Customer Training Workshop Traveo[™] II SAR ADC

Target product list for this training

Family Category	Series	Code Flash Memory Size
Traveo [™] II Automotive Body Controller Entry	CYT2B6	Up to 576KB
Traveo II Automotive Body Controller Entry	CYT2B7	Up to 1088KB
Traveo II Automotive Body Controller Entry	CYT2B9	Up to 2112KB
Traveo II Automotive Body Controller Entry	CYT2BL	Up to 4160KB
Traveo II Automotive Body Controller High	CYT3BB/4BB	Up to 4160KB
Traveo II Automotive Body Controller High	CYT4BF	Up to 8384KB
Traveo II Automotive Cluster	CYT3DL	Up to 4160KB
Traveo II Automotive Cluster	CYT4DN	Up to 6336KB

Introduction to Traveo II Body Controller Entry

Introduction to Traveo II Body Controller High

Review TRM chapter 35 for additional details

Hint Bar

- 12-bit resolution with a maximum sample rate of 1 Msps¹
- Up to three units in Traveo II
- Features (1/2)
 - Programmable sample time for each channel
 - Each logical channel can select an input from
 - Up to 32 analog input pins per unit
 - Diagnostic signals
 - Channels can be individual or grouped
 - Eight priorities, programmable per group
 - Triggered by TCPWM, software, continuous (idle trigger), or generic²
 - Multiple ADC units can be triggered by the same trigger
 - Optional debug freeze

¹ 1 Msps: $4.5 V \le VDDA \le 5.5 V$, 0.5 Msps: $2.7 V \le VDDA \le 4.5 V$ ² Review the Triggers section for alternative trigger sources

Hint Bar

Review the datasheet and section 1 in the TRM chapter for additional details

- Programmable post-processing options for each channel
 - Averaging: first order accumulate and dump, up to 256 samples
 - Range detection: below/above threshold, inside/outside range
 - Pulse detection: programmable positive and negative event counters
- Interrupt generation per channel or group
- Output trigger generation per channel (can trigger DMA transfer)
- Support for diagnostic measurements including broken wire detection
- Programmable offset and gain calibration

Hint Bar

Review the datasheet and section 1 in the TRM chapter for additional details

SAR ADC Block Diagram

SAR ADC components

SAR ADC Block Diagram

- > SAR ADC components
 - SAR ADC Core
 - ADC acquisition time
 - Result data format

ADC Conversion Time

- > A/D conversion time = sample time + comparison time
 - Comparison time:
 - 15 ADC clock cycles

¹ Peripheral clock (CLK_PERI). Minimum comparison time: $\frac{15}{267M} = 0.56 \ \mu s$; minimum sample time: $\frac{11}{267M} = 0.41 \ \mu s$

- (Maximum ADC clock frequency: 26.7 MHz¹)
- Sample time:
 - Programmable sample time per channel (SAMPLE_TIME)
 - Recommended sample time is 11 clock cycles or more at 26.7 MHz

details

Advantage:

Hint Bar

Review section 3.3 in the TRM chapter for additional

An accurate conversion

¹ This bit is zero

Result Data Format

- Signed/Unsigned result
 - Can be treated as signed or unsigned (default)
- > Alignment
 - Can be right aligned (default) or left aligned

	Signed/		Result Register														
Alignment	Unsigned	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Right	Unsigned	_1	_1	_1	_1	11	10	9	8	7	6	5	4	3	2	1	0
Right	Signed	11	11	11	11	11	10	9	8	7	6	5	4	3	2	1	0
Left	-	11	10	9	8	7	6	5	4	3	2	1	0	_1	_1	_1	_1

Review section 3.2 in the TRM chapter for additional details

Alignment use case:

- Left alignment allows fixed-point arithmetic of values with different resolution
- Compare 12-bit value
 with 8-bit value
- Compare 16-bit averaged value with 12bit value without averaging

SAR ADC Block Diagram

- SAR ADC components
 - SARMUX
 - Analog input selection
 - Reference buffer
 - Preconditioning

Analog Input Selection

¹ CYT2B7/9 (176-pin) supports 3 units with the following analog pins: Unit 0: ADC[0]_0-23, Unit 1: ADC[1]_0-23, and Unit 2: ADC[2]_0-15 For other devices, refer to the respective device datasheet

² External analog multiplexer pins: EXT_MUX[x]_y - External Analog Multiplexer Select Input and EXT_MUX[x]_EN: External Analog Multiplexer Enable

³ Traveo II does not support AUX (auxiliary input)

 $^4\,V_{\text{MOTOR}}$ is connected to the P11[2:0]/ADC[2:0]_M pins

)20-10-29

Copyright © Infineon Technologies AG 2020. All rights reserved.

Analog Input Selection

- > Advantage
 - Each analog input pin can connect with each channel per ADC unit
- > Use Case
 - Scan in order of system control priority without physical constraints from pinout and PCB layout

Example CYT2B7 Unit 0

ADC[0]_0-23 input pins can be freely connected with logical channels 0-23, but not with channels 24 and higher

Review each device datasheet for each unit channel configuration

.

Reference Buffer

- > Four Functions
 - Power Supply Monitoring
 - Buffering the 0.9-V bandgap signal from the System Resource Sub System (SRSS)
 - Connects to SAR and diagnostic reference generator multiplexer inputs
 - Scaling 1 µA (4x 250 nA currents in parallel) from the SRSS to 10 µA and replicating this current (both source and sink) for diagnostic reference generators
 - Use case:
 - Broken wire detection
 - Providing a temperature-dependent voltage for one-die temperature sensing

Review section 11 in the TRM chapter for additional details

Review section 9 in the TRM chapter for temperature sensor measurement

Review the device datasheet for temperature sensor spec

Voltage Monitoring by ADC

- > ADC is used for all other power supplies
- A monitor switch is provided between power/ground pins and Amuxbus A/B by the HSIOM_MONITOR_CTL register
- The midpoint of the signal (Amuxbus A/B) is connected to the SARMUX (internal signals) and can be selected for ADC by a channel

Review section 11 in the TRM chapter for additional details Review TRM section 16.3.6

Hint Bar

for the relation between HSIOM_MONITOR_CTL_0 register and power/ground pins

Preconditioning

- > Four possible selections per channel
 - No preconditioning
 - Discharge to VREFL
 - Charge to VREFH
 - Connect to diagnostic reference output

Advantage: • Detect broken wire by charging or discharging the ADC sampling capacitor before sampling the input
 Detect broken wire by charging or discharging the ADC sampling capacitor before sampling the input
signal for functional safety and diagnostics

Detecting Broken Wires by Preconditioning

open" detection with two preconditions

Preconditioning = VREFH

Note: When there is an open load, the conversion result will still be almost 5 V

Preconditioning = VREFL

Note: When there is an open load, the conversion result will still be 0 V

Broken Wire Detection by Preconditioning

"short to GND" detection preconditions

Sensor ADC

Preconditioning = VREFH

Note: When there is a short circuit to GND, the conversion result will immediately be 0 ${\rm V}$

Preconditioning = VREFL

Note: When there is a short circuit to GND, the conversion result will still be 0 ${\rm V}$

Broken Wire Detection by Preconditioning

"short to 5 V" detection preconditions

– Preconditioning = VREFH

Note: When there is a short circuit to 5 V, the conversion result will still be 5 V $\,$

– Preconditioning = VREFL

Note: When there is a short circuit to 5 V, the conversion result will immediately be 5 V

Advantage of Preconditioning

SAR ADC Block Diagram

- SAR ADC components
 - Diagnostic Reference
 - Diagnostic reference generator

Provides voltages and currents for diagnostics

– VREFL, VREFH

)

- VREFH x 1/8, x 2/8, x 3/8, x 4/8, x 5/8, x 6/8, x 7/8, x 199/200
- Bandgap voltage
- Current source (10 µA)

Diagnostic Reference Generator

Current sink (10 µA)

Hint Bar

SAR ADC Block Diagram

- > SAR ADC components
 - Channel Grouping
 - Triggers
 - Arbitration, Preemption, and Acquisition Scheduling
 - Averaging
 - Range Detect
 - Pulse Detect
 - Interrupts
 - Trigger Outputs
 - Debug Freeze
 - Auto Power Down
 - Channel Disable/Software Abort

Channel Grouping

- All the (up to 32) channels of the SAR ADC can be grouped
- The first channel defines the trigger for a group
- The last channel defines the end for a group
- A channel in the group may be disabled, in which case it will be skipped
- The grouping can only contain sequential channels, and cannot have overlapping groups or a group within a group

Triggers

- A trigger for a group will cause the acquisitions, as defined by the configurations of the channels in the group, to be executed
- There are seven possible hardware (HW) triggers and one software (SW) trigger
 - The hardware trigger options are:
 - TCPWM: 1-to-1 trigger output from a corresponding 16-bit TCPWM
 - GENERIC0-4: Five generic input triggers routed to this ADC
 - GPIO, ADC, event generator, 32-bit TCPWM, 16-bit TCPWM for motor
 - CONTINUOUS: This trigger is always high, making the group always triggered or in other words, Idle trigger
 - OFF: No hardware trigger
- The group can be software-triggered if it is configured to use a hardware trigger

Н	int	Bar

Review register TRM and section 6.2 in the TRM chapter for additional details

Review Arbitration/ Preemption and Acquisition Scheduling for more information about channel priority

TCPWM-Triggered ADC

- PWM signals are mainly used to control power supplied to electrical devices. In the automotive market these are mostly LEDs (or other lights) and motors
- To check the correct function, the voltage and/or current controlled by the PWM signal is measured by the ADC

Hint Bar

Review Register TRM and section 6.2 in the TRM chapter for additional details

Review TCPWM and Trigger Multiplexer training sections for more information about PWMs and triggers

Arbitration/Preemption and Acquisition Scheduling

Arbitration of the pending triggers is based on both an explicit and an implicit priority

Priority
The explicit priority is set as a trigger attribute by software
There are eight explicit priority levels, priority level 0 being the highest
The implicit priority is defined by the channel ordering as follows:
A lower channel has a higher priority than a higher channel with the same explicit priority

)

Arbitration/Preemption and Acquisition Scheduling

- Preemption and Acquisition Scheduling
 - The scheduler determines whether preemption occurs or not, based on the explicit priority level and the trigger preemption type of the ongoing group scan
 - Available preemption types: ABORT_RESUME, ABORT_RESTART, ABORT_CANCEL, and FINISH_RESUME

Hint	Bar
	Dai

Review Register TRM and section 6.3 in the TRM chapter for additional details

Preemption Types:

Type 1

ABORT_RESUME

- 1 Immediately abort the ongoing acquisition
- Keep the pending trigger of the aborted group
- ③ After the high-priority group is done, resume the group scan starting with the aborted channel
 - When averaging, discard the averaging results and, on return, restart averaging

Type 2

ABORT_RESTART

- 1 Immediately abort the ongoing acquisition
- Keep the pending trigger of the aborted group
- 3 After the high-priority group is done, restart the group scan from the first channel of the group

Preemption Types:

Туре З

- ABORT_CANCEL
 - Immediately abort the ongoing acquisition and do not return
 - 2 Clear the pending trigger of the aborted group
 - 3 Set the cancelled interrupt for the last channel of the aborted group

Type 4

- FINISH_RESUME
 - Before preempting, complete the ongoing acquisition (including averaging)
 - Keep the pending trigger of the aborted group
 - 3 After the high-priority group is done, resume the group scan starting with the next channel

Ave	rag	ing

- Averaging functionality for every channel
- > Accumulate the results (after sign extension) in 20-bit accumulator
- > Up to 256 samples can be averaged

Lica Casa: Two Sample Averaging (Continuous)

<u>Ose case. Two-Sample Averaging (Continuous)</u>											
	ı L										
ADC Conversion	1 st Sample	1 st Conversion	2 nd Sample	2 nd Conversion	3 rd Sample	3 rd Conversion	4 th Sample	4 th Conversion	5 th Sample	5 th Conversion	
Accumulator	ххххх		1 st Result		1 st + 2 nd Result		3 rd Result		3 rd + 4 th Result		
					1		L				
Result of Averaging	ххххх			1 st + 2 nd Result / 2			3 rd + 4 th Result / 2		•••		

Hint Bar Review Register TRM and section 5.4 in the TRM chapter for additional details

Range Detect can check the ADC result without CPU involvement:

Range Detect

- Two programmable threshold values per channel
 - RANGE_LO, RANGE_HI
- Four modes per channel:
 - BELOW_LO: RESULT < RANGE_LO</p>
 - INSIDE_RANGE: RANGE_LO \leq RESULT < RANGE_HI
 - ABOVE_HI: RANGE_HI ≤ RESULT
 - OUTSIDE_RANGE: (RESULT < RANGE_LO) || (RANGE_HI ≤ RESULT)</p>

Review Register TRM and section 5.5 in the TRM chapter for additional details

Hint Bar

Pulse Detect

Interrupts

Group interrupt (group done) and channel interrupt (range detect) can occur independently

Can generate the range detect interrupt during group conversion _

Interrupts	Per Channel	Per Group ¹	Description
Range Detect	✓		Interrupt by range detection
Pulse Detect	✓		Interrupt for pulse detection
Overflow	✓	•	Interrupt is set if the new ADC completes while the results from the previous completion have not yet been handled
Group Done		✓	Interrupt by group scan completion
Group Cancelled		✓	Interrupt is set by ABORT_CANCEL operation

Hint Bar

Review Register TRM and sections 7.2 and 7.3 in the TRM chapter for additional details

ADC Interrupt Timing for Overflow

- > Single channel with continuous trigger
 - Normal Case (no overflow)

						_				
	ADC Conversion	1 st Sample	1 st Conversion	2 nd Sample	2 nd Conversion					
	Result Register	Pre	vious Result		1 st Result	2 nd R	esult			
				SW Read "1st R	esult"	SW Read "2 nd Result	"			
	Done Interrupt				Cleared by SW		Cleared by SW			
	Overflow Interrupt									
_	Overflow Ca	ase								
				2 nd Conversion Is Started Immediately After 1 st Conversion Is Completed						
	ADC Conversion	1 st Sample	1 st Conversion	2 nd Sample	2 nd Conversion]				
						-				
	Result Register	Previous Result			1 st Result	2 nd Result				
				SW Did Not Re	ead "1 st Result"	•				
	Done Interrupt			Not Cleared By	/ SW					
	Overflow Interrupt					Ì				

Channel Done Trigger Output

- > Channel Done trigger output can be generated per enabled channel
- > Indicates that the data for channel is available in the Result register
- Can be used to retrieve external sensor data over a constant period for CPU to handle (see figure below)

Review Register TRM and section 7.1 in the TRM chapter for additional details Review the DMA and **Trigger Multiplexer** training sections for more information about DMA and triggers

Hint Bar

Range Violation Trigger Output

- Range Violation trigger output can be generated per enabled channel
 - ADC generates a pulse if the acquisition result for the channel causes a Range Detect event
 - The TCPWM output can be disabled when an abnormal voltage range is detected by the ADC if the TCPWM LED has control

Use Case: TCPWM LED Control

Hint Bar

Review Register TRM and section 7.1 in the TRM chapter for additional details

Review the TCPWM and Trigger Multiplexer training sections for more information about PWM and triggers

Debug Freeze

- Debug freeze prevents the scheduler from starting acquisitions for a new channel
- > At averaging, ADC will complete even if the debug freeze trigger is asserted
- > Debug freeze is available for each ADC unit
- > Debug freeze allows system halting without overwriting ADC values
 - Converted values fit into debug session, avoiding corruption caused by overwritten ADC values (for example, range detect interrupt)

Review Register TRM (PASS_CTL.DEBUG_FREE ZE_EN) and section 6.4 in the TRM chapter for additional details

Hint Bar

Auto Idle Power Down

- > The analog circuit automatically powers up when a trigger inputs
- After power-up, the analog circuit must settle for some time before it can make accurate acquisitions (1 µs, minimum)

Hint Bar

Review Register TRM (CTL.PWRUP_TIME) and section 6.5 in the TRM chapter for additional details

- Can disable the ADC channel with software for the unused channel
- > Can abort the ADC using software during A/D conversion
- > Use cases
 - Emergency stop due to low battery or system down
 - Reconfiguration by changing the external environment (for example, temperature)

Hint Bar

Review Register TRM and section 6.6 in the TRM chapter for additional

details

SAR ADC Block Diagram

- > SAR ADC components
 - Calibration
 - Analog
 - Alternate
 - Coherent

Analog Calibration

Copyright © Infineon Technologies AG 2020. All rights reserved.

Brings the actual ADC transfer curve closer to the ideal transfer curve

- Adjusts an offset and a gain value using software to satisfy the following
 - Transition between values 0x000 and 0x001 for VREFL + 0.5 LSB input voltage
 - Transition between values 0xFFE and 0xFFF for VREFH 1.5 LSB input voltage
- Total error can be ± 5 LSB after offset and gain adjustment
 - Analog to Digital Transfer Curve Converted Value 0x1000 0xFFF Ideal Curve 0xC00 Actual Curve 0x800 0x400 0x00 0x000 Input Voltage VREFL VREFH

chapter for additional details

section 8.1 in the TRM

Hint Bar

Review Register TRM and

Preconditions:

Before the ADC is used for acquisitions, it must be set to the correct values (e.g., periodic calibration of the production line due to temperature shift and age)

Alternate Calibration/Coherent Calibration Update

Alternate Calibration

- Runs the recalibration algorithm in the background while the main application keeps running undisturbed using the active calibration values
 - Changing the calibration in the middle of a group scan leads to incoherent results within that group scan
- Coherent Calibration Update
 - Waits for the right moment to coherently copy values from the alternate calibration registers to the regular calibration registers
 - The right moment for a coherent calibration update is when the ADC becomes idle, or a continuous triggered group completes

n -	Bar	
	Dai	

Review Register TRM and sections 8.2 and 8.3 in the TRM chapter for additional details

Coherent Calibration Update Using Alternate Calibration

> Use cases

- 1 Alternate calibration values are set by software
- Coherent calibration update is enabled by software
- 3 ADC waits for the Idle to coherently copy values from the alternate calibration registers to the regular calibration registers by hardware
- Coherent calibration update is disabled by hardware

Coherent Calibration Update Timing by Using Alternate Calibration

Hint Bar

Review Register TRM and sections 8.2 and 8.3 in the TRM chapter for additional details

Advantage:

The periodic recalibration algorithm can run quietly in

the background while the main application runs undisturbed using the active calibration values

Part of your life. Part of tomorrow.

Copyright © Infineon Technologies AG 2020. All rights reserved.

Revision	ECN	Submission Data	Description of Change
**	6108532	03/28/2018	Initial release
*A	6378576	11/09/2018	Added pages 2, 4, 5, 15, 16, and 25, and the note descriptions for all pages Updated pages 3, 13, 14, and 37
*В	6610655	07/02/2019	Updated page 2, 3, 4, 10, 14, 25, 29 to 32, 38. Added page 5.
*C	7013756	10/29/2020	Updated page 2, 3, 15.