Safe and reliable MOSFET operation in bidirectional power switch (BDPS) applications

How to choose the right MOSFET to ensure battery protection against abnormal conditions

Abstract

The global market for battery-powered applications is rapidly growing, including power tools, service robots, light electric vehicles, and many others.

The evolution of switched-mode power supply (SMPS) topologies enables designers to ensure safe charging and discharging of the equipment’s battery using bidirectional converters through the same terminal. However, to meet the safety requirements and prevent damage and failures, those SMPS need to be equipped with a protection switch. Bidirectional switches are widely used in Battery Management Systems (BMS) to charge/discharge and protect against various failures like inrush current, overcurrent, short-circuit, reverse voltage, or overvoltage and undervoltage.

In this paper, we present the guidelines that can help designers develop an appropriate bidirectional protection power switch (BDPS) circuit such that the MOSFETs are operating within their safe operating area (SOA).

by

Susheel Badha, Senior Application Engineer, Battery Management Systems (BMS), Infineon Technologies

Mahmoud Ismail, Senior Application Marketing Expert, BMS, Infineon Technologies

Filippo Rosetti, Staff Application Marketing Expert, BMS, Infineon Technologies
Table of contents

Abstract 1

1 What is a bidirectional power switch (BDPS) and how to realize it 3

2 Selecting the proper MOSFET for a protection power switch 4
 2.1 Avalanche-free operation 5
 2.2 Maximum current per MOSFET 6
 2.3 Number of MOSFETs required in parallel 7
 2.4 Power dissipation 7
 2.5 Temperature rise 8
 2.6 Safe operation of MOSFETs 8
 2.6.1 Transient junction temperature 9
 2.6.2 Linear turn on/off operation 10

3 Summary 14

References 15
1 What is a bidirectional power switch (BDPS) and how to realize it

A bidirectional switch is an active switch that has the ability to block the current in both directions. It offers effective protection against abnormal conditions like a short-circuit, reverse voltages, etc., that occur accidentally or due to manual errors in battery/SMPS terminals.

A BDPS can be realized by using two N- or P-channel FETs. N-channel FETs are preferred out of these two due to low $R_{DS(on)}$ and cost compared to P-channel FETs. Because of the body diode, a single MOSFET can pass or block the current in only one direction. The configurations shown below in Figure 1 are required to realize a BDPS.

![BDPS configurations](image)

Figure 1 BDPS configurations
2 Selecting the proper MOSFET for a protection power switch

To enhance efficiency, battery backup duration, effective protection against failures, and to avoid the cost of thermal solutions, MOSFETs selected for BDPS shall offer:

- Lower power dissipation
- Better thermal interface
- Avalanche-free operation
- Identical current sharing between parallel MOSFETs
- Proper and safe turn on/off operation

Considering the various parasitic effects, the MOSFETs used for BDPS ensure their safe operation in normal and abnormal cases that a certain application can expect. Figure 2 below shows the high-level schematic of a system with a battery, a load, and a BDPS. Additionally, various wires and parasitics are modeled. A worst-case scenario depicted in a short circuit event is analyzed to correctly select the type and amount of MOSFETs for the BDPS.

![MOSFETs topology as low-side BDPS](image)

Table 1 summarizes the design parameters assumed in this article to illustrate the MOSFET selection for BDPS.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V_{IN}</td>
<td>50 V</td>
</tr>
<tr>
<td>Continuous current</td>
<td>I_{cont}</td>
<td>50 A</td>
</tr>
<tr>
<td>Cable and parasitic inductance</td>
<td>L_{loop}</td>
<td>1.5 μH</td>
</tr>
<tr>
<td>Short-circuit current (*)</td>
<td>I_{SC}</td>
<td>100 A</td>
</tr>
<tr>
<td>Controller detection time or short circuit duration</td>
<td>t_{SC}</td>
<td>100 μs</td>
</tr>
<tr>
<td>Change in current during short circuit</td>
<td>dl/dt</td>
<td>7 A/μs</td>
</tr>
<tr>
<td>Maximum allowable temperature rise</td>
<td>T_{max}</td>
<td>90°C</td>
</tr>
<tr>
<td>Maximum ambient temperature</td>
<td>T_{amb}</td>
<td>50°C</td>
</tr>
</tbody>
</table>

(*) It can be estimated from source/battery voltage and its impedance

www.infineon.com/bms
2.1 Avalanche-free operation

Typically MOSFETs used as protection switches are programmed to turn on slowly to limit inrush current and turn off as fast as possible to protect against abnormal conditions (such as a short-circuit or an overcharge etc.). During turn on/off, MOSFETs shall be operated within the safe limits as indicated in section "Safe operation of MOSFETs."

The fast switching off of MOSFETs in the events like a short-circuit leads to high dl/dt currents through the loop inductance and induces high voltage \(V_L = L \cdot \frac{dI}{dt} \). Eventually, this voltage adds to the drain voltage of the MOSFET (as shown in Figure 3), which could lead the MOSFET into avalanche. The maximum voltage across the MOSFET used in the protection switch can be calculated by Equation 1. To avoid MOSFET avalanching, the breakdown voltage of the selected MOSFET needs to be higher than the maximum voltage \(V_{\text{max}} \) calculated. In this case, IPT020N10N5, an OptiMOS™ 5 100V power MOSFET in TO-Leadless (TOLL) package, is selected.

![Figure 3 Typical waveform during short-circuit](image)

\[
V_{\text{max}} = V_{\text{IN}} + L_{\text{Loop}} \cdot \frac{dI}{dt} \ [V] \tag{1}
\]

Design: \(V_{\text{max}} = 50 \ V + (2 \cdot 1.5 \ \mu \text{H}) \cdot 7 \ \frac{\text{A}}{\mu\text{s}} = 92 \ V \)

Selected MOSFET: 100 V, 1.5 m\(\Omega \) (IPT020N10N5)
2.2 Maximum current per MOSFET

Equation 2 calculates the maximum current (I_{allowed}) that a MOSFET can carry at the maximum operating temperature allowed by each application.

$$I_{\text{allowed}} = \sqrt{\frac{T_{\text{max}} - T_{\text{amb}}}{R_{\text{DS(on)@100°C}} \cdot R_{\text{thJA}}}} \text{ [A]}$$

Design:

$$I_{\text{allowed}} = \sqrt{\frac{90°C - 50°C}{2.16 \text{ mΩ} \cdot 40°C/W}} = 21.5 \text{ A}$$

From Equation 2, it can be noted that the lower the thermal resistance of a MOSFET, the higher is the current through it.

Infineon’s MOSFET portfolio is available in different packages offering various thermal resistances. (Figure 4).

Figure 4 MOSFET package area vs. thermal resistance vs. current
2.3 Number of MOSFETs required in parallel

Typically, MOSFETs are paralleled for high-current applications to reduce losses and distribute temperature evenly on the PCB.

Equation 3 estimates the number of MOSFETs in parallel (N) that can achieve the desired operating temperature.

\[
N = I_L \cdot \frac{R_{\text{DS(on)}} \cdot R_{\text{thJA}}}{\sqrt{T_{\text{max}} - T_{\text{amb}}}} \cdot \frac{I_{\text{cont}}}{I_{\text{allowed}}}
\]

Eq. 3

Design:

\[
N = \frac{50 \text{ A}}{21.5 \text{ A}} = 2.33 \approx 3 \text{ MOSFETs}
\]

The calculated value is rounded up to the next higher value. 3 MOSFETs are selected in parallel.

MOSFETs have a positive temperature coefficient, meaning that R_{\text{DS(on)}} increases with the device temperature.

Due to I^2R or conduction losses, the die temperature of the MOSFETs increases. But the temperature of the MOSFET with low R_{\text{DS(on)}} shares a higher current, and its R_{\text{DS(on)}} increases due to higher I^2R losses, resulting in a stable thermal state after a specific duration.

However, the MOSFET with the lowest R_{\text{DS(on)}} is the hottest one, and it must be ensured that the temperature on this MOSFET shall be less than the operating temperature specified in its datasheet.

2.4 Power dissipation

Conduction or I^2R losses (P_{\text{cond}}) of a MOSFET is the lone contributor to the losses in a BDPS. MOSFETs best-suited for BDPS offer best-in-class low on-resistance (R_{\text{DS(on)}}). As discussed previously, the R_{\text{DS(on)}} of the MOSFET increases with increasing temperature. For safe operation, MOSFETs are mainly operated below 100°C. Considering the R_{\text{DS(on)}} of MOSFETs at 100°C, the conduction losses of the MOSFET can be calculated using Equation 4.

\[
P_{\text{cond}} = \left(\frac{I_{\text{cont}}}{N}\right)^2 \cdot R_{\text{DS(on)}}@100^\circ\text{C} \quad [W]
\]

Eq. 4

Design:

\[
P_{\text{cond}} = \left(\frac{50 \text{ A}}{3}\right)^2 \cdot 2.16 \text{ mΩ} = 0.6 \text{ Watt}
\]

Due to its more than 40 years of MOSFET experience and continuous package and technology innovation, Infineon can offer decreased R_{\text{DS(on)}} values when moving from OptiMOS™ 3 to OptiMOS™ 5 in the same package to enable better performance in applications such as BDPS where low R_{\text{DS(on)}} is critical.
2.5 Temperature rise

The maximum allowable temperature rise on the device depends on the application area. Case temperature of the MOSFET is calculated from Equation 5.

\[T_{\text{FET}} = \left(\frac{P_{\text{cond}} \cdot R_{\text{thJA}}}{W} + T_{\text{amb}} \right) \quad [\degree C] \]

Design:

\[T_{\text{FET}} = (0.6 \text{ W} \cdot 40 \degree C/W + 50 \degree C) \degree C = 74 \degree C \]

\[R_{\text{thJA}} = 40 \degree C/W \text{ (from the datasheet of IPT020N10N5)} \]

The estimated temperature on the MOSFET is below the maximum allowable temperature rise \(T_{\text{max}} \) on the devices (i.e., 95°C) and satisfies the design requirement.

2.6 Safe operation of MOSFETs

Usually, housekeeping ICs (such as battery monitoring ICs, comparator ICs, etc.) or controllers are employed to detect faults and control protection switches. These controllers need time to detect and respond to the faults. In the case of a short-circuit (as shown in Figure 3), MOSFETs shall withstand and shall not fail for such response periods \(t_{\text{sc}} \).

A slow turn-on of protection switches is mainly preferred to limit inrush current and the fast turn-off to protect against faults. During this turn-on/off time, MOSFETs are subjected to pass through linear mode.
operation (highlighted by the yellow shaded region in Figure 3). Therefore, the MOSFETs selected as protection switches must be carefully analyzed for:

- Transient junction temperature rise
- Linear turn-on/off operation

2.6.1 Transient junction temperature

Short high-current pulses during a short-circuit period (T_{sc}) or short high-power dissipation during inrush current limiting period can create a hot spot on the MOSFET die. To ensure safe operation, the transient junction temperature of the MOSFET must be below the silicon operating temperature specified in the device datasheet.

Equation 6 below uses the transient thermal impedance from the datasheet to estimate the junction temperature on the FET.

\[
T_{JSC} = \left(\frac{I_{SC}^2 \cdot R_{DS(on)}@100^\circ C}{N} \cdot Z_{thJC1} \right) + T_{JFET} \text{[°C]}
\]

Eq. 6

Design:

\[
T_{JSC} = \left(\frac{100 \, A^2 \cdot 2.16 \, m\Omega}{3} \cdot 0.04^\circ C/W \right) + 85^\circ C = 85.3^\circ C
\]

Z_{thJC1}: refer to Figure 6

Short circuit current of 100 A for 100 μs through MOSFET increase temperature by 0.3°C. At the end of short circuit event temperature rise of FET is 85.3°C.
2.6.2 Linear turn on/off operation

During a turn-on/-off event, the MOSFET used as the protection switch accommodates linear mode operation. Under abnormal conditions such as a short-circuit, a safe design ensures a MOSFET operation within its safe operating area (SOA).

In MOSFETs datasheets, SOA boundaries are defined at a specific squared pulse duration. As explained in [1], the protection switch operates at certain dV/dt or dI/dt, which means that non-squared power pulses are applied during turn-on/off.

So, it is not possible to use the SOA chart from MOSFET datasheets directly. Instead, in case of critical and abnormal conditions, one should perform the following calculation steps:

STEP 1: Calculate transient power dissipated

\[P(t) = V_{DS}(t) \cdot I_D(t) \ [°C] \]

Eq. 7
Figure 7 \(V_{DS}(t), I_D(t), \) and \(P_D(t) \) waveforms

Step 2: Integrate the power dissipated during turn on/off event to calculate dissipated energy

\[
E = \int_{t_0}^{t_1} P(t) \, dt \quad [\text{J}]
\]

Design:

\[E = 15 \text{ mJ} @ \Delta t = 10 \mu s \]

Figure 8 Energy dissipation
STEP 3: Estimate the squared power by dividing the energy calculated from Eq. 8 with time $\Delta t = t_1 - t_0$.

$$P_{\text{ squared}} = \frac{E}{\Delta t} \text{ [W]}$$

Design:

$$P_{\text{ squared}} = \frac{15 \text{ mJ}}{10 \mu s} = 1500 \text{ W}$$

Equation 9

Figure 9 Squared power dissipation

STEP 4: Derate the SOA to $T_{J, \text{FET}}$ (refer to [1] for SOA derating) and plot the estimated squared power line on SOA Chart (considering, for example, $t_{\text{pulse}} = \Delta t = 10 \mu s$)
Based on the above, one can conclude that the design is safe because the estimated squared power line (1500 W at 10 μs) is far below the SOA limit at $t_{\text{pulse}} = 10 \mu s$.

STEP 5: Due to a short circuit detection, the MOSFET temperature rises to $T_{J, SC}$. Following that, the MOSFET temperature can rise again above $T_{J, SC}$ due to a slow turn-off. During this turn-off, the MOSFET passes through the linear region for a short duration. This increases the power dissipated in the MOSFET, which increases the temperature. This temperature increase can be calculated by using Equation 10 below, which is derived by Equation 6:

$$T_{J, \text{off}} = (P_{\text{squared}} \cdot Z_{th}C2) + T_{J, SC} \quad [^\circ C]$$

Eq. 10

Design:

$$T_{J, \text{off}} = (1500 \text{ W} \cdot 0.01 \text{ °C/W}) + 85.3 \text{ °C} = 100.3 \text{ °C}$$

In this case, during switch-off, MOSFET’s temperature rises to 100.3°C, which is below the operating temperature of 150°C.
3 Summary

Various factors come into account for ensuring a safe and reliable MOSFET performance in a protection switch application. Key considerations for proper MOSFET selection for this very application area must include low power dissipation, excellent thermal interface, avalanche-free operation, identical current sharing between parallel MOSFETs, and proper and safe turn-on/off operation.

In this article, Infineon presented a framework for designing a protection switch for unidirectional or bidirectional direction protection switch circuits such that the MOSFETs are operating within their safe operating area.

To explore Infineon’s MOSFET offering and broad solution portfolio for protection switch applications, please visit our Battery Management System related web page and our power MOSFET related web page.
References

Safe and reliable MOSFET operation in bidirectional power switch (BDPS) applications
How to choose the right MOSFET to ensure battery protection against abnormal conditions

Please note!
This Document is for information purposes only and any information given herein shall in no event be regarded as a warranty, guarantee or description of any functionality, conditions and/or quality of our products or any suitability for a particular purpose. With regard to the technical specifications of our products, we kindly ask you to refer to the relevant product data sheets provided by us. Our customers and their technical departments are required to evaluate the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given herein at any time.

Additional information
For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings
Due to technical requirements, our products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life endangering applications, including but not limited to medical, nuclear, military, life critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.