E»J

K

‘————__?.5 CYPRESS

&

PERFORM

PSoC® Creator™

Universal Digital Block (UDB) Editor Guide

Document Number 001-94131, Rev. **, 9/24/2014

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone): 408.943.2600

http://www.cypress.com

Copyrights

Copyrights
Copyright © 2014 Cypress Semiconductor Corporation. All rights reserved.

"Programmable System-on-Chip," PSoC, PSoC Designer, and PSoC Express are trademarks of Cypress Semiconductor
Corporation (Cypress), along with Cypress® and Cypress Semiconductor™. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear
in this document. No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against
all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its
family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used.
There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our
knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can
guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.

2 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

=% CYPRESS

PERFORM

LT o T 11T o) 4
LT = L = T 1 = PO UPTSP 4

(070 01T o1 o] o 1< ORI 6
ACronyMS and ADDIEVIatioNScoo oo ———— 6

L= 1= =Y L= RS 6
REVISION HISTOIY ... ettt a bt s b e e e s e e e ab b e e e e aabee e e e annes 6

UDB EdifOr OVEIVIEW.........ciiiiiiiiiicieiiieiets s s s sss s s sss s sa s s e sa s ne s s e an e e ea e e e £a s an e e £a s sneseasnne e easnnnenasannennnnan 7
OpPENING the UDB EIfOrueiiiiii ittt e e e e e e e e e ettt e e e e e e e st s aeeeeeaeeesnntaneeeaeeesananes 8

(81 S o 1 (o g = 1= 0 0 =T oSS 9
Datapath ... ——————— 10

(O70] g1 fo] Il =T 11 =Y SRS PR 18

STAIUS REGISTEN ...ttt s b e e e b e e e 19

Status INTErTUPT REGISTEN ..o e e e e e e s e 20

L0700 | 7 70T o1 (Y S 21

STALE MACKINE ...ttt et e e e e e e e e e e e n e e e e e nee e e e nnees 22

0] 2 O o 1 (o T Y o 1= SRS 25
Example UDB Editor DeSigN......ccuuiiurreiiiueriiissssiissssiisssssissssss s s s s s sss s s sas s sasssss s sassssna sassnnasasssnnanas 27
Step 1: Create a Custom COMPONENT et e e e e e e e e e e e e e e e s neeeeeeaaaeaaannes 28

Step 2: Define the Component Inputs and OUIPULS...........ooiiiiiiiiiiiiiiie e 29

Step 3: Create a State Machine to Control the Datapath INpUtSoooiiiiii e 30

Step 4: Configure the Datapathooooiiiiii e a e e 34

Step 5: Create the Component SYMDOL....... ... et e e e e e e e e e e e e e annes 41

Step 6: Build the ComMPONENt APIS ...ttt e e e e e e e e e e e e e e e e e nenneeeaaaeaaannes 42

Step 7: Use the NeW COMPONENTcoiiiiiiiiiiiiie et e e e e e e e e e e s et beeeeeaeeesenreaneeeaeeeeaanes 44

F o (o1 1[o] g k=1 o] o] [=Tex £ USSR PPPR 46
Appendix A: Datapath OpPerationccccccciiiiiiicciiseirrr s sss s e s s s s s sme e e e e eesssssssms s e e s eessssssnnnenensnnansnen 47
Datapath INSIIUCHIONS ... 47
Datapath REGISIEISco it b e e e e b e e e e e b e e e s abae e e e aanes 48
Datapath INPUIS/OULPULS ...ttt e e e e e ettt e et e e e e e st e e e e e e e e e e nnenneeeeaeeeaannes 49

L (O 1Y oo 1= SRS 49
Appendix B: UDB Editor SYNtaX ..o scsms s ssms e s mms e s e s nmmme e e e nnnn 51

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 3

Introduction

This document provides a guide to learn about and use the PSoC Creator Universal Digital Block (UDB) Editor. It
provides basic information about UDBs, an overview and description of the UDB Editor, and an example UDB
Editor design. The appendices provide more detailed information about UDB elements and expressions.

What is a UDB?

A UDB is a flexible, programmable digital block inside a PSoC device that is designed to realize synchronous
State Machines. The following figure shows the main blocks in a UDB from a high level. For detailed information
about the UDB architecture of a specific device, refer to that device Technical Reference Manual (TRM).

Bus clock

User clock

PLD
Reg

PLD based
State machine

A UDB is capable of an array of functions including:
m Cascading multiple UDBs to make a wider than 8-bit function
m Communication components (like SPI, I°’C, and UART)

m Flexible logic machines (like PWMs)

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 4

Introduction

Each 8-bit wide UDB has five elements:

m A Datapath element is an 8-bit wide processor that can be used to perform simple arithmetic and bitwise
operations on data words. It can be chained to form 16-, 24-, and 32-bit wide processors. It can have up
to 8 user-defined instructions that are often driven using the programmable logic device (PLD) based
State Machine. Datapaths form the core of many UDB designs and should be used in preference over
PLD designs when 8-bit words or larger are used. A DP element has:

A programmable 8-bit wide Arithmetic Logic Unit (ALU)
Two 8-bit accumulator registers (A0, A1)

Two 8-bit data registers (DO, D1)

Two 8-bit wide, 4 deep FIFOs (FO, F1)

A shifting function

o o o g

A masking function

See Datapath Registers for more details about registers.

m Two 12C4 PLDs (used to create State Machines). These are most often used to create logic to control the
other structured resources available in a UDB. PLD-based designs are composed of both combinational
logic and sequential logic. The sequential logic is driven with the user clock. Although PLDs are the most
flexible element in a UDB, it is also relatively limited resource. Therefore it is recommended to use the
other structured blocks as much as possible when implementing large designs.

m An 8-bit wide Control Register (accessible from the processor and the PSoC hardware). A Control
Register is used in a UDB to control the digital hardware with the CPU. Using a Control Register, it is
possible for the CPU to directly send logic values to the UDB hardware. The reading and writing of the
Control Register from the CPU is performed at the bus clock, unless it is in sync or pulse mode with the
user defined clock. In this case, it will run at the clock rate of the UDB Editor component (specified by the
"clock" input of the component).

m An 8-bit wide Status Register (accessible from the processor and the PSoC hardware). A Status Register
is used to read logic values from the UDB and CPLD logic into the CPU. The rate at which the Status
Register reads the digital logic is controlled by the bus clock. Status registers also have the ability to
mask 7 bits in the status register for generating an interrupt. This is accomplished by using one pin for the
interrupt output and the other 7 bits as the maskable triggers for the interrupt.

m A 7-bit down counter (Count7) that can be used instead of implementing a counter in a State
Machine/Verilog or a Datapath. This uses the same resource as a Control Register. The terminal count of
the counter can then be used throughout your design.

These elements can be used to form many types of logic and can be chained together to form large designs. A
design may communicate with the CPU, with other hardware blocks in a PSoC device, or both. This flexibility
allows the UDB to form logic that links other hardware in your design, or can be a stand-alone block that performs
a new function.

UDBs can be divided into uncommitted logic and structured logic. The structured logic includes the Datapath,
Control Register, Status Register (Status Interrupt Register if enabled), and Count7 counter. These can be
controlled by the CPU through the Control Register and Status Register. Alternatively, the uncommitted PLD logic
can be used to design State Machines that can generate control signals for these blocks.

UDBs are driven with a user clock and the bus clock. The bus clock synchronizes reads from and writes to the
registers in the Datapath and the Control Register and Status Register. These data words travel through the
Peripheral Hub (PHUB) system bus. The user clock drives the blocks in the UDB. Signals in a UDB can be routed
to form a hardware output in a component or can be used to drive the inputs of the structured blocks in a UDB.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 5

Introduction

Conventions

The following table lists the conventions used throughout this guide:

Convention

Usage

Courier New

Displays file locations and source code:
C:\ ..cd\icc)\, user entered text

Italics

Displays file names and reference documentation:
sourcefile.hex

[bracketed, bold]

Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > New Project

Represents menu paths:
File > New Project > Clone

Bold

Displays commands, menu paths and selections, and icon names in procedures:
Click the Debugger icon, and then click Next.

Acronyms and Abbreviations

This guide contains the following acronyms and abbreviations:

ALU — Arithmetic Logic Unit

API — Application Programming Interface

Description Language

TRM — Technical Reference Manual

Digital Block

|

|

m FIFO —First In, First Out
m HDL — Hardware

m PHUB - Peripheral Hub
|

m UDB - Universal

References

This guide is one of a set of documents pertaining to UDBs. Refer to the following other documents as needed:

PSoC Creator Component Datasheets
PSoC Creator Component Author Guide
PSoC Technical Reference Manual (TRM)

m PSoC Creator Help
|

|

|

m Application Note

Revision History

ANB82156: Designing PSoC Creator Components with UDB Datapaths

Document Title: PSoC® Creator™ UDB Editor Guide
Document Number: 001-94131

Revision Date Description of Change
** 9/24/14 New document.
6 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

UDB Editor Overview

CYPRESS

PERFORM

The UDB Editor allows you to create UDB-based designs with very little knowledge of digital logic or Verilog code.
Using this graphical tool, you drag, drop, and then configure your hardware without having to write Verilog code.
The UDB Editor takes care of many internal configuration details simply by specifying the parameters of the UDB
blocks on the design canvas. The tool translates your design to Verilog in real time, allowing you to see how the
UDB blocks translate to Verilog hardware description language (HDL).

Design Elements Palette Design Canvas
o Bz u[SEl==A- 45 %0842 S04 BT —Toolbars
/m Start Page ~ 4 b x || TapDesign' Prope==—=———=——TgpDesign
5 Iputs - Properties
> input1 *
Warnables i
¥ Lnfername Enfar.. .
| Outputs =
E b = output] E
¥ Enfername Dotionat.J5
| Datapath propertiez—‘_l Datapath
[e Mise || Properties
Mame DataPath_1

“wfidth [bits]]
M5B offzet a

-

Page 1] :J Verilog 4 b

Note The UDB Editor allows you to construct UDB-based designs without the need of writing Verilog or using the
more advanced Datapath Configuration Tool. However, using this tool sacrifices some flexibility and fine-grained
control over the hardware as a result of simplifying abstractions. It also does not incorporate some of the more
advanced UDB functionality, and this may be limiting for complex designs. For more information about using
Verilog and the Datapath Configuration Tool, refer to the PSoC Creator Component Author Guide, as well as
Application Note AN82156: Designing PSoC Creator Components with UDB Datapaths.

The main areas of the UDB Editor include:

m Design Elements Palette — The design elements palette is a menu used to choose the UDB elements to
include in your design. See UDB Editor Elements.

m Design Canvas Pages — Once you open a UDB Editor document, you will see an editable page like a
schematic page. This is your design canvas, used to place and configure your UDB elements. Additional
UDB Editor pages may be added by right-clicking on the Page 1 tab. These pages then are translated to
Verilog as a single unit. Verilog — Next to the Page tab, you can find the Verilog tab. This is a read-only
view of the translated HDL for your design. It is dynamically updated so whenever a change is made in

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 7

UDB Editor Overview

your design, it will also update the code. This code is not editable, and you cannot delete it; any desired
changes must be made in the design canvas. You may also copy and paste this code to a Verilog file if

you wish to edit your design using Verilog. Refer to Application Note AN82156: Designing PSoC Creator
Components with UDB Datapaths for more details.

m Design Properties — Located to the right of the design canvas, the design properties allow you to
configure the inputs, outputs, and variables used in your design. The inputs and outputs will then form
your symbol terminals when your design is complete. The design properties window is also used to set
the global Datapath configuration when a Datapath is selected in your design.

Opening the UDB Editor

The UDB Editor is used to create a custom UDB-based component, which you then use in a design. So, to open
and use the UDB Editor, you have to create a component. For more detailed information about creating
components, refer to the PSoC Creator Component Author Guide.

1. Create a new project or open an existing project.
2. In the Workspace Explorer, click the Components tab.

Warkspace Explorer (1 proj., = 3 X

i

Warkspace 'Design3l9’ (1 Proj
E}EI *Project 'Design319’ [CY w
=% TopDesign s
(]

sjuauodwoy

syaasEIE]

sjnsay

3. Right-click on the project or component, and select Add Component Item...

Workspace Explarer (1 proj.. » 3 X
3

B \orkspace 'Design319' (1 Praj
E}EI *Project 'Design319’ [CY w

£y TopD =
LET Set As Top Component

‘ Add Component Itern,..

Export Component »
& Cut Ctrl +X
=3 Copy Ctrl+C

Note If you add a component item to a Project, you will create a new component; if you add the item to an
existing component, the component item will inherit properties from that component.

4. On the Add Component Item dialog, select the UDB document template under the Implementation

8 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

category.

Add Compaonent Itern

= Syrnbal
| Empty Syrmbaol
| Syrnbol Wizard

=1 Implernentation

@ Schematic
| Schematic Macro

E;l UDE dacument

Target generic device

lm | »

Creates a blank symbal,

Creates a symbol using a wizard,

Creates a blank schematic,

Creates a blank Schematic Macro

Component name: componentIl

componentd]. cpudb
Both [Debug/Releaze]

Dezsignald

Create New 'l [Cancel

UDB Editor Overview

Note For a new component, enter a Component name. If desired, you can also specify target options by
unselecting Target generic device and choosing a specific Architecture, Family, and/or Device.

5. Click Create New and PSoC Creator opens the UDB Editor.

UDB Editor Elements

UDB Editor elements are the graphical versions of UDB elements. These are available to drag and drop from the

Design Elements Palette. They include:
m Datapath (DP)
m Control Register (CR)
m Status Register (SR)
m Status Interrupt Register (SI)

m Count7 counter (C7)
m State Machine (SM)

When placed on the design canvas, an element becomes an instance in your design. Each of these
elements/instances is described in the following sections.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

—

UDB Editor Overview ==# CYPRESS
Datapath

The following shows an instance of a Datapath element in the design canvas of the UDB Editor. It contains six
inputs and six outputs shown in blue, six registers shown in purple, and eight instructions shown in green.

Datapath_1 (Width=8)

INSTR_ADDR[0] 1b0
INSTR_ADDR[1] | 1b0
INSTR_ADDR[2] | 1b0

3'b000 ALUout=(AD)
3'b001 ALUout=(A0)
3'b010 ALUout=(A0)

3'b011 ALUout=(A0)
1 Not supported 8'h00

0 &h00
[Notsupporied |

N Onses [35100 ALUou-(A0)

8'h00

1
0 Unused Not supported 3'b101 ALUoul=(A0)
1 Unused Not supported

3'b110 ALUout=(AD)

3b111 ALUout=(A0)

Each UDB block contains an 8-bit Datapath; therefore, chaining these or using multiple Datapaths consumes
multiple UDB blocks. Designing with the UDB Editor allows the chaining of these Datapaths to be done
automatically, so you do not need to do anything special beyond selecting the datawidth.

When using the UDB Editor, the input/output direction of the FIFO is automatically detected based on the
Datapath input configuration. If one of the inputs is set as a load trigger for a FIFO, then that FIFO will be
configured as output. Otherwise, it is set to input.

Of the six available input bits, up to three bits can be used to control the Datapath instructions for that clock cycle.
If not all three instruction bits are driven, then those instruction bits that are not used will be driven with 1'b0. Note
that in this case, not all of the eight available instructions will be usable. For more information on the available
instructions, see Datapath Instructions.

10 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

UDB Editor Overview

Datapath Properties

Clicking on the Datapath will also show the Datapath properties in the UDB Editor window. This allows the global
Datapath settings to be specified.

L Library25 - PSoC Creator 3.1 [Ch.. ADocuments\PSaC CreatoriLibrany25iLibrary25. cylibihyUDEyUDB.cyudb] =N ECR=<"
Eile Edit View Project Build Debug Tools Window Help
HONaSHP S 2] %68 EX[9 o _cwmx -@8Q _ 4 Ddug
R A F o de s uElE=lA- -5 %042 00D b S BT
" #mylDB.cyudb | Start Page » 4 b x ||Properties -
@ al K|+ +
YD‘;E;’ | |{Inputs
?:?— clock
-‘lsi'? Mame
sl
Ty
g’; Outputs
sM
fan} =l | Marme Expression
[l
q ’
Reg. Load Initial Value n
" A0 Not ‘fariables
™ Al N Marme Registered
T Do
D1 0 /\
= FO » ~
A ”Datapath properties &
i = Misc)
< Mame Datapath_1 B
U Width (bits) 8 B
: " A oncr secen rencin MSBoffset T
3 Rag. :)IaFLal;am registans: 2 aCocumulators, 2 data registers, and 2 2 Shift common cnnfiguration
. O P Ot etk soms e s o Shiftout Lef /
5 InEICHons ggﬂl‘linboa"maﬂn?xg:a:hﬁs pra-configured insinsctions, ike Defau‘t Shl& in D
= \Arlthmet\c tight Disabled -
] | .] b \/
~._Page 1 3 Yerilog q b
Ready 0 Errors 0 Warnings 0 Motes

Datapath properties globally affect the selected Datapath instance. These include the bit width size of the
Datapath, its shift configurations, compare operation configurations, mask definitions and FIFO modes. Once
these are set, all the specific properties of the Datapath follow these global settings. The Datapath properties
appear in the Properties panel. The configuration properties available include:

Category Property Description
Misc Name Instance name of the Datapath.
Width (bits) The bit width of the Datapath (8/16/24/32).
MSB offset Selects the most significant bit in the Datapath. Used in functions that utilize words
that are not multiples of 8. This only impacts Carry Out and Shift Out.
Shift Common Shift out Selects whether shift out left or shift out right is routed to the dedicated shift out output

Configuration

(not one of the 6 configurable outputs).

Default shift in

Determines the value shifted in when Default is chosen as the Shift source in the Shift
Configuration A/B.

Arithmetic right

Enables arithmetic right shifting when a right shift is selected / used (the value shifted
into the MSb is maintained. That is, 1000000 shifted to the right by 1 bit would become
1100000, and 0111111 would become 00111111).

Shift

Shift direction

Chooses the direction in which the shift will occur.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

1"

UDB Editor Overview

Category

Property

Description

Configuration
A/B

Shift in source

Chooses whether to use the dedicated route Shift-in or Default Shift-in expression.

Configurable Config A Selects the type of comparison to be made if Compare Config A is selected in an
comparator instruction. This comparison is made by comparator 1 at each instruction cycle.
inputs Compare operations are A ==B and A <B.
Config B Selects the type of comparison to be made if Compare Config B is selected in an
instruction. This comparison is made by comparator 1 at each instruction cycle.
Compare operations are A ==B and A <B.

Masks amask Mask value that is applied to the output of the ALU. The mask is used only if amask
check box is checked. When enabled, the output of the ALU is always ANDed with the
mask value.

cmask0 Mask value that is applied to the A (first) input of the comparator. The mask is ANDed
with the register then compared. The mask is always applied when checked.

cmask1 Mask value that is applied to the A (first) input of the comparator, the mask is ANDed
with the register then compared. The mask is always applied when checked.

FIFOs FIFO sync Determines how the FIFO block status signal is synchronized to the datapath clock.

mode
Capture mode | Specifies whether a read from the accumulator registers is direct or if it also triggers a
capture into the FIFOs.
Edge mode Specifies whether a FIFO write trigger is level sensitive or rising edge sensitive.
Fast mode Specifies the clocking source for the FIFO capture. Can be captured using the
Datapath clock or can use the bus clock for a faster performance.
12 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

W

£ CYPRESS

PERFORM

Datapath Inputs

UDB Editor Overview

Double-clicking on any of the input fields in the Datapath will open the Configure Datapath Inputs dialog for
specific configuration of each input.

Inst.
In. Selection Expression Addr. Instruction Comment
| 50000 | I
Configure Datapath Inputs @
Selection: E spression:
Iupt 0: [INSTR_ADDR(0] - h0
S| ot (INSTR_ADDRI1] - THO
— o2 (INSTR_ADDR[2] - 150
Y Input 3: ’None vl
U
U Input 4 ’None vl
54 Input 5: ’None ']
l 0K l [Cancel
on
Ol Dratapath culputs: § signals thal provide access to signals from
the datapath i the resl of the Component
Instructions Dratapaths suppoet up to 8 pra-conligured instrections, ke
asdition ard subiraction.

Datapath inputs can be used to: control the execution of the instructions, control the loading of the

FIFOs/Data/Accumulator registers, or route in a value for the shift in from the DSI. The inputs are also used to
define the serial input into the shifter and for controlling the state of the instructions in the Datapath. The following
are the available inputs from the UDB Editor.

Selection

Name

INSTR_ADDRI0]

LSB of the instruction select bits

INSTR_ADDR[1]

Middle bit of the instruction select bits

INSTR_ADDR[2]

MSB of the instruction select bits

Load DO with FO

Loads the first element of FO in DO at the rising edge of the clock

Load D1 with F1

Loads the first element of F1 in D1 at the rising edge of the clock

Load FO with AO

Loads the content of AO to FO at the rising edge of the clock

Load FO with A1

Loads the content of A1 to F1 at the rising edge of the clock

Load FO with ALUout

Loads the content of ALU output to FO at the rising edge of the clock

Load F1 with AO

Loads the content of AO to FO at the rising edge of the clock

Load F1 with A1

Loads the content of A1 to F1 at the rising edge of the clock

Load F1 with ALUout

Loads the content of ALU output to F1 at the rising edge of the clock

Shift In

The expression to use when 'Routed Shift-in' is selected as the shift source for Shift Configuration
A/B.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

13

UDB Editor Overview

Of the six available inputs, up to three inputs can be used to define which Datapath instruction will be executed.
The instruction input is not synchronized to the Datapath clock, it is combinatorial and the Datapath will
immediately execute whatever instruction is selected on the Datapath instruction line. These are shown by default
in the inputs section: INSTR_ADDR([2:0]. The expressions for these inputs default to 1'b0 (logic low). For each
instruction bit that is used, generally the expression for that bit will correspond to a signal being driven by a
separate state machine placed into the UDB Editor document.

For example, a variable named mylnstr[1:0] in a State Machine is being assigned various values to control the
instructions in the Datapath. Then INSTR_ADDR[1] and INSTR_ADDR]0] should assign mylnstr[1] and mylnstr[0]
respectively in its expression fields. Similarly if a "Load FO with AQ" signal is used in the Datapath and the signal
used to control this is called loadFO0, then loadF0 should be placed in the expression field next to the "Load FO
with AQ" input. For more information, see State Machine.

Datapath Registers

Double-clicking on any of the registers fields will open the Configure Datapath Registers dialog.

Datapath_1 (Width=8)
Inst.
o In. Selection Expression Addr. Instruction ;E
2 3
1 ?5
o
g 4 Configure Datapath Registers @
B Load: Iritial value:
5 Reg Load I &0 | Mot supparted Fhoo
Al Mot supported A1 :
Al Mot supported © | Mot supported a'hoo
E2 EUIESE DO: [Unused h00
D1 Unused
FO Unused Mo D1: Unused g'ho0
F1 Unused Mo
F: Unused Mot supported
Out. Selection Mamg
0 F1: Unuzad Mot supported
1
ak.] l Caticel
2
3
FIFUE
4 Ok, Cratapath culpuis: & signals that pravide accass bo signals from
the datapath [the rest of the component
5 Instnuctions Dratapaths suppost up ta & pre-configured insireciions, ke
addition and Sublraction.

This dialog is used to set the initial values of the registers at start-up of the PSoC during boot initialization. If the
register does not support an initial value in its current configuration, then it will be grayed out. For reference, the
load expression (if any) is shown for each register. This is a read-only display; load expressions must be edited
via the Configure Datapath Inputs dialog. For more information, see Datapath Inputs. See also Datapath

Regqisters.

14 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

YPRESS UDB Editor Overview

PERFORM

Datapath Outputs

Double-clicking on any of the output fields in the Datapath will open the Configure Datapath Outputs dialog for
specific configuration of each output.

Configure Datapath Outputs @
Selection: Mame;
Output 0: ’None v]
Output 1: ’None v]
Output 2 [None v]
Output 3: [None v]
Output 4: ’None v]
Output & ’None v]
l ak.] l Cancel
In Datapath inguts; & signals that conirol datapath instruetion
salection, shift in, and register lopds.
Reqg. Datapath reqisters: 2 accumulators, 2 data registers, and 2
FIFDs.
Ok, Cratapath culpuis: § signals that pravide accass bo signals from
the (BLIPEM to tha sl of the component
Instnuctions Dratapaihs suppost up ta & pre-configured insireciions, ke
addition and Sublraciion,

Datapath outputs include various comparator status values, FIFO status values, shift output, and various
overflows. The following is a list of available outputs from the UDB Editor.

Selection Name

A0 ==DO0 Status of A0 equals DO performed by comparator 0
A0 < DO Status of AO less than DO performed by comparator O
A0 == A0 equal to 0 comparison.

AOQ == OxFF A0 equal to OxFF comparison.

Config A: "equal” Status for equality comparison for comparator 1.

Config B: "equal"

Config A: "less than" Status for less than comparison for comparator 1.
Config B: "less than"

A1l == A1 equal to 0 comparison.

A1 == 0OxFF A1 equal to OxFF comparison.

Overflow This is used to monitor whether an overflow has occurred in the most recent ALU
operation.

Carry out Carry out of the ALU arithmetic operation

CRC MSB CRC feedback out

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 15

UDB Editor Overview

W/ C s
Selection Name
Shift out Shift out bit. This can be either shift out left or shift out right. This is the option selected in
the Datapath Properties.
FO bus status (not full) FIFO 0 bus status used to flag whether the FIFO 0 is full or not.
FO block status (not empty) FIFO 0 block status to flag whether FIFO 0 is empty.
F1 bus status (not full) FIFO 1 bus status used to flag whether the FIFO 1 is full or not.
F1 block status (not empty) FIFO 1 block status to flag whether FIFO 1 is empty.

Note For more information about FO and F1 bus/clock status, refer to Appendix A: Datapath Operation.

Outputs from the Datapath can be used in a State Machine to control transitions (for example, to change the
instruction code for the next cycle) or can be directly linked to the output terminal to be used by other hardware
blocks (for example DMA or an interrupt). These signals can also be routed internally to other hardware blocks
such as another Datapath, a Status Register, or a Count7 counter. For more information on how a State Machine
interacts with a Datapath, see Controlling Datapath Instructions.

Note A maximum of six outputs are available per Datapath.

Datapath Instructions

Individual configurations for the eight available Datapath instructions can be set by double-clicking each specific
instruction field to open the Configure Instruction dialog.

Inst.
Ini. Selection Expression Addr. Instruction Comment

] | | | Ii

Caonfigure Instruction (3'b 000} @
Commett: |
AL operation Regizter writes
Function: [.&D v] [No-op A [Nn-op ']
Shift: an-op vl [Nn-op "]
ALU_out; (&0

Compare options

Option 0: Al compare to D0

Dptian 1: Config &: AD compare ta D1 "]

Each instruction is divided into three parts: ALU operation, Register Writes, and Compare options. For a full list of
operations, see Datapath Instructions.

m The ALU operation determines what arithmetic or Boolean operation is performed for that instruction
cycle.

16 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

UDB Editor Overview

O The ALU accepts data from two register sources and performs a function on them. The first input (A)
is limited to either AO or A1 whereas the second input (B) can also accept DO, D1 and can internally
provide a 1 as an input. The result is then passed to ALUout.

O ALUout can be shifted by 1 bit before being placed at the output. Specify the shift operation if the
result should be shifted by a single bit. The shift properties are controlled by the global shift
configuration in the Datapath properties window.

O The expression for ALUout will be shown once you've completed the function and shift definitions.
Use this to check whether the ALU operation is correct.

m Register Writes are used to load A0 and A1 with values for the next Datapath clock cycle. These can be
used as a feedback from ALUout or to accept new data from the data register or the FIFO.

O AO can either be left as it is, or can be over written by DO or FO. It can also be over written with
ALUout to form a feedback.

O Similarly, A1 can either be left as it is, or can be over written by D1 or F1. It can also be over written
with ALUout to form a feedback.

O If ALUout is not assigned to any registers after an instruction cycle, the result will be overwritten by
the result of the next instruction. Therefore it is advised that ALUout be written to either of the
accumulators or loaded to a FIFO through the "load FIFO" signals in the Datapath inputs section.

m Compare Options are used to set the comparisons being made using comparator 0 and comparator1.
Comparator 0 is always set to compare A0 with DO, and this is shown in option 0. Comparator 1 on the
other hand is chosen by specifying whether to use Config A or Config B specified in the Configurable
comparator inputs properties located in the Datapath properties window. The status of these comparisons
can then be determined by monitoring the comparator outputs in the Datapath output.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 17

UDB Editor Overview

Control Register
The following shows an instance of a Control Register element in the design canvas of the UDB Editor.

CtrlReqg_1
Bit MName Init. Val. Made

Control Registers are used by the CPU to send commands to the digital logic. Each Control Register has eight
available bits that can be used throughout the design to control the various aspects of the component operation.

Double-click on the instance to open the Configure Control Register dialog.

E CiriReg_1

Configure Control Register @
M arme: CrlReg_1
Marne Init Mode
» oSN 0 Syne
1 ctrl_ 1 I ync
2 ctrl_2 I Sync
3 ctrl_3 I ync
4 ctrl_4 I Sync
5 ctrl 5 I ync
fi ctrl_fi I Sync
T octrl_7 I ync
*))
[Ok l [Cancel

A Control Register has a name for each of the bits. These are the signal names that can be used throughout the
design. It also has initial values that can be set to either 1'b1 or 1'b0. These values are set during device start-up
and will be lost if the device goes to sleep / hibernate. The mode of each of the bits in the Control Register can be
set to Direct, Sync or Pulse. The clock used for the Sync and Pulse modes is the component clock. Refer to the
Control Register component datasheet (from the separate Control Register component in the PSoC Creator
Component Catalog) and the TRM for more information.

18 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

UDB Editor Overview

Status Register

The following shows an instance of a Status Register element in the design canvas of the UDB Editor.

StatusReq 1

Bit Expression Mode

Status Registers are used by the CPU to read hardware signals. Eight bits are available in a single Status
Register and allows signals from the component to be seen by the CPU.

Double-click on the instance to open the Configure Status Register dialog.

StatusReg_1

Bit E i
Configure Status Register \EI
Reqister narie: StatusReg_1
Expression Mode
0 1'k0 Sticky (clear on read)
1 1'k0 Sticky (clear on read)
''''''''''''''' 2 1'b0 Sticky (clear on read)
3 1'b0 Sticky (clear on read)
4 1'b0 Sticky (clear on read)
5 1'k0 Sticky (clear on read)
6 1'h0 Sticky (clear on read)
T 1'b0 Sticky (clear on read)
F A S
ak l [Cancel

The expression field of the Status Register bits allows several signals to go through PLD logic to form one signal
before being placed in the register. This allows for some usage of PLDs without the use of State Machines. For
example, two signals from the Datapath output called "lessCompQ" and "equalComp0" may be combined together
at the status expression field as "lessComp0 | equalCompQ". Note that the expressions follow the Verilog syntax.
The mode of the status bits can be set to either Transparent or Sticky. Status registers in the UDB Editor are
always clocked at bus clock. Refer to the Status Register component datasheet (from the separate Status
Register component in the PSoC Creator Component Catalog) and the TRM for more information.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 19

UDB Editor Overview

Status Interrupt Register

The following shows an instance of a Status Interrupt Register element in the design canvas of the UDB Editor.
This element consumes the same resources as a Status Register.

StatusintReg_1

Bit Expression Mode Mask

Cutput MName

|

Status Interrupt Registers are used to generate a maskable interrupt from the status bits. Seven bits are used as
the inputs and one bit is used as the interrupt output.

Double-click on the instance to open the Configure Status Reg. with Interrupt dialog.

StatusintReg_1

Bit F " rYr ry e 8
Configure Status Req, with Interrupt IEI
Register name: EtatusIntReg_1
Interrupt name; StatuslntReg_1_int
: Expression tode hdask
1o 0 T'b0 Sticky 1
| 1 10 Sticky 1
"""""" 2 10 Sticky 1
3 1'b0 Sticky 1
4 1'h0 Sticky 1
3 1'bd Sticky 1
i 1'b0 Sticky 1
X+ |+
ak.] ’ Cahicel

Like the Status Register, each bit has an expression field that can be used to form logic for that bit. The mode of
the bits can be set to either Transparent or Sticky. The mask field determines whether that bit should be masked
to generate the interrupt.

Note Only one interrupt per instance can be used when using the Status Interrupt Register. Refer to the Status
Register component datasheet and the TRM for more information.

20 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

UDB Editor Overview

Count7 Counter

The following shows an instance of a Count7 counter element in the design canvas of the UDB Editor. This
element consumes the same resources as a Control Register.

Terminal Count

The Count7 counter is a 7-bit down counter that should be used when a counter of up to seven bits is needed. It
can be more efficient to use PLD logic for counters of less than 3 bits. This gives savings compared to PLDs or
Datapath-based counter designs.

Double-click on the instance to open the Configure Count7 dialog.

| Configure Count? @
Marne: | [ount?_1 |
Inputz
Fezet: [150 |
______________________ Erable: | Th1 |
Load; [150 |
Periad: | 7h7F |
Terminal count: | Count?_1_te |
[Ok J [Cancel]

The Count7 counter has three inputs: Reset, Enable, and Load. These are used to reset the counter, enable the
counter, and to load the counter with the period value during counter operation. The period value is set to 7'h7F
by default. The counter has one output called terminal count, and this is driven high when the counter reaches 0.
The counter is driven by the component clock. Refer to the Counter component datasheet and the TRM for more
information.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 21

UDB Editor Overview

State Machine

A State Machine contains one or more states that implement control logic using PLDs. A State Machine is used to
send control signals to the UDB elements in your design and to keep track of the operations happening in your
hardware. Once a condition is achieved, the State Machine will transition to another state.

The following shows an instance of a State Machine element in the design canvas of the UDB Editor.

=unknown=

1'b0

Double-click on the instance to open the Configure State dialog.

Configure State "State_0' in Machine "<unknown =' @

State zettings |z start state
Mame: Frat= 0
Encoding: Th0

Wariable azzignments: Used to define vanables intermal to a state machine that are updated uzing the given exprezsion when
the state iz enterad.

QOutbound transitionsz: Defing the prioty order of ransitions out of thiz gtate. IF more than one outbound tranzition esprezsion iz
true, then the higher priarity transition will be preferred.

Wariable assignments: V| Dizplay on sheet. Outbound transition priorty order:
Marre Expression Transition Expr. State
0 Entername Enter expression
| [%] | +] [+ ||+
ak l | Cancel

This dialog contains four sections: State settings, Is start state settings, Variable assignments, and Outbound
transition priority order. Depending on the state operation and type, it may not be necessary to define all
sections.

m State settings specify the Name of the state and its corresponding Encoding state value. Each state
within the current State Machine must have unique Name and Encoding values. These should
correspond to a specific operation performed by the target block(s). Therefore the generated control
signals in a state should be unique.

m A state can be a starting state or some other state in the State Machine. Every State Machine requires a
starting state, and there can only be one starting state with a State Machine.

O Select the Is start state box to turn a State Machine instance into a start state. This changes the
instance color from white to green and sets the encoding to zero (this is the reset state). The State
Machine will be reset to this state when returning from sleep / hibernate.

22 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

%YPRESS UDB Editor Overview

O Define a unique Machine name and its Reset condition. In most cases the reset would be triggered
using a "not enable" or a separate "reset" input signal. The Reset condition allows all states in a
State Machine to transition back to the start state upon reaching a reset condition.

m Variable assignments are used to define variables that are internal to the State Machine. They can then
be used to control other elements, such as a Datapath or a Count7 counter in the UDB design.

O A variable can be read from anywhere in the UDB Editor design, but it may only be written from within
one State Machine.

O Design-wide variables and outputs may not be written from within a State Machine, but they may
derive their value from a State Machine variable.

m Outbound transition expressions can be used to set the priority of transitions in cases where more than
one condition is true. This field will be populated as transitions are added to the state (see the State
Machine Transitions section).

O Moving a transition expression higher in the order gives it higher priority over those below.

O However, it is generally a good practice to make transition expressions mutually exclusive.

State Machine Transitions

To add a transition from one State Machine instance to another:

1.

2
3.
4

Configure the first instance as a start state.
Hover the mouse on the edge of the start State Machine instance to show the anchor points.
Then, click the mouse and drag from one state to the edge of another.

Release the mouse button and the Configure Transition dialog opens.

StateMack
1’00 Configure Transition @
E zprezsion: 1b1
1'b1 Marre Expression
i * 0 |Entername Enter expression
-+ |

=unknown=

StateMacl
1'b 1

1'b1

Ok] | Cancel

In the dialog, use the Expression field to set the transition expression. Whenever this expression is true, the

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 23

UDB Editor Overview

== CYPRESS

PERFORM

transition will occur in the State Machine. If more than one transition condition is true, then the higher priority
transition will be followed. The Configure Transition dialog also permits assignments to be specified. These are
similar to Variable assignments specified in the Configure State dialog, but they only take place when the specific

transition is followed, rather than when the state is entered (via any transition).

Note Linking a new state to an existing State Machine will cause propagation of the existing State Machine name.
The encoding on the other hand must be unique and does not propagate.

To adjust the shape of the transition arc, click and drag the anchor points on the transition to the desired shape.

StateMachine_1
1'b0

StateMachine_1
1'b1

Controlling Datapath Instructions

State Machines are often used to control the INSTR_ADDR bits for the Datapath instructions. These are also
referred to as the "dynamic configuration” bits in the TRM. They are accessed by mapping signals to the

INSTR_ADDR bits in the inputs section of the Datapath. The following shows how a State Machine controls a
Datapath.

Datapath_1 (Width=8)

Selection

INSTR_ADDR([0] | StateMachine_1[0]

INSTR_ADDR([1]
INSTR_ADDR[2]

g.
Not supported
Not supported

Unused

Expression

1'b0
1'b0

Initial Value

Not supported

Unused | Not supported

Out. Selection

Name

Inst.

Addr.

3'b000

3'b001

3'b010

3'b011

3'b100

3'b101

3'b110

3'b111

Reg.

Qut.

Instruction

ALUout=(A0 * AD) Reset
AO0=ALUout Instruction

Comment

ALUout=(A0 + A1) Count
AD=ALUout Instruction

ALUout=(A0)

ALUout=(A0)

ALUout=(A0)

ALUout=(A0)

ALUout=(A0)

ALUout=(A0)

Datapath inputs: 6 signals that control datapath instruction
selection, shift in, and register loads.

Datapath registers: 2 accumulators, 2 data registers, and 2
FIFOs.

Datapath outputs: 6 signals that provide access to signals from
the datapath to the rest of the component.

D: t08p like:
addition and subtraction.

(Reset
StateMachine_1
1'b0

enable

StateMachine_1
1b1

Note DO, D1, FO, and F1 registers are not used in this design. Also, the LSB of the three available INSTR_ADDR

24

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

UDB Editor Overview

bits are assigned a constant value of '0". The unassigned bits are then tied to 1'b0.

Two states exist in the State Machine. A start state named Reset, and a count state called Count. Reset has a
unique encoding of 1'b0 and Count has a unique encoding of 1'b1. The Reset state selects the datapath
instruction that clears the A0 register by XORing the AO register with itself and writing the result back into the A0
register. When enable is set high, the State Machine will transition to Count, and the Datapath will start counting
by adding the value stored in A1 to AO. If enable is low, then the State Machine will transition back to the Reset
state, hence setting the Datapath to Reset.

The Datapath is configured to be an up counter that counts in multiples of whatever value is stored in the A1
register. AO is used as the accumulator register used to hold the accumulated result. When the "enable" signal is
low, the accumulator is emptied. When the "enable" signal is driven high, the counter starts counting. This is
achieved using two Datapath instructions.

m Instruction 0: The first instruction is used as a reset. AO XOR A0 is performed in the ALU to produce 0 at
ALUout. This result is then stored in A0, effectively emptying the A0 register. Instruction 0 is chosen by
assigning the INSTR_ADDR bits to 3'b000.

m Instruction 1: This instruction takes the value of A0 and A1 and adds them. The result is passed to
ALUout, and this is fed into AO. Instruction 1 is chosen by assigning the INSTR_ADDR bits to 3'b001.

In order to assign the instructions to the Datapath, the State Machine must assign values to the INSTR_ADDR
bits. The State Machine name itself is a signal that can be used as the control signal. Since in this example we
only have two states with encoding 1'b0 and 1'b1, we assign the Isb (StateMachine_1[0]) to INSTR_ADDR[0]. The
other INSTR_ADDR bits can be left as is since they are not used.

m When the "enable" signal is low, the State Machine remains in Reset and assigns StateMachine_1[0] =
1'b0. This places the Datapath in Instruction 0.

m When "enable" is driven high, the State Machine transitions to Count and assigns StateMachine_1[0] =
1'b1. The Datapath can now execute Instruction 1.

m If at some point "enable" is driven low, then the State Machine transitions back to Reset, and assigns
StateMachine_1[0] = 1'b0. This transition is automatically triggered using the Reset Condition (in this
case, "lenable"). The Datapath then executes Instruction 0.

UDB Editor APIs

When compiled, a component design using the UDB Editor will generate a header file named
$ INSTANCE_NAME"_defs.h, where $' INSTANCE_NAME" is the instance name of your component. This file
contains defines for Datapath register accesses and macros for performing Datapath FIFO configuration tasks.

Definitions for the Datapath registers can be used in software to read and write to these registers. Each definition
will be named using the following syntax, where the first is the pointer to the register, and the second is the
register:

<COMPONENT INSTANCE NAME> <DATAPATH INSTANCE NAME> <REGISTER> PTR
<COMPONENT INSTANCE NAME> <DATAPATH INSTANCE NAME> <REGISTER> REG

The pointer definitions can be used in the CY_GET_REGn and CY_SET_REGn macros (defined in cytypes.h),
where n is the width of the Datapath with which they are associated. These macros allow data to be written to and
retrieved from these registers.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 25

UDB Editor Overview

Macros for Datapath FIFO configuration tasks include: clearing the Datapath FIFOs, setting the FIFO level mode,
setting the FIFO to single-buffer mode, and returning the FIFO to normal mode. These macros are defined in the
<project>_defs.h header file and noted below for the individual functions.

m Clear DP FIFOs — These macros empty the specified FIFOs in the design using the CPU. The FIFO
returns to normal mode after this operation:

<COMPONENT INSTANCE> <DATAPATH INSTANCE> <FIFO> CLEAR

m FIFO level mode — These control the level at which the 4-byte FIFO asserts the bus status. Two modes
can be set: NORMAL and MID. For more information on the FIFO levels, see FIFO Modes.

<COMPONENT INSTANCE> <DATAPATH INSTANCE> <FIFO> SET LEVEL NORMAL
<COMPONENT INSTANCE> <DATAPATH INSTANCE> <FIFO> SET LEVEL MID

m FIFO single buffer mode — These macros set the specified FIFO to single buffer mode. Single buffer
mode allows the FIFO to act as a 1 word deep buffer instead of a 4-word deep FIFO. See FIFO Modes for
more details.

<COMPONENT INSTANCE> <DATAPATH INSTANCE> <FIFO> SINGLE BUFFER SET
m Return to normal mode — These macros place the FIFOs to the normal 4-word deep FIFO configuration.

<COMPONENT_INSTANCE> <DATAPATH INSTANCE> <FIFO> SINGLE BUFFER UNSET

The macros access an auxiliary control configuration register to set these configurations. An auxiliary control
configuration register is a standard configuration register for the datapaths and FIFOs, not to be confused with the
Control Register. Since multiple bits in an auxiliary control configuration register can be for different components,
an interrupt safe implementation should be done using Critical Region APIs to avoid corruption. The following is
an example for clearing FIFO 0 of a component instance named "MyComponent" with a Datapath instance named
"MyDatapath".

uint8 interruptState;

/* Enter critical section */
interruptState = CyEnterCriticalSection();
/* Clears FIFO 0 */

MyComponent MyDatapath FO0 CLEAR

/* Exit critical section */
CyExitCriticalSection (interruptState);

26 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Example UDB Editor Design

CYPRESS

PERFORM

This section provides instructions to create an example design using the UDB Editor. It does not describe the
inner workings of the sub-blocks in the UDB Editor in detail. Nor does it describe how the sub-blocks fit together
to form a functional design. For those details, refer to the UDB Editor Elements section.

Also, this example covers a portion of the process to create a component. For complete details about creating a
component, refer to the PSoC Creator Component Author Guide. Refer also to the PSoC Creator Help as
needed.

For this example, you will create a component that will:
m Take in an 8-bit number (from the processor).
m Wait for a start signal from the hardware.
m Shift the input twice (aka, multiple by 4).
= Add 127.
m Write it back into a register (that the processor can read).

m Send an end signal to the hardware.

The basic design flow of the UDB Editor is:

Create a custom component.

Define the component inputs and outputs.

Create a State Machine to control the Datapath inputs.

Configure the Datapath instructions (which will be triggered by the PLD).

Create the component symbol.

Build the component APls.

N o o b~ 0N~

Use the new component.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 27

Example UDB Editor Design

Step 1: Create a Custom Component
1. After opening or creating a project, click on the Components tab in the Workspace Explorer.

Warkspace Explorer O3 X

& 3

B \éorkspace 'Exarnple UDBEditorDesign’ (1

E}EI Project 'ExampleUDBEditorDesign’
=N TopDesign

.

squauodwo]

s198YsEE]

s]nsay

2. Right-click on a project, and select Add Component Item...

\Jgr:%:uace Explorer >3 X Start Page
B \orkspace 'Examplel)DBEditorDesign’ (1 1 L |_

E}DE Prﬁjc a I I_LImnnr i2s ™ 2 L]
_;IQT _"f Irmpart Component..

----- é| Add Component Itern,.. I |
g

Set As Active Project

Update Components..,

|ﬁ| Build Exarmple UDBEditorDesign

— Clean ExampleUDBEditorDesign
g Clean and Build Exarmple UDEEditorDesign

T Demiaemd s

3. On the dialog, select the "UDB document template", type the Component name "OffsetGain" and click

Create New.
Add Component Item @I
=1 Syrbal ol
| Empty Symbol Creates a blank symbol. ‘E|
©| Symbol Wizard Creates a symbol using a wizard,
=l Implementation
|2 Schematic Creates a blank schematic,

|2 Schematic Macro Creates a blank Schematic Macro

a new file to add/configure UDB

BE: UDB document

T arget generic device Component name: DffzetGain
OffzetG ain. cyudb
Bath [Debug/Releaze]
Examplel DEEditarDiesign

Create New '] ’ Cancel

28 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

W

£ CYPRESS

PERFORM

The UDB Editor opens in PSoC Creator, showing:

Example UDB Editor Design

A. A new component called "OffsetGain" in the Components tab of the Workspace Explorer.

B. A new, empty, UDB Editor design canvas named OffsetGain.cyudb.

C. Under Properties, only a "Clock" input with no Outputs, no Variables, and no Datapath properties.

i | ExampleUDBEditorDesign - PSoC Creator 3.1 [C:\...\ExampleUDBEditorDesign.cydsn\OffsetGain\OffsetGain.cyudb] (=) @
File Edit View Project Build Debug Tools Window Help
ENASHSSR)6 00 X G100 - @ Q M- iDebug
2] - 2 j w)‘& . - Microsoft Sans Serif ~ 10 ~-B I U igJEE Av;fv{‘)vv S 2k B | 4 " _‘d: 1% o
Workspace Explorer v ®X| " toppesign.cysch,” OffsetGain.cyudb | Start Page ~ 4 b x ||Properties =
i B @
& Workspace 'Exam Edito [Inputs 2
= 2] [Project ‘ExampleUDBEC . e = I
1My OffsetGain =1 <@ =
) OffsetGain.cyudb :;:: Vame g
=% TopDesign ol & Outputs
) i c7
|2 TopDesign.cysch 2| & Nome Expression
S||sm
[[=)
7o
2O Variables
& Name Expression Registered
1N ’
)|
» T Datapath properties
2 @
< T »
Page 1 ;E, Yerilog 4 b
Output >ax
Show output from: All -

[ap

< m » Output | Motice List

Ready {X=211,Y=150}

0 Errors Warnings 1 Notes

Note A clock terminal will always be present for a design implemented with a UDB Editor. Also, the names of all
controls, inputs, outputs, variables, states, Datapaths, Control Registers, Status Registers, and Count7 counters

must be unique across a UDB Editor document.

Step 2: Define the Component Inputs and Outputs

In the Properties window:
A. Add the "go" input signal which will create an input terminal.

B. Add the "done" output signal which will create an output terminal.

C. Assign the "done" output signal to a Verilog variable called "dsignal." This will be setup in the PLD in

a future step.

Properties v
X + 4

Inputs
E- clock
= go

Qutputs

= done e dsignal 0
Expression

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Example UDB Editor Design

Step 3: Create a State Machine to Control the Datapath Inputs

1. To begin creating a State Machine, drag a state (SM) instance from the Design Elements Palette onto your
design canvas.

TopDesign,cysch *fosetl.'-ain.cyudh] Start Page

<unknown>
161

=unknown=

BEH /O |02ds oo 02 ds)s |

2. Double-click on the on the state instance to open the Configure State dialog. Configure this instance as a start
state:

A. Under State settings, enter the Name as "Start" and the Encoding value for the state as "3'b000."

B. Select the Is start state check box, and then enter the Machine name as "S1" and the Reset
condition as "1'b0."

C. Under Variable assignments, type a variable named "dsignal" and set its value to '1'b0."

Configure State "Start’ in Machine "S1' @@
State settings ° v Is start state e
Name: Start Machine name: s1
Encoding: 3000 Reset condition: 1'b0

Wariable assignments: Used to define variables internal to a state machine that are updated using the given expression when
the state is entered.

Outbound transitions: Define the priority order of transitions out of this state. |f more than one outbound transition expression is
true, then the higher priority transition will be preferred.

Yariable assignments: V| Display on sheet. Outbound transition priority order:
Name Expression Transition Expr. State
0 dsignal 1'bl
& Enter expression

E]Xfo +| [+

[ok J[comel |

Note You are allowed to use other legal Verilog combinational logic statements, such as A&B (if A and B
were variables in your design).

When you see "Expression" in the UDB Editor, you are able to type a legal Verilog expression, which will then
be embedded into your PLD State Machine.

30 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

W

£ CYPRESS

PERFORM

Example UDB Editor Design

You can see the automatically generated Verilog (which is used by PSoC Creator to create the component)
by clicking on the Verilog tab at the bottom of the OffsetGain.cyudb schematic.

TopDesign.cysch *° OffsetGain.cyudb | Start Page

30! assign done = {dsignal} :

31

2 fw State Machine:
33: always @ (posedyge clock)

34 begin : Start state logic

35 case{S1})

38 Start :

37 bhegin

38 dsignal <= {1'hD}:
39 end

40 defanlt :

41 bhegin

42 51 <= Start:

43 end

44 endcase

45: end

45

47 endmodule

45

J.

s1 w]

Page 1 7. =) Yerilog

This Verilog code is "read only" so you can only modify it by updating the UDB Editor design. However, you
can copy the Verilog code into your own manually-built custom component. That process is beyond the scope
of this document. Refer to Application Note AN82156 for information about building a Verilog component.

3. Add more state instances to the design canvas. Configure the additional states as follows:

Name Encoding Variable Assignment Comment

Start 3'b000 Starts the State Machine.

Shift1 3'b001 Shift the input once.

Shift2 3'b010 Shift the input again.

Add 3'b011 dsignal = 1'b1 Set the "dsignal” to 1'b1 which will make the "done" output 1 at
the beginning of the next clock signal.

Last 3'b100 dsignal = 1'b0 Set the "dsignal" to 1'b0 which will make the "done" output 0 at
the beginning of the next clock signal.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 31

Example UDB Editor Design == CYPRESS

PERFORM

At this point, your State Machine should look similar to this:

Start Page]/TopDesign.cysch)/"‘ﬂffsetﬁain.cyudh]

s1
Fb000

dsignal=1'b0

Shiftl

<unknown=
3'b001

—_

B, 00 0208 teos des |

Shift2

=unknown=
Fb010

- @@V

Add

<unknown=
3b011

dsignal=1'b1

=unknown=

Fb100

dsignal=1'b0

Note The "dsignal= ... " labels were move to make room for the state transition arcs.

4. Create a transition from the "Start" state to the "Shift1" state. See State Machine Transitions. In this case you
want to move from "start" to "Shift1" when the signal "go" becomes true. On the Configure Transition dialog,
type "go" in Expression and click OK.

! ﬂn!\gure ransl!mn ILI
Espression: | qo ‘
Marme Expression

M¥ 0 Lnternams Enterexpression

] [[+][+]

32 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Example UDB Editor Design

5. Add transitions to the rest of the states. For all of them, leave Expression as "1'b1." These states will always
transition because 1'b1 is always true.

Now your State Machine should look similar to this:

Start Page | TopDesign.cysch *° OffsetGain.cyudb]

2

=]
=

S
3'b000

dsignal=1'n0 \

BEl—= ./~ 0[] 02830208030

dsignal=1'b1
b1 ;

Fb100

dsignal=1'b0

This State Machine will yield the following cycle-by-cycle results.

Clock Cycle go done State $1[0..2]
1 0 X Start 3'b000
2 0 0 Start 3'b000
3 1 0 Start 3'b000
4 0 0 Shift1 3'b001
5 0 0 Shift2 3'b010
6 0 0 Add 3'b011
7 0 1 Last 3'b100
8 0 0 Start 3'b000

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 33

Example UDB Editor Design

Step 4: Configure the Datapath

—

=
=2 CYPRESS

PERFORM

This step adds the Datapath element to the design. The Datapath will perform the "shift" and "add" instructions.
For more information, see Datapath.

1.

34

Drag a Datapath (DP) instance from the Design Elements Palette onto your design canvas. By default, the
instance will be named "Datapath_1". This name is used later in the API generation.

B~ 0 ozRsceozog

TDpDesign.cysch)/"‘l:lffsetﬁain.cyudh]/Start Page]

dsignal=1b0

Shiftl

s1
b1

1 'DE
Shift2

S1
2b11

1'b
v
Add

S1
2p10

1'bt
Last

s1
F'h100

1b

INSTR_ADDR[0] 100
INSTR_ADDR[1] 100
INSTR_ADDR[2] 100

01 ALUout={AD)

0 ALUout=(AD)

ALUout=(A0)

ALUaut=(AD)

3b101 ALUoUI=(AD)

ALUout=(A0)

ALUout=(A0)

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Example UDB Editor Design

2. Double-click on the Inputs section (left top) in the Datapath instance to open the Configure Datapath Inputs
dialog. Configure the inputs to connect to the State Machine.

There are 6 inputs to the Datapath that select the function of the block. In general, three of the inputs are
used to select which ALU operation occurs. In this case, assign the "INSTR_ADDR(x]" (which is the ALU
command selection) to S1[x] (which is the S1 State Machine that is defined in the PLD).

You can write many different Verilog expressions in the Expression field, including the constants (1'b0, 1'b1),
combinational logic expressions (A&B), or input signals from the component ("go").

You can have the Datapath do other selectable operations including loading the DO/D1 data registers, FIFOs,
etc. In this example, the FIFO will be loaded with the output of the ALU on every clock cycle. Set Input 3 -5
to "None" for this example.

Inst.
In. Selection Exf ion Addr. Instruction Comment

Fhooo :
Configure Datapath Inputs @
Selection: Ewpression;
Imput 0: [INSTR_ADDRD] ~| 5w
it (INSTR_ADDR(1] ~| [

e A
Inpuit 4: INSTR_ADDRN] |
INSTR_ADDR[1]
- INSTR_ADDR[Z] |
Load DO with FO
Laad D1 with F1
Load FIO with AD [oK J ’
Laad F0 with A1
Load FO with ALU out
Load F1 with A0
LoaiF v AL liow Aout: 6 signle it rai e sccsss 1 sigls o
Shitt In

|
|
I 2 (INSTR_ADDR(Z] M |
|
|
|

Cancel]

e =~ PPOA U t0 & pre-configured instructicns, ke
| addilion and subiraetion,

Click OK to close the dialog.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 35

Example UDB Editor Design

—

= _ » e
=7 CYPRESS

PERFORM

3. Double-click on the Registers section (left middle) in the Datapath instance to open the Configure Datapath

INSTR_ADDR[0] 120
INSTR_ADDR[1] 1'b0
INSTR ANDRIA 10

Load: Initial walue:

Fb000 ALUout=(A0)

o s |

b | Not supported

: | Nat supparted

: | Unuzed

: | Unused

: | Unuzed | Not supported

: | Unused | Not supported

/|

Cancel

Click OK to close the dialog.

4. On the right side of the Datapath instance, in the Instructions section (green), double-click on the 3'b000 row
(1* row) to open the Configure Instruction dialog.

A. Type "Start" in the Comment field.

INSTR_ADDR[0]
INSTR_ADDR[1]

IMIOTOD AnCoEan

F'b000 ALUsut=(AD)

Comment; Start e

AL operation

Reqister wiites

Compare options

Option 0: A0 compare to DO

Funchorn; [AD v] ’No-op - [No-op ']
Shift: [No-op -] [Nowp -
AL out: [&0]

Option 1: Config & A0 compare ta D1

Click OK to close the dialog.

36 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Example UDB Editor Design

5. Double-click on the 3'b001 row (2nd row) to open the Configure Instruction dialog.
Configure the ALU to perform the "Shift" operation for the Shift1 state as follows:
A. Type "Shift1" in the Comment field.

B. Under ALU operation, leave the Function as "A0" and "No-op". For Shift, select "Shift Config A:
(<<1]0)," which will shift the output of the ALU one bit to the left (and insert a 0 as the LSB).

C. Under Register writes, leave the top selection as "No-op" and select "A1 = ALUout" for the second
selection.

D. Under Compare options, leave Option 1 as "Config A: AO compare to D1."

INSTR_ADDRI0] o .
S = b000 ALUout=(AD)
INSTR_ADDR[Z] S1[2] ALUout=(A0) << 1
Fb001 |Shift in 0
Al=ALUout

Confiqure Instruction (3'b001)

Comment: Shift1] Q
AL operation @ Register wiites O

Functior: [AD -] ’ Mo-op -] ’ WNo-op hd]

Shit: | Shift Config &: (<< 110) +| A1 =ALUow -]

ALU_out: [ad) << 1
Shift in O

Compare options @

Option 0; A0 compare to 00

Option 1: [Config A A compare to D1 A]

I (0] 4 I ’ Cancel l

Click OK to close the dialog.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 37

Example UDB Editor Design

== CYPRESS

PERFORM

6. Double-click on the 3'b010 row (3rd row) to open the Configure Instruction dialog.

38

A
B.

Type "Shift2" in the Comment field.

Under ALU operation, select the Function "A1" and "No-op". For Shift, select "Shift Config A:
(<<1]0)," which will shift the output of the ALU one bit to the left (and insert a 0 as the LSB).

Under Register writes, leave the top selection as "No-op" and select "A1 = ALUout" for the second
selection.

Under Compare options, leave Option 1 as "Config A: AO compare to D1."

INSTR_ADDRI[0] S1[0] o
INSTR_ADDR[] S1[1] F'b000 ALUout=(AD)
INSTR_ADDR[Z] 51[2]

Al Uout=(A0) =< 1
Fb001 [Shiftin 0
Al=ALUout
ALUgut=(A1) << 1
Fb010 | Shiftin 0
Al=ALUcut

OnTIQure INsTruction

Comment: Shift2 Q

ALL operation @ Register writes 0
Function: [A‘I v] [No-op A [No-op V]
Shift | Shift Config &: (<< 110) v a1 =alUow -]
ALU_out: [81) << 1
Shiftin 0
Compare options @
Option O; Al compare to D0
Option 1: [Config A 40 compare to D1 ']

| ook || conce |

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

e

=2 CYPRESS

PERFORM

7. Double-click on the 3'b010 row (3" row) to open the Configure Instruction dialog.

A
B.
C.

Type "Add" in the Comment field.

Under ALU operation, select the Function "A1," "+," and "D0". For Shift, leave as "No-op."

Example UDB Editor Design

Under Register writes, leave the top selection as "No-op" and select "A1 = ALUout" for the second

selection.

Under Compare options, leave Option 1 as "Config A: AO compare to D1."

tapath_1

INSTR_ADDR[D] Lmnn o
INSTR_ADDR[1] Fb000 ALUout=(AD)
INSTR_ADDR[2]

AlLUout=(A0) == 1
Fb001 Shift im 0
Al=ALUout
AlUgut={A1) << 1
Fh010 [Shift in 0
AT=ALUout
AlUout=(A1 + DO}

AD Not supported FoOTT g At Uout

D1

||
Fo . Comnment; add Q
||
ALL operation @ Fegister writes 0

0 Function: [.s’-ﬂ v] [+ v] [DD v] [No-op v]
1 Shif: [No-op v [Al=ALUow -
. ALU_out: [&1 +D0)

4

= Compare options @

Optian 0: AD compare ta DO

Optian 1: [Eonfig A &0 compare to D1

Lo« Jf

Cancel

Click OK to close the dialog.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

39

Example UDB Editor Design

8. Double-click on the 3'b100 row (5th row) to open the Configure Instruction dialog.

40

Configure the ALU to perform the "Shift" operation for the Shift1 state as follows:

A. Type "Last" in the Comment field.

[N X,

4

INSTR_ADDR[0]
INSTR_ADDR[1]
INSTR_ADDR[2]

Fh011

Start

Shift1

Shift2

{
Al=ALUout

AlLUout=(AD)

|Last Q

Comment:
0
1 AL operation
= Functior:
2 Shift:
ot ALU_out:

Option 1:

Compare options
Option O;

Register wiites
'] ’No-op - [No-op V]
2| (e 5
A0 compare to DO

Config & A0 compare to D1

Cancel

Click OK to close the dialog.

Your Datapath instance should now look like this:

Datapath_1 (Width=8)

INSTR_ADDRI0]
INSTR_ADDR[1]
INSTR_ADDR[2]

Not supported

Not supported

Unused

&'h00
8'h00
8'h7F
8'h00

Not supported

Unused

Not supported

3'b000

3'b001

3'b010

3'b011

3'b100

3'b101

3'b110

3'b111

ALUout=(A0)

ALUout=(Al
Shiftin 0

Shi
A1=ALUout

ALUout=(A1 + DO)

Al=ALUout

ALUout=(A0)

ALUout=(A0)

ALUout=(A0)

ALUout=(A0)

£ CYPRESS

PERFORM

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

PERFORM

Step 5: Create the Component Symbol

Right-click in an empty area of the design canvas, and select Generate Symbol.

Stark Page TopDesign.cysch

OffsetGain.cyudb]

dsignal=1'b0

J 7 0 [0 02 88 o=t 02 4[|

Start

Select Al

Ctrl +2,

Zoom

Generate Symbol

ipath_1 (Width=8)

Change Template

Selection Expres

Example UDB Editor Design

This action adds a new symbol file (.cysym) to the component (shown in the Workspace Explorer) and opens it in

the Symbol Editor.

Workspace Explorer

S0

& “vorkspace 'ExarmpleUDEEditorDesign’ (1 Projec
E}EI Project 'ExampleUDBEditorDesign’ [CY8

E}” CffsetGain
be[e] OffsetGain.cysym
-] OffsetGain.cyudb
=R TopDesign

» O X

suauodwioy

Start Page | TopDesign.cwsch | OffsetGain.cyudb - OffsetGain.cysym]
|:| -
o OffsetGain_N
N :
L OffsetGain
T
= [Hclock donel-]
1]
3 g0
1]

If you double-click the TopDesign.cysch file in the Workspace Explorer to open the Schematic Editor, you will see
a Default tab in the Component Catalog that contains the new component.

Warkspace Explorer (1 project)

i

B “iorkspace 'ExampleUDEEditorDesign’

E}EI Project 'ExampleUDBEditorDesi
EIQ OffsetGain

(@] OffsetGain.cysym

i] OffsetGain.cyudb

-y TopDesign

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

-Rx TopDesign.cysch |* OffsebiGain.cyudb

OffsetGain.cysy ¥ 4 b X

suauodwoy

I:r_’_1_)/_|:|©nn|:|

53R8USEIR]

say

»

m

Component Catalog (84 co.. » 3 X

% ([0 |

Search for...

Cypress © Default | CFF-Chip |4 P

ﬂ Default Component Catalag
E}Qﬁ Components
Lo] [OffsetGain [w0.0]

Inst N

| OffsetGain |

41

Example UDB Editor Design

Step 6: Build the Component APIs

For this step, add APl header and c files to provide user functions for the component.

1. Inthe Workspace Explorer, under the Components tab, right-click on the component and Add Component
Item.

Workspace Explorer (1 project) -0 X
SR

& Workspace 'ExarnpleUDBEditorDesign’ (1 Projects)
£+{P2] Project 'ExampleUDBEditorDesign’ [CYSC

= '
Set &s Top Companent
Add Compaonent Ikerm..., M n
Export Cormponent J -g
2
Cut Crl +X [
‘ 7
=23 Copy Chrl+C
[}
] [T
3 o
XK Delete Del a
Rename F2 =

synsay

2. On the dialog, scroll down to the API section and select the "API Header File" template. For Item name, type
"OffsetGain.h."

Add Cormponent Iterm @
=l APL I
ssi G051 Keil Assembly File 1E?lreeates an ernpby 8051 Keil assembly
G APLCFile Creates an ermphy APT C File,
' APTHeader File Creates an ermphy AP header file,
ssi GHL ARM Assembly File]Ei,lr:ates an ernply GHUARM assermbly
ssilRealView ARM Asserbly File 1o 31 Bmply Realiiew ARM 2
| Target genenic device DffzetGain
|temn name: OffzetGainH
Boath [Debug/Releaze]
- OffzetGain
Create Hew 'l ‘ Cancel

42 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

CYPRESS Example UDB Editor Design

PERFORM

Click Create New. This action adds a new header file to the component (shown in the Workspace Explorer)
and opens it in the Code Editor.

Workspace Explorer (1 proje... v & X TopDesign.cysch | CffsetGain.cyudh | OFfsetGain.cysym ” OffsetGainh | ¥ 4 P X

% = 1% == T‘
B Workspace 'Example UDBEditor 2 *)
% [5a] *Project 'ExampleUDBEd 3| * Copyright YOUR COMPANY, THE YELR
: . 4 * 311 Rights Reserwved
E}--” OffsetGain
T B AL 5| * UNPUBLISHED, LICENSED SOFTWARE.
e OffsetGain.h ol
ik i .
] EL g? an g 7| * CONFIDENTIAL AND PROFRIETARY INFORMATICH
o setlaincysym - 2 5| * WHICH IS THE PROPERTY OF your company.
o L] OffsetGain.cyudh % o .
E}” TopDesign a. 10 ¥ =m==
2] TopDesign.cysch 11 L#fF
g 1z
ﬁ 13F /% [] END OF FILE =/
] 14
&
X il
'. . v J < | m b

3. Edit the header file as follows to create "Setlnput," "Getlnput," and "GetOutput" functions:

#if !defined ($INSTANCE NAME ' OFFSETGAIN H)
#define *SINSTANCE NAME' OFFSETGAIN H

#include "cytypes.h"

void “$INSTANCE NAME ™ SetInput (uint8);
uint8 \$INSTANCE_NAME\7GetInput ()
uint8 “$INSTANCE NAME GetOutput (void);

#endif

4. Now add an API C file to the component with the name "OffsetGain.c." Edit the C file as follows:

#include "cytypes.h"
#include " SINSTANCE NAME' OffsetGain.h"
#include " SINSTANCE NAME ' defs.h"

void “$INSTANCE NAME' SetInput (uint8 wval)

{
/* Datapath 1 is the instance name from the UDB Editor */
CY SET REGS ('$INSTANCE NAME' Datapath 1 A0 PTR,val);

uint8 ° $INSTANCE_NAME ° GetInput ()

{
return CY GET REGS ("$INSTANCE NAME Datapath 1 A0 PTR);

uint8 “$INSTANCE NAME GetOutput (void)

{
return CY GET REGS ("$INSTANCE NAME Datapath 1 Al PTR);

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 43

Example UDB Editor Design

Step 7: Use the New Component

Now that the component is complete, we'll use it in a design.

1. Double-click the TopDesign.cysch file in the Workspace Explorer to open the Schematic Editor; you will see a
Default tab in the Component Catalog that contains the new component.

Workspace Explarer (1 project) > & X|| " TopDesign.cysch | OffsebGain.cyudh | OffsetGain.cysn® 4 b X Component Catalog (84 co.. » & X
:%) |:| a || Search for... tﬁ_ LLJ‘
B “iorkspace 'ExampleUDEEditorDesign’ 3 Cypress ” Default | Ff-Chip |4 »
E}EI Project 'ExamplelUJDBEditorDesi @ | Default Camponent Catalog
Elh OffsetGain . 0 ||| =%8 Components
i o] OffsetGain.cysym [= i 2| OffsetGain [v0.0]
Pk] OffsetGaincyudb ol [~
: =]
-y TopDesign é N
I
2 [
Wl
o||
'D_l‘_
[
=
=
~ Inst_N
o n
3 | OffsetGain |

2. Drag the OffsetGain component onto the TopDesign.cysch canvas. Connect a Clock component to the "clock"
terminal, a Logic High component to the "go" terminal, and a status register with a sticky bit to the "done"
terminal. Also, drag a Character LCD to the canvas. When complete, your design should look similar to this:

Start Page *TupDesign.cysch] OffsetGain, cyudb | OffsetGain.cvsym - OFfsetGain.h - OFfsetGain.c 4 b X
*S -
(I
Q
N LCD_Char_1 OffsetGain_1 5;%3;299_1 =
h Character LCD OffselGain e
T Clock_1[Jun, clock done status_0
il R W o

] m v
.. Page 1 4 B

In this design, we will write a value into the component, and then read it out and display it on the LCD. The
UDB component will require an input clock. The OffsetGain component will require the "go" signal, in this
case being set to logic 1, that will run and then re-run the component. The status register will check the status
of the "done" signal.

44 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Example UDB Editor Design

3. Inthe Workspace Explorer, click the Source tab, and then double-click the main.c file to open it in the Code
Editor.

Warkspace Explarer (1 praject) - & X *TopDesign.cysch | OFfsetGain.cyudb | OFFsetGaincysym | OFfsetGainh 0 OFfsetGaine * maine | 7 4 F X

B 5] - JECEEEe e e e =
&) “Workspace 'Examplel)DBEditorDesi 2 K
& 7 Project ‘ExampleUDBEitorD ,, 3 * Copyright YVOUR COMPANY, THE YEAR
. =1 4 * 411 Rights Reserved
.ﬂ’ TopDesign.cysch £
HE . . a 5 * UMPUELISHED, LICEMN3ED SOFTWARE.
_\P ExampleUDEEditarDesign.c c N
-0 Header Files o 7i| # COMFIDENTIAL AND PROPRIETARY INFORMATION
EHLD Source Files 3 sl * WHICH IS THE PROPERTY OF your company.
§ L] [rain.e % o .
) Generated_Source = 10 e e e e e m—m————e £
2 11 L%
% 12 #include <project.h:
= 13
& 14; int mainf()
15 {
g 16 /% Place your initialisation/startup code here (e.g. MyIns
e 17
15 % CyGlobhalIntEnable; */ /% Uncomment this line to enable
19 fori:z:)
z0 {
. 21 f% Place wour application code here. #/ il
a o N J‘ - ' [Tl 3

Edit the main.c file as follows. Make sure that names used for the various functions match the instance names
of the components on the canvas.

Use the Generate Application ‘3 command on the toolbar to generate the source code so that the PSoC
Creator Code Editor will help you with the Code Editor auto-complete feature.

#include <project.h>

int main ()

{
LCD Char 1 Start();

OffsetGain_ 1 SetInput(10);

while (Status Reg 1 Read() == 0); // wait for UDB component to be done
LCD _Char 1 Position(0,0);

LCD_Char 1 PrintString("I:");

LCD _Char 1 PrintInt8 (OffsetGain 1 GetOutput());

LCD _Char 1 PrintString(" 0:");
while (1) ;

4. Connect the appropriate kit for your device and click Program. When complete, you should see "l:0A O:A7"
displayed on the LCD.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 45

=
= CYPRESS

PERFORM

Example UDB Editor Design

Additional projects
If you successfully built and programmed this project, try a few other options to expand the design.

m Put the State Machine states to pins.

m Use the FIFOs.

m Make the "gain" of the block be programmable.

m Implementa PWM.

46 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Appendix A: Datapath Operation

=% CYPRESS

PERFORM

A UDB-based PSoC device Datapath is essentially a very small 8-bit wide processor with 8 states defined in a
"dynamic configuration." Consecutive Datapaths can be tied together to operate on wider data widths using one of
the following pre-defined modules. The following description provides a high-level description of the Datapath and
how it is used. For full details on the Datapath, refer to the TRM.

Datapath Instructions

The Datapath is broken into the following sections:

m ALU - An ALU is capable of the following operations on 8-bit data. When multiple Datapaths are tied
together to form 16, 24, and 32 bits, then the operations act on the full datawidth.

Pass-Through

Increment (INC) (add one)
Decrement (DEC) (subtract one)
Add (ADD)

Subtract (SUB)

XOR

AND

o OR

m Shift — The output of the ALU is passed to the shift operator, which is capable of the following operations.
When multiple Datapaths are tied together to form 16, 24, and 32 bits, then the operations act on the full

O o o o o

datawidth.

O Pass-Through (no-op)
O Shift Left

O Shift Right

m Mask — The output of the shift operator is passed to a mask operator, which is capable of masking off any
of the 8 bits of the Datapath. The mask is ANDed with the output of the shifter and cannot be disabled on
an instruction-by-instruction basis.

m Registers — The Datapath has the following registers available to the hardware and to the CPU with
various configuration options defined in the static configuration registers.

O Two Accumulator Registers: A0 and A1
O Two Data Registers: DO and D1
O Two 4-byte deep FIFOs: FO and F1 capable of multiple modes of operation

m Comparison Operators

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 47

Appendix A: Datapath Operation

O Zero Detection: Z0 and Z1 which compare A0 and A1 to zero respectively and output the binary
true/false to the interconnect logic for use by the hardware as necessary.

O FF Detection: FFO and FF1 which check whether AO or A1, respectively, contain all 1's and output the
binary true/false to the interconnect logic for use by the hardware as necessary.

O Compare O:

Compare equal (ce0) — Compare (A0 & CmaskO) is equal to DO and output the binary true/false to the
interconnect logic for use by the hardware as necessary. (CmaskO0 is configurable in the static
configuration.)

Compare Less Than (cl0) — Compare (A0 & CmaskO0) is less than DO and output the binary true/false
to the interconnect logic for use by the hardware as necessary. (CmaskO0 is configurable in the static
configuration.)

O Compare 1:

Compare equal (ce1) — Compare ((AO or A1) & Cmask1) is equal to (D1 or AO) and output the binary
true/false to the interconnect logic for use by the hardware as necessary. (Cmask1 is configurable in
the static configuration)

Compare Less Than (cl1) — Compare (A0 & CmaskO0) is less than DO and output the binary true/false
to the interconnect logic for use by the hardware as necessary. (Cmask1 is configurable in the static
configuration)

O Overflow Detection: Indicates the msb has overflowed by driving ov_msb output as a binary true/false
to the interconnect logic for use by the hardware as necessary.

The Datapath allows for many different configurations that are common in almost every component that will be
designed. Many functions within a Datapath that can be implemented with Verilog fit into the PLDs. However, the
PLDs will be used up very quickly, whereas the Datapath is a fixed block. There will always be a trade-off
between the number of Datapaths and PLDs available. It is up to the designer to decide which of these is a more
precious resource. Note that some functions, such as FIFOs, cannot be implemented in the PLDs.

Datapath Registers

Each Datapath contains 6 registers - AQ, A1, DO, D1, FO and F1. These serve different functions with certain
restrictions, and can be used in a variety of ways to form your design.

m Accumulator registers AO and A1 are often used like RAM to hold temporary values entering and coming
out of the ALU. These are the most versatile registers and are also the most accessed. The values in the
AO/A1 registers are not retained in sleep / hibernate.

m Data registers DO and D1 are not as versatile as the accumulator registers. They can be written by the
Datapath only from the FIFO and by consuming an extra d0_load or d1_load input signal. For this reason
it is often used like ROM in the design. The values in the D0/D1 registers are retained in sleep / hibernate

m 4-word deep FIFOs FO and F1 are often used as the input and output buffers for the Datapath. These
cannot directly source the ALU and the value in the FIFO must be loaded in to the accumulator register
before it can be used by the ALU. See FIFO Modes for more details on the FIFO configurations. The data
in the FIFOs is not retained in sleep / hibernate.

48 Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

Appendix A: Datapath Operation

Datapath Inputs/Outputs

A Datapath, regardless of data width can contain up to 6 input bits. Of the 6 input bits, up to 3 bits can be used to
control the Datapath instructions for that clock cycle. Therefore 8 unique instructions per Datapath can be used in
the design. Each of these instructions can perform multiple operations in the same clock cycle, which can further
optimize performance.

Similarly, a Datapath can contain up to 6 outputs regardless of the data width. These outputs are used to send
status signals from the Datapath to either a Status Register or to other blocks in the design such as the State
Machine or the Count7 counter. These status signals are generated from comparisons and internal logic in the
Datapath and do not include data bits directly from the registers or the ALU. It is possible however to access this
information by using the shifter to serially shift out the bits in the ALU.

FIFO Modes

The 4-word deep FIFOs in Datapaths can be configured to several modes by modifying an auxiliary control
configuration register. This register is used by the CPU/DMA to dynamically control the interrupt, counter, and
FIFO operations. Refer to the TRM for more information about the auxiliary control configuration register.

FIFOs are set to either single buffer or normal mode.

m Single buffer mode — This mode configures the FIFO to be a 1-word deep buffer instead of the normal 4-
word deep FIFO. Any value written to the FIFO immediately overwrites its content. This mode should be
used if only a 1-register FIFO with its corresponding FIFO bus and block status signals are needed.

m Normal mode — Normal mode is the standard 4-word deep FIFO that can be used to fill up to four data
words.

The data transfers to and from the FIFO are often controlled using the FIFO bus and block status signals. These
are FIFO 0/1 block status (fO_block_stat, f1_block_stat), and FIFO 0/1 bus status (fO_bus_stat, f1_bus_stat)
signals. The behaviors of these are dependent on the input/output mode and auxiliary control configuration
register settings. The following table shows the possible configurations. FIFO is an output if it has a load signal
(load with ALUOut/A0/A1) in the inputs. It is an input if is assigned to AO/A1 in the "register writes" section of any
Datapath instruction.

Note This is for illustrative purposes only. For more detail descriptions on the FIFO configuration, refer to the
TRM.

Direction | Level Mode | Signal Status Description
Input N/A Block status | Empty Asserted when there are no bytes left in the
FIFO.
NORMAL Bus status Not full Asserted when there is room for at least 1
word in the FIFO.
MID Bus status At least half Asserted when there is room for at least 2
empty words in the FIFO.
Output N/A Block status | Full Asserted when the FIFO is full.
NORMAL Bus status Not empty Asserted when there is at least 1 word
available to be read from the FIFO.
MID Bus status At least half full | Asserted when there are at least 2 words
available to be read from the FIFO.

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

=
= CYPRESS

PERFORM

Appendix A: Datapath Operation
Level mode can be configured by setting the FIFO level mode of an auxiliary control configuration register to

either NORMAL or MID.

Note Level mode changes the meaning of the "bus status" signal.
NORMAL FIFO level - ANORMAL FIFO level allows the bus status signal to assert whenever there is at

|
least 1 word that is ready to be read or written (depending on the FIFO direction).

m MID FIFO level - A MID FIFO level allows the bus status signal to assert whenever there are at least 2
words that are ready to be read or written (depending on the FIFO direction).

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

50

Appendix B: UDB Editor Syntax

YPRESS

PERFORM

The UDB Editor uses Verilog expressions for describing the signal operations. Some of these are similar to C
expressions. The following is a list of supported operators. These can be used in the expression fields of the UDB
elements. The logic will be implemented using PLDs.

Category Expression Description Example
Arithmetic Operators * Multiplication A*B
+ Addition A+B
- Subtraction A-B
/ Division A/B
% modulus A%B
Shift Operators << Shift left A<<1
>> Shift right A>>1
Relational Operators < Less than A Greater than A>B
<= Less than or equal to A<=B
>= Greater than or equal to A>=B
Equality Operators == Equal to A==
1= Not equal to Al=B
Bit-wise Operators ~ NOT (bit-wise negation) ~A
& AND (bit-wise AND operation) A&B
| OR (bit-wise OR operation) A |B
A XOR (bit-wise XOR operation) A*B
A~ XNOR (bit-wise XNOR operation) A*~B
~A XNOR (bit-wise XNOR operation) A~"B
Reduction Operators & AND (reduction unary AND) &A
~& NAND (reduction unary NAND) ~& A

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014 51

Appendix B: UDB Editor Syntax

Category Expression Description Example

| OR (reduction unary OR) | A

~| NOR (reduction unary NOR) ~ A

A XOR (reduction unary XOR) A

A~ XNOR (reduction unary XNOR) A~ A

~A XNOR (reduction unary XNOR) ~MA
Logical Operators ! NOT (logical negation) A

&& AND (logical AND) A&&B

|| OR (logical OR) Al B
Conditional Operators ?: Similar to ternary operator in C. (A)? 1'b1:1'b0
Concatenation {} Concatenate bits {A, B}

52

Universal Digital Block (UDB) Editor Guide, Document Number 001-94131, Rev. **, 9/24/2014

	Contents
	Introduction
	What is a UDB?
	Conventions
	Acronyms and Abbreviations
	References
	Revision History

	UDB Editor Overview
	Opening the UDB Editor
	UDB Editor Elements
	Datapath
	Control Register
	Status Register
	Status Interrupt Register
	Count7 Counter
	State Machine

	UDB Editor APIs

	Example UDB Editor Design
	Step 1: Create a Custom Component
	Step 2: Define the Component Inputs and Outputs
	Step 3: Create a State Machine to Control the Datapath Inputs
	Step 4: Configure the Datapath
	Step 5: Create the Component Symbol
	Step 6: Build the Component APIs
	Step 7: Use the New Component
	Additional projects

	Appendix A: Datapath Operation
	Datapath Instructions
	Datapath Registers
	Datapath Inputs/Outputs
	FIFO Modes

	Appendix B: UDB Editor Syntax

