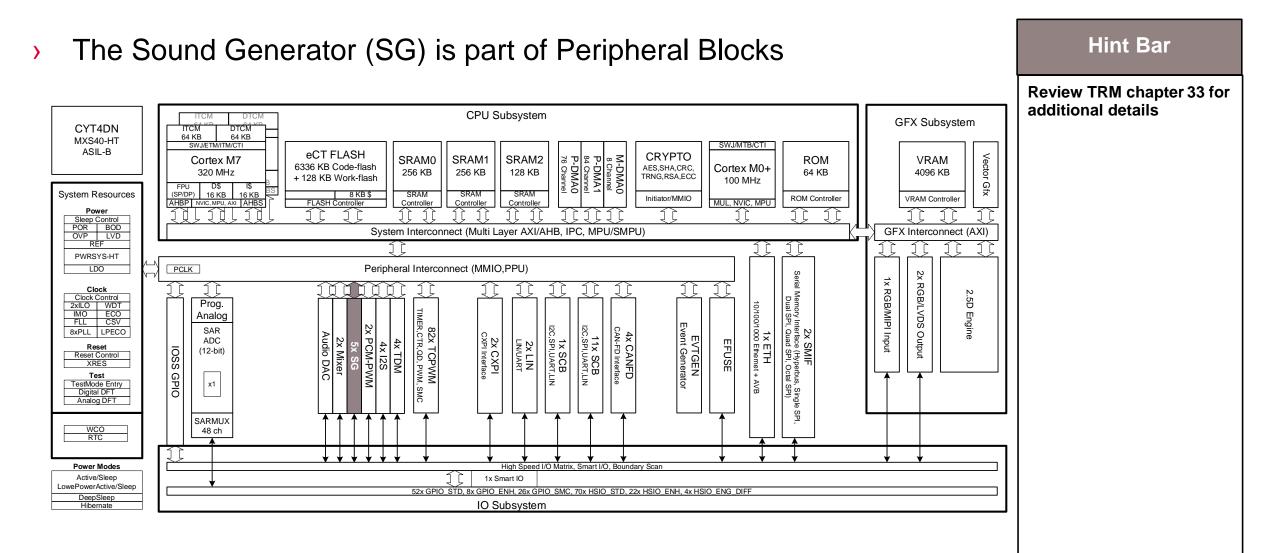
Customer Training Workshop

Traveo[™] II Sound Generator


Target Products

> Target product list for this training material:

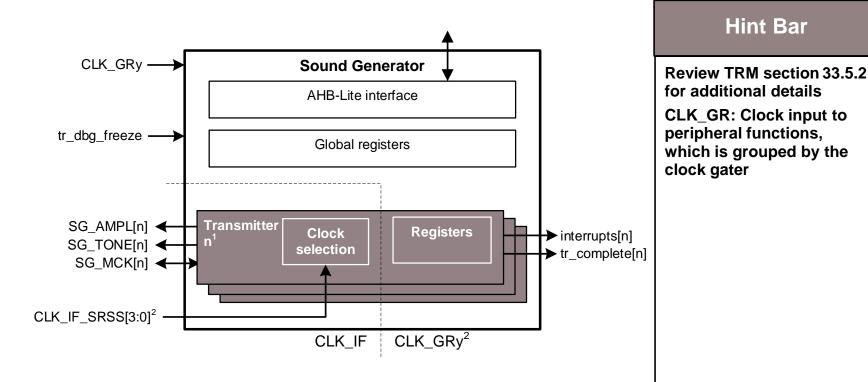
Family Category	Series	Code Flash Memory Size
Traveo™ II Automotive Cluster	CYT3DL	Up to 4160KB
Traveo™ II Automotive Cluster	CYT4DN	Up to 6336KB

Introduction to Traveo II Cluster

Sound Generator (SG) Overview

- > SG produces PWM tone and amplitude signals
 - Tone signal is used to generate sound frequencies
 - Amplitude signal is used for volume control
- > Features
 - PWM-modulated (amplitude, tone) sound generation
 - Double-buffered segment structure control
 - Two operating modes
 - Separate volume and frequency control (two signals) format
 - Combined volume-frequency control (one signal) format
 - Programmable interface clock

Review TRM section 33.5 for additional details


Hint Bar

¹ Number of transmitters (n) varies by device

² See the device datasheet for assigned clocks to CLK_IF_SRSS[3:0] and CLK_GRy

SG Block Diagram

- SG components >
 - Transmitter block
 - Clock
 - Output signals and segment structure
 - Double buffering
 - Audio waveform _ composition
 - Interrupt -

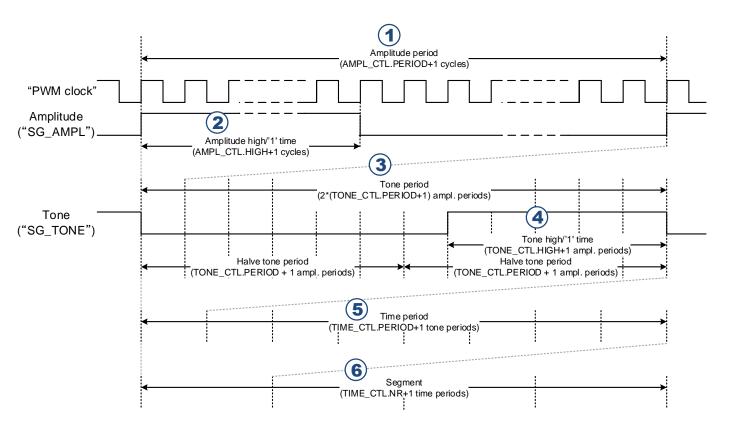
Hint Bar

PWM Interface Clock

Hint Bar PWM interface clock can be derived from either of these clock signals Signal Description **Review TRM section 33.5.3** for additional details CLK IF SRSS[3:0]¹ SRSS clock SG AMPL OUT: Amplitude output SG MCK IN Master interface clock SG TONE OUT: Tone output An interface clock (CLK_IF) is derived and then gated to derive the PWM clock **Review the Clock System** Training section for additional details about → SG_MCK_OUT → X high-frequency clocks CLK_IF_SRSS[0] CLK_IF_SRSS[1] -**Clock** gater →CLK IF "PWM clock" CLK IF_SRSS[2] -CLK_IF_SRSS[3] - \mathbb{N} SG MCK IN SGx_SG_STRUCTy_IF_CTL.CLOCK_DIV SGx SG STRUCTy IF CTL.CLOCK SEL PWM clock drives the SG_AMPL_OUT and SG_TONE_OUT lines and its > resolution determines the amplitude PWM period frequency ¹See the device datasheet for assigned clocks to CLK IF SRSS[3:0]

Output Signals and Segment Structure (1/2)

SG create – Amplitu – Tone d To control segment s	Hint Bar Review TRM section 33.5.4 for additional details Review Registers TRM for additional details		
Segment Structure			
Amplitude	Amplitude Specifies the volume of the sound AMPL_CTL		
Tone	Tone Specifies the frequency of the sound TONE_CTL		
Time	Time Specifies how long a certain tone is played TIME_CTL		
Step Specifies whether the volume is constant, decreasing, or STEP_CTL			


>

>

Output Signals and Segment Structure (2/2)

- > Segment structure
- A single amplitude period is (AMPL_CTL.PERIOD + 1) PWM clock cycles
- The high time of an amplitude period is specified by (AMPL_CTL.HIGH + 1) PWM clock cycles
- ③ A single tone period is two times the (TONE_CTL.PERIOD + 1) amplitude periods
- The high time of a tone period is defined by (TONE_CTL.HIGH + 1) amplitude periods
- **(5)** A single time period is (TIME_CTL.PERIOD
 - + 1) tone periods
- 6 A single segment is (TIME_CTL.NR + 1) time periods

Hint Bar

Review TRM section 33.5.5

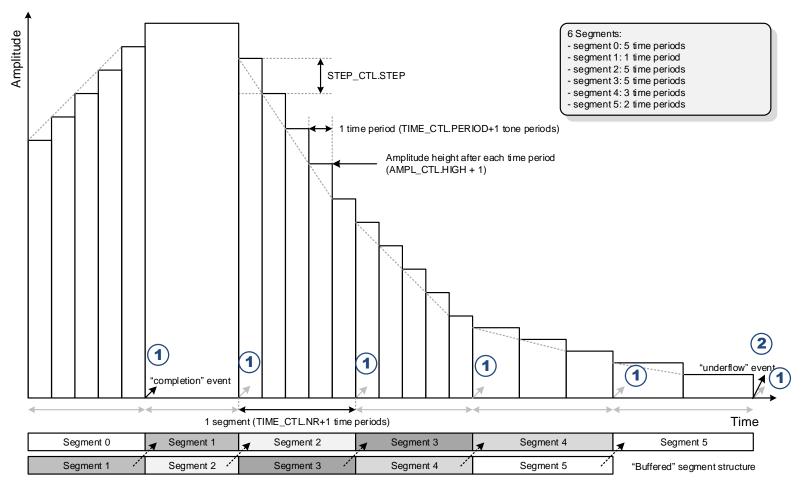
for additional details

Double Buffering

> To generate sound continuously, double-buffered structures are used

- > Current structure can control the sound generation process
- > Buffered structure can be updated by a CPU or P-DMA
- When the current structure is complete, a completion event is activated, and the buffered structure is copied to the current structure

¹ Excluding Start bit or Stop bit


Audio Waveform Composition

- > In the diagram, multiple segments are used to describe a sound signal
- > After each segment, hardware
 - Activates a completion event that
 - Updates the current segment's structure with information of the buffered segment structure
 - Activates tr_complete trigger
 - Activates INTR_TX.COMPLETE interrupt cause
- 2 If the completion event is not followed by a buffered segment structure, it activates an underflow event and the sound generation ends

Audio Waveform Composition

Audio Waveform Composition Example

Interrupt

> A sound generator interrupt can be triggered by any of the following events

	Interrupt	Set Condition
	INTR_TX.COMPLETE	A segment descriptor is complete
	INTR_TX.UNDERFLOW	A new segment structure is not available
	INTR_TX.IF_UNDERFLOW ¹	Sample pairs (amplitude, tone) are not generated in time for the interface logic. It may indicate that the SG block system frequency is too low with respect to the interface frequency (a SW configuration error)

Hint Bar

Part of your life. Part of tomorrow.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Revision History

Revision	ECN	Submission Date	Description of Change
**	6638977	07/29/2019	Initial release
*A	6805395	02/12/2020	Added note descriptions in each slide
*B	7053619	12/24/2020	Updated page 2, 5, 6