Customer Training Workshop
Traveo™ II Power Supply and Monitoring

Q4 2020
Target Products

Target product list for this training material:

<table>
<thead>
<tr>
<th>Family Category</th>
<th>Series</th>
<th>Code Flash Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveo™ II Automotive Body Controller Entry</td>
<td>CYT2B6</td>
<td>Up to 576 KB</td>
</tr>
<tr>
<td>Traveo II Automotive Body Controller Entry</td>
<td>CYT2B7</td>
<td>Up to 1088 KB</td>
</tr>
<tr>
<td>Traveo II Automotive Body Controller Entry</td>
<td>CYT2B9</td>
<td>Up to 2112 KB</td>
</tr>
<tr>
<td>Traveo II Automotive Body Controller Entry</td>
<td>CYT2BL</td>
<td>Up to 4160 KB</td>
</tr>
</tbody>
</table>

Training section reference:
- Power Supply and Monitoring for Traveo II Body High
Introduction to Traveo II Body Controller Entry

- Power supply and monitoring functions in System Resources
 - Power-on reset (POR)
 - Brownout detection (BOD)
 - Overvoltage detection (OVD)
 - Low-voltage detection (LVD)
 - Low dropout regulator (LDO)

- Review TRM chapter 16 for additional details
Power Supply Overview

› 2.7 V–5.5 V power supply range
› Two on-chip regulators for Active and DeepSleep modes

Digital power supply
Generates internal logic voltage for Active/Sleep mode
Generates internal logic voltage for DeepSleep mode
Pin to connect external smooth capacitor only
Analog power supply
I/O power supply

VDDD/VSSD: Digital power supply/ground
VDDIO/VSSIO: I/O power supply/ground
VDDA/VSSA: Analog power supply/ground
VCCD/VSSD: Internal core supply/ground

Legend:
- Regulators
- 2.7 V to 5.5 V power line
- 1.1 V power line
- Control line
- External power pad
Power Supply Sources

› All power supplies are in the 2.7-V to 5.5-V voltage range
› VDDIO_1¹ must be greater than or equal to VDDD (except CYT2BL)
› VDDA and VDDIO_2 must be the same

¹ VDDIO_1 is replaced with VDDD in the LQFP-64 package.
Multiple voltage monitoring and supply failure protection features

Legend:
- Regulators
- 3.7 V to 5.5 V power line
- 1.1 V power line
- Control line
- External power pad

Review datasheet and TRM section 16.3 for additional details
Voltage Monitoring Overview

› Power-on reset (POR)

Hint Bar

Review datasheet and TRM section 16.3 for additional details
Power-on Reset

› Initializes the device at power-up
› Always on
 – POR on VDDD
 – Provides a reset pulse during the initial power ramp

Reset level is undefined until V_{DD} reaches the trip point.
Brown-out Detection (BOD)

The Traveo II Body Entry family has three units of BOD.
Brown-out Detection (BOD) Features

› Detects supply conditions below a threshold and applies a reset to the device
› Always on except in Hibernate and XRES modes
 - BOD on VDDD
 - Generates a reset if a voltage excursion dips below the falling trip point
 - Supports two trip points: < 2.7 V\(^1\) (default) or < 3.0 V
 - BOD on VDDA
 - Generates a reset, a fault, or no action\(^2\) (default) if a voltage excursion dips below the falling trip point
 - Supports two trip points: < 2.7 V\(^1\) (default) or < 3.0 V
 - BOD on VCCD
 - Generates a reset if a voltage excursion dips below the falling trip point

\(^1\) If \(V_{\text{VDDD/VDDA}}\) falls below 2.7 V (minimum \(V_{\text{VDDD/VDDA}}\)), the device will operate out of specification. To prevent this, use the 3.0-V trip point.
\(^2\) Even if \(V_{\text{VDDA}}\) is low, the MCU can boot because it does not generate a reset as default.
Low-Voltage Detection (LVD)

The Traveo II Body Entry family has two units of LVD.
Low-Voltage Detection (LVD) Features

- Detects the warning voltage level to take preventive measures in the system
- Can be enabled or disabled (default) by software, except in Hibernate and XRES modes
 - LVD on VDDD
 - Generates an interrupt or a fault if a voltage level meets the trip point
 - An interrupt or a fault and trip point are configurable by software
 - Supports up to 26 trip points to monitor between 2.8 V and 5.3 V (0.1-V step)
 - Detection can be configured as falling (low voltage), rising (high voltage), or both
 - Use case for two LVD units
 - LVD1: Uses the falling trip point (3.5 V) to detect the low-voltage warning
 - LVD2: Uses the rising trip (5.3 V) to detect the overvoltage warning

Review datasheet and TRM section 16.3.4 for additional details
POR, BOD, and LVD Use Cases (1/2)

- **Purpose:** Determine if RAM contents have been retained by using voltage monitoring
 - **MCU operating conditions**
 - LVD trip point can be in MCU operation range = RAM retention
 - LVD falling trip point (3.5 V): Warning LVD for safe system operation
 - LVD rising trip point (4.0 V): User program restart trigger
 - BOD reset (< 3.0 V) is an asynchronous reset = No RAM retention

- **Case:** When RAM contents are retained, there is no BOD reset generation

![Diagram showing POR, BOD, and LVD interrupts](image)
POR, BOD, and LVD Use Cases (2/2)

- **Purpose:** Judge if RAM contents have been retained by using voltage monitoring
- **Setting and conditions:**
 - **MCU operating conditions:**
 - LVD trip point can be in MCU operation range = RAM retention
 - LVD falling trip point (3.5 V): Warning LVD for safety system operation
 - LVD rising trip point (4.0 V): User program restart trigger
 - BOD reset (< 3.0 V) is an asynchronous reset = No RAM retention

- **Case:** For RAM, contents have not been retained (BOD reset generation)

![Diagram showing POR, BOD, and LVD interactions](attachment:diagram.png)

- **POR Rising Trip Point**
- **BOD Rising Trip Point**
- **LVD Rising Trip Point (4.0 V)**
- **LVD Falling Trip Point (3.5 V)**

- **BOD Trip Point (<3.0 V)**
- **POR Reset**
- **LVD Interrupt**
- **Backup RAM Data or Enter Low-Power Mode**

- **RAM data was lost by BOD reset; Software must initialize RAM**
- **The system can operate normally**

Copyright © Infineon Technologies AG 2020. All rights reserved.
POR, BOD, and LVD Advantages

- Reduced BOM costs for low-cost applications using internal POR, BOD, and LVD

1 Review TRM and datasheet to confirm if the POR, BOD, and LVD specifications meet the safety requirements of the system.
Overvoltage Detection (OVD)

The Traveo II Body Entry family has three units of OVD.
Overvoltage Detection (OVD) Features

- Detects supply conditions above a threshold and applies a reset to the device
- Always ON except in Hibernate and XRES modes
 - OVD on VDDD
 - Generates a reset if a voltage excursion dips above the rising trip point
 - Supports two trip points: > 5.5 V (default) or > 5.0 V
 - OVD on VDDA
 - Generates a reset, a fault or no action (default) if a voltage excursion dips above the rising trip point
 - Supports two trip points: > 5.5 V (default) or > 5.0 V
 - OVD on VCCD
 - Generates a reset if a voltage excursion dips above the rising trip point

Review datasheet and TRM section 16.3.3 for additional details
The Traveo II Body Entry family has one OCD for each regulator.

Review datasheet and TRM section 16.3 for additional details.
Overcurrent Detection (OCD) Features

› Detects the device if the current is over the regulator limit
› Always ON except in Hibernate and XRES modes
 - OCD on VCCD
 - Generates a reset by detecting if the load current of a regulator is higher than expected

Review datasheet and TRM section 16.3.5 for additional details
Summary of Voltage Monitoring

<table>
<thead>
<tr>
<th>Monitored Supply</th>
<th>Monitor</th>
<th>Trip Point</th>
<th>Output</th>
<th>Available Power Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DDD})</td>
<td>POR</td>
<td>1 (Fixed)</td>
<td>Reset</td>
<td>All power modes</td>
</tr>
<tr>
<td></td>
<td>BOD</td>
<td>2 (Programmable)</td>
<td>Reset</td>
<td>All power modes except Hibernate and XRES modes</td>
</tr>
<tr>
<td></td>
<td>OVD</td>
<td>2 (Programmable)</td>
<td>Reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVD</td>
<td>26 (Programmable)</td>
<td>Interrupt, Fault, or No action</td>
<td></td>
</tr>
<tr>
<td>(V_{DDA})</td>
<td>BOD</td>
<td>2 (Programmable)</td>
<td>Reset, Fault, or No action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OVD</td>
<td>2 (Programmable)</td>
<td>Reset, Fault, or No action</td>
<td></td>
</tr>
<tr>
<td>(V_{CCD})</td>
<td>BOD</td>
<td>1 (Fixed)</td>
<td>Reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OVD</td>
<td>1 (Fixed)</td>
<td>Reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCD</td>
<td>1 (Fixed)</td>
<td>Reset</td>
<td></td>
</tr>
</tbody>
</table>
Voltage Monitoring by ADC

- All power supplies use ADC
- HSIOM_MONITOR_CTL register provides a monitor switch between power/ground pad and Amuxbus A/B
- The midpoint of the signal (Amuxbus A/B) is connected to SARMUX (internal signals) and can be selected for ADC by a channel
- Use Case:
 - VDDIO monitoring

Review datasheet and Review TRM sections 16.3.6 and 31.10 for additional details
Power Supply Monitoring by ADC

Relationship between HSIOM_MONITOR_CTL_0 Register and Power/Ground pins

<table>
<thead>
<tr>
<th>HSIOM_MONITOR_CTL_0</th>
<th>Power/Ground Pins</th>
<th>AMUXBUS</th>
<th>CYT2B Package Pin Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LQFP-176</td>
</tr>
<tr>
<td>Bit 0</td>
<td>V_{DDD}</td>
<td>A</td>
<td>176</td>
</tr>
<tr>
<td>Bit 1</td>
<td>V_{SSD}</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>Bit 2</td>
<td>V_{DDD}</td>
<td>A</td>
<td>22</td>
</tr>
<tr>
<td>Bit 3</td>
<td>V_{SSD}</td>
<td>B</td>
<td>23</td>
</tr>
<tr>
<td>Bit 4</td>
<td>V_{DDD}</td>
<td>A</td>
<td>43</td>
</tr>
<tr>
<td>Bit 5</td>
<td>V_{DDIO_1}</td>
<td>A</td>
<td>44</td>
</tr>
<tr>
<td>Bit 6</td>
<td>V_{SSD}</td>
<td>B</td>
<td>45</td>
</tr>
<tr>
<td>Bit 7</td>
<td>V_{SSD}</td>
<td>B</td>
<td>46</td>
</tr>
<tr>
<td>Bit 8</td>
<td>V_{REFL}</td>
<td>B</td>
<td>76</td>
</tr>
<tr>
<td>Bit 9</td>
<td>V_{SSA}</td>
<td>B</td>
<td>77</td>
</tr>
<tr>
<td>Bit 10</td>
<td>V_{DDA}</td>
<td>A</td>
<td>78</td>
</tr>
<tr>
<td>Bit 11</td>
<td>V_{REFH}</td>
<td>A</td>
<td>79</td>
</tr>
<tr>
<td>Bit 12</td>
<td>V_{DDIO_2}</td>
<td>A</td>
<td>88</td>
</tr>
<tr>
<td>Bit 13</td>
<td>V_{SSD}</td>
<td>B</td>
<td>89</td>
</tr>
<tr>
<td>Bit 14</td>
<td>V_{DDD}</td>
<td>A</td>
<td>110</td>
</tr>
<tr>
<td>Bit 15</td>
<td>V_{SSD}</td>
<td>B</td>
<td>111</td>
</tr>
<tr>
<td>Bit 16</td>
<td>V_{DDD}</td>
<td>A</td>
<td>132</td>
</tr>
<tr>
<td>Bit 17</td>
<td>V_{SSD}</td>
<td>B</td>
<td>133</td>
</tr>
<tr>
<td>Bit 18</td>
<td>V_{DDD}</td>
<td>A</td>
<td>153</td>
</tr>
<tr>
<td>Bit 19</td>
<td>V_{SSD}</td>
<td>B</td>
<td>154</td>
</tr>
<tr>
<td>Bit 20</td>
<td>V_{SSD}</td>
<td>B</td>
<td>155</td>
</tr>
</tbody>
</table>

Review datasheet and Review TRM sections 16.3.6 and 31.10 for additional details.
Appendix
Comparison between CYT2B, CYT3B/4B, and CYT3D/4D

<table>
<thead>
<tr>
<th>Features</th>
<th>CYT2B</th>
<th>CYT3B/4B</th>
<th>CYT3D/4D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply and Monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>$V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$</td>
<td>$V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ (up to 300 mA)</td>
<td>$V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ and $V_{CCD} = 1.15 \text{ V}$ (exceeds 300 mA)</td>
</tr>
<tr>
<td>5.0 V I/O power supply</td>
<td>$V_{DDIO _1}, V_{DDIO _2}$</td>
<td>$V_{DDIO _3}, V_{DDIO _4}, V_{DDIO _SMIF}$</td>
<td></td>
</tr>
<tr>
<td>3.3 V I/O power supply</td>
<td>N/A</td>
<td>$V_{DDIO _3}, V_{DDIO _4}$</td>
<td>$V_{DDIO _HSIO}, V_{DDIO _SMIF _HV}$</td>
</tr>
<tr>
<td>1.8 V I/O power supply</td>
<td>N/A</td>
<td></td>
<td>$V_{DDIO _SMIF}$</td>
</tr>
<tr>
<td>Analog power supply</td>
<td>V_{DDA}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active/DeepSleep regulator</td>
<td>Same</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External transistor control</td>
<td>N/A</td>
<td>Available</td>
<td>N/A</td>
</tr>
<tr>
<td>External PMIC control</td>
<td>N/A</td>
<td></td>
<td>Available</td>
</tr>
<tr>
<td>POR/BOD/OVD/LVD</td>
<td></td>
<td></td>
<td>Same</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>6155466</td>
<td>04/29/2018</td>
<td>Initial release</td>
</tr>
<tr>
<td>*A</td>
<td>6333686</td>
<td>10/11/2018</td>
<td>Added page 2, 4, 22, 23, Appendix and the note descriptions of all pages. Updated page 3, 5 to 8, 10 to 15, 17 to 21.</td>
</tr>
<tr>
<td>*B</td>
<td>6595227</td>
<td>06/14/2019</td>
<td>Updated page 1 to 24.</td>
</tr>
<tr>
<td>*C</td>
<td>6825047</td>
<td>03/05/2020</td>
<td>Updated page 5.</td>
</tr>
</tbody>
</table>