 concentration based on threshold crossing and

synched via hardware interrupt

device-id Readout of the sensor devices product and revision identifiers

single-shot-mode Readout of the sensor CO2 concentration value using single shot measurement

mode

continuous-mode Readout of the sensor CO2 concentration value using continuous measurement

mode

forced-compensation Set CO2 reference offset using forced compensation

early-notification Readout of the sensor CO2 concentration based on early notification synched via

hardware interrupt

https://github.com/Infineon/arduino-pas-co2-sensor

Application note 22 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

6 UART interface

When UART is selected as serial communication interface with setting pin PSEL to high, the device acts as an
UART slave. As a result, it is recommended that the master uses a time out mechanism. The device operates via
UART for point to point communication and therefore bus operation is not supported.

The basic format of a valid UART frame is: 1 start bit, 8 data bits, no parity bit and 1 stop bit. The baud rate is

9.6kbps. The master combines several UART frame into a message (read or write). The combination of master
request and salve answer defines a transaction.

If the device detects a valid incoming message, it shall respond it with an acknowledge frame. Otherwise, it will
issue a NAK notification.

It shall be noted that when a measurement sequence is initiated, the device does not respond to any incoming

frame for the duration of the measurement sequence (either ACK or NAK). A message sent during a measurement

sequence shall be therefore resent by the master once the measurement sequence is completed.

The device does not support bulk read and write operations. Only singly data bytes can be read or written
within one transaction.

Figure 13 XENSIVTM PAS CO2 Sensor2Go Kit UART interface connection to the Arduino Due4)

Application note 23 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

6.1 Write transactions

A Write transaction is initiated by the message made by the frame sequence below:

Frame Description Frame Payload Comments

1 Initiate request 0x57 (ASCII code for “W”) or

0x77 (ASCII code for “w”)

2 Delimiter 0x2C (ASCII code for “,”)

3 Address 1

(4 most significant bits)

ASCII code of the hex value of

the 4 most significant bits of

the register address.

E.g.: in order to write register at

address 0FH, the payload should be

0x30 (ASCII code for ”0”).

4 Address 2

(4 least significant bits)

ASCII code of the hex value of

the 4 least significant bits of

the register address.

E.g.: in order to write register at

address 0FH, the payload should be

0x46 (ASCII code for ”F”)

5 Delimiter 0x2C (ASCII code for “,”)

6 Data 1

(4 most significant bits)

ASCII code of the hex value of

the 4 most significant bits of

the written data.

E.g.: in order to write data 42H, the

payload should be 0x34 (ASCII

code for ”4”).

7 Data 2

(4 least significant bits)

ASCII code of the hex value of

the 4 least significant bits of

the written data.

E.g.: in order to write data 42H, the

payload should be 0x32 (ASCII

code for ”2”).

8 End of message 0x0A (ASCII code for line feed

“\n”)

1-8 Full message 0x57 0x2C 0x30 0x46 0x2C 0x34

0x32 0x0A

Combined and translated format:

W,0F,42\n

At the end of the reception the incoming message, the device answers with an answer message.

Application note 24 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

If the write operation is valid, the device (slave) answers it with the following message:

Frame Description Value Comments

1 ACK 0x06 (ASCII code for “ACK”)

2 End of message 0x0A (ASCII code for line feed

“\n”)

If the write operation is not valid, the device answers with the following message:

Frame Description Value Comments

1 NAK 0x15 (ASCII code for “NAK”)

2 End of message 0x0A (ASCII code for line feed

“\n”)

6.2 Read transactions

A Read transaction is initiated by the message made by the frame sequence below:

Frame Description Frame Payload Comments

1 Initiate request 0x52 (ASCII code for “R”) or

0x72 (ASCII code for “r”)

2 Delimiter 0x2C (ASCII code for “,”)

3 Address 1

(4 most significant bits)

ASCII code of the hex value of

the 4 most significant bits of

the register address.

E.g.: in order to write register at

address 0FH, the payload should be

0x30 (ASCII code for ”0”).

4 Address 2

(4 least significant bits)

ASCII code of the hex value of

the 4 least significant bits of

the register address.

E.g.: in order to write register at

address 0FH, the payload should be

0x46 (ASCII code for ”F”)

5 End of message 0x0A (ASCII code for line feed

“\n”)

1-5 Full message 0x52 0x2C 0x30 0x46 0x0A Combined and translated format:

R,0F\n

Application note 25 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

At the end of the reception the incoming message, the device answers with an answer message.

If the read operation is valid, the device (slave) answers it with the following message:

Frame Description Value Comments

1 Data 1

(4 most significant bits)

ASCII code of the hex value of

the 4 most significant bits of

the written data.

2 Data 2

(4 least significant bits)

ASCII code of the hex value of

the 4 least significant bits of

the written data.

3 End of message 0x0A (ASCII code for line feed

“\n”)

If the read operation is not valid, the device answers with the following message:

Frame Description Value Comments

1 NAK 0x15 (ASCII code for “NAK”)

2 End of message 0x0A (ASCII code for line feed

“\n”)

6.3 Arduino examples

Following the example commands of the write and read transactions above, a small Arduino example is shown.
The scratch pad register is used which provides a readable and writable field for testing.

Figure 14 Scratch pad example via UART

Application note 26 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

Scratch pad example

1 byte i;

2 int incomingByte[4];

3

4 void setup() {

5

6 Serial.begin(9600);

7 Serial1.begin(9600);

8

9 Serial.println("Scratch pad example");

10 Serial.println("Writing 0x42 into scratch pad");
11 Serial.println("0x42 = 0x34 (ASCII code for 4) and 0x32 (ASCII code

for 2)");

12
13 // Write into scratch pad
14 Serial1.write("W,0F,42\n");
15 delay(50);
16
17 // Read scratch pad
18 Serial1.write("R,0F\n");
19 delay(50);
20
21 // Write received data to buffer
22 while (Serial1.available() > 0) {
23 incomingByte[i] = Serial1.read();
24 i++;
25 }
26
27 // Read received data from buffer
28 Serial.print("Write operation status: ");
29
30 for (i = 0; i < 2; i = i + 1) {
31 Serial.print(incomingByte[i], HEX);
32 Serial.print(" ");
33 }
34
35 Serial.println();
36
37 Serial.print("Read scratch pad: ");
38 for (i = 2; i < 5; i = i + 1) {
39 Serial.print(incomingByte[i], HEX);
40 Serial.print(" ");
41 }
42 }
43
44 void loop() {
45
46 }

Application note 27 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

The next example is showing how to use the write and read transactions to start a measurement in continuous
mode and reading out the CO2 concentration. This example includes a function which translates the ASCII values

to HEX values for correct readings in ppm.

Continuous mode with ASCII conversion example

1 byte i;

2 char incomingByte[255], CO2_MSB[255], CO2_LSB[255];

3 int CO2MSB, CO2LSB;

4 long res = 0L ;

5

6 void setup() {

7 Serial.begin(9600);

8 Serial1.begin(9600);

9

10 Serial1.write("R,00\n");
11 delay(50);
12
13 Serial.println("Read FW Version");
14
15 // Write received data to buffer
16 while (Serial1.available() > 0) {
17 incomingByte[i] = Serial1.read();
18 i++;
19 }
20
21 // Read received data from buffer
22 Serial.print("Response: ");
23 for (i = 0; i < 3; i = i + 1) {
24 Serial.print(incomingByte[i]);
25 Serial.print(" ");
26 }
27
28 Serial.println("Start measurement with 10s sampling rate");
29
30 // Idle mode
31 Serial1.write("W,04,00\n");
32 delay(100);
33
34 // Set measurement rate to 10 s
35 Serial1.write("W,02,00\n");
36 delay(100);
37
38 Serial1.write("W,03,0A\n");
39 delay(100);
40
41 // Configure continuous mode
42 Serial1.write("W,04,02\n");
43 delay(12000);
44
45 // Write received data to buffer
46 while (Serial1.available() > 0) {
47 incomingByte[i] = Serial1.read();
48 i++;
49 }
50 }

Application note 28 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

UART interface

Continuous mode with ASCII conversion example

51
52 void loop() {
53
54 i = 0;
55 Serial1.write("R,05\n");
56 delay(50);
57
58 // Write received data to buffer
59 while (Serial1.available() > 0) {
60 CO2_MSB[i] = Serial1.read();
61 i++;
62 }
63
64 for (i = 0 ; i < 2 ; i++) {
65 res <<= 4 ;
66 res += hex2bin (CO2_MSB[i]) ;
67 }
68 CO2MSB = res;
69
70 i = 0;
71 Serial1.write("R,06\n");
72 delay(50);
73
74 // Write received data to buffer
75 while (Serial1.available() > 0) {
76 CO2_LSB[i] = Serial1.read();
77 i++;
78 }
79
80 for (i = 0 ; i < 2 ; i++) {
81 res <<= 4 ;
82 res += hex2bin (CO2_LSB[i]) ;
83 }
84 CO2LSB = res;
85
86 int16_t result = CO2MSB << 8 | CO2LSB;
87 Serial.print("CO2: ");
88 Serial.print(result);
89 Serial.println(" ppm");
90
91 delay(10000);
92 }
93
94 int hex2bin (char c)
95 {
96 if (c >= '0' && c <= '9')
97 return c - '0' ;
98 if (c >= 'A' && c <= 'F')
99 return c - 'A' + 10 ;
100 if (c >= 'a' && c <= 'f')

101 return c - 'a' + 10 ;

102 }

Application note 29 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

PWM interface

7 PWM interface

In case no communication interface is available PWM_DIS pin can be used to control the device. PWM_DIS is first
asserted after the power on boot sequence (not after soft reset) and the level of the pin is checked. If a low level
is detected, an internal interrupt routine configures the device into continuous mode and a measurement

sequence is started. At the end of each measurement sequence, the level of pin PWM_DIS is polled. If it is high,
then the device is configured back to idle mode and output pin PWM is disabled.

Pin PWM offers the possibility to read out the CO2 concentration by delivering a PWM signal whose timing

information contain the CO2 concentration value. At the end of each measurement sequence, the device updates
the PWM timing with the measured CO2 concentration. To enable the PWM output two conditions must be met:

• PWM output needs to be enabled by software in the measurement mode configuration register

• PWM_DIS pin needs to be set to GND

Figure 15 XENSIVTM PAS CO2 Sensor2Go Kit PWM connection example

The main specifications of the PWM signal are summarized below. The output signal can be converted by either
directly measuring the pulse-duration or alternatively by employing a low-pass filter and measuring the output

voltage.

Parameter Value

Base frequency 80Hz

Duty cycle Linear from 0% (0ppm) to 100% (10,000ppm)

Resolution 1 ppm (1.25µs)

Application note 30 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

PWM interface

Typically, the PWM signal is converted to a voltage signal via a low pass filter. Since there’s an inherent trade-off
between settling time, ripple and current consumption, the ideal parameterization of the low pass filter differs

depending on the application. It needs to be considered that the ripple on the PWM introduces potentially an
error on the CO2 concentration reading. An estimation on the introduced error is shown below.

Concentration Duty cycle Expected

error

ON time Target

voltage

Ripple Error

introduced

400 ppm 4% +/- 42 ppm 0.5 ms 0.132V +/- 8mV +/- 24 ppm

5000 ppm 50% +/- 180 ppm 6.25ms 1.65V +/- 50mV +/-150 ppm

The number of PWM pulse issued at pin PWM depend on the device’s configuration which is covered by the
measurement mode configuration register. In PWM single pulse mode only a single PWM pulse is generated

before the device goes inactive. In PWM pulse train mode, a pulse train of 160 pulses (approx. 2sec) is issued
before the device goes inactive. For calculating in single pulse mode, the high duty time of the pulse needs to be

compared against the 80 Hz frequency considering the resolution of 1 ppm equals to 1.25 µs. For calculating in
pulse train mode, the duty cycle needs to calculated considering the values 0% (0ppm) to 100% (10,000ppm).

Figure 16 PWM output in single pulse mode

Application note 31 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

PWM interface

Figure 17 PWM output in single pulse mode (zoomed to pulse)

The measured high duty time of the PWM pulse in the example in Figure 14 is 701 µs. Calculating from the
resolution where 1.25 µs equals to 1 ppm, the calculated CO2 concentration reading is 560 ppm.

Figure 18 PWM output in train pulse mode

Application note 32 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

PWM interface

Figure 19 PWM output in train pulse mode (zoomed to pulse)

The measured high duty time of one PWM pulse of the PWM pulse train in the example in Figure 16 is 631.18 µs.

The measured low duty time is 11.76 ms which results in a duty cycle of 5.37 % (= 537 ppm).

In case of any technical questions please visit our community forum and have a look if similar questions are
already posted or create a new one.

https://community.infineon.com/t5/CO-sensor/bd-p/CO2Sensors

https://community.infineon.com/t5/CO-sensor/bd-p/CO2Sensors

Application note 33 of 34 V 2.2

 2024-04-01

Programming guide for XENSIVTM PAS CO2

Revision history

Revision history

Document

version

Date of release Description of changes

V 1.0 04.11.2020 Creation

V 2.0 01.07.2021 Added description to UART, PWM and additional functionality

V 2.1 01.07.2022 Added section for available libraries

V 2.2 01.04.2024 Added UART examples, pressure calculation based on altitude, adaptive

polling and XENSIVTM PAS CO2 5V relevant information

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-04-01

AN_2011_PL38_2011_134235

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this user manual is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
user manual must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this user manual.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

