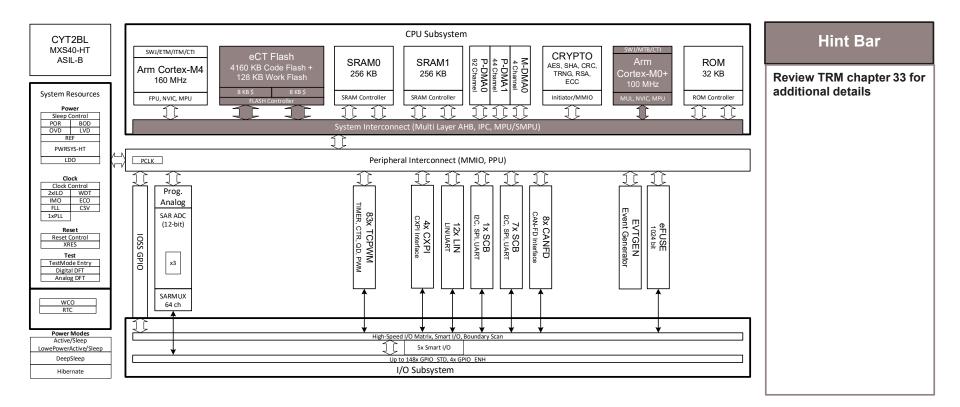
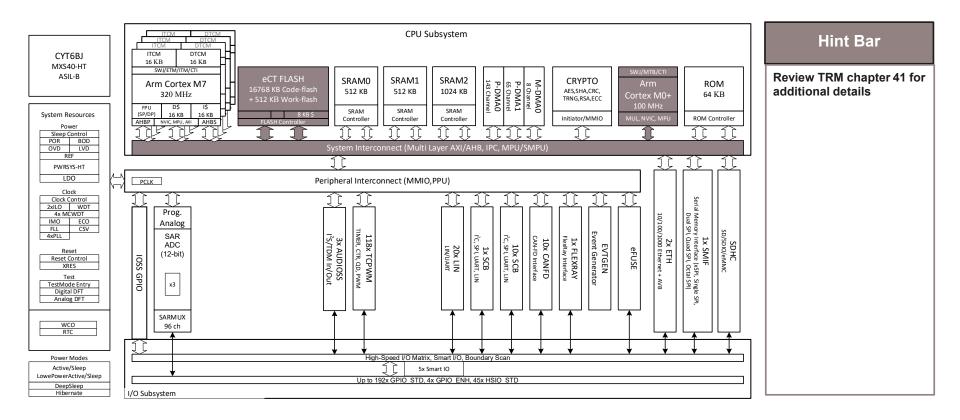
Customer training workshop TRAVEO™ T2G Nonvolatile Memory Programming

Q1 2024

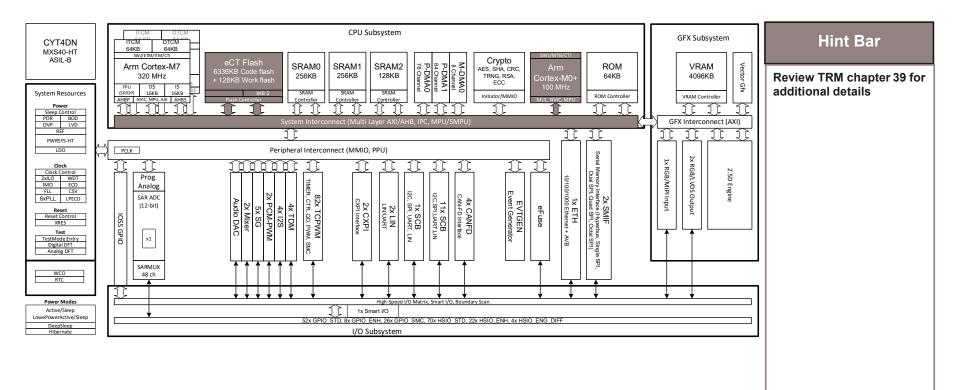

Target products

> Target product list for this training material

Family Category	Series	Code Flash Memory Size
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2B6	Up to 576 KB
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2B7	Up to 1088 KB
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2B9	Up to 2112 KB
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2BL	Up to 4160 KB
TRAVEO [™] T2G Automotive Body Controller High	CYT3BB/4BB	Up to 4160 KB
TRAVEO™ T2G Automotive Body Controller High	CYT4BF	Up to 8384 KB
TRAVEO [™] T2G Automotive Body Controller High	CYT6BJ	Up to 16768 KB
TRAVEO [™] T2G Automotive Cluster Entry	CYT2CL	Up to 4160 KB
TRAVEO™ T2G Automotive Cluster 2D	CYT3DL	Up to 4160 KB
TRAVEO™ T2G Automotive Cluster 2D	CYT4DN	Up to 6336 KB



Introduction to TRAVEO[™] T2G Body Controller Entry



Introduction to TRAVEO[™] T2G Body Controller High

Introduction to TRAVEO[™] T2G Cluster

Nonvolatile memory (NVM) programming overview

Hint Bar

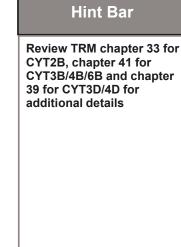
Review TRM chapter 33 for CYT2B, chapter 41 for CYT3B/4B/6B and chapter 39 for CYT3D/4D for additional details

- NVM programming supports flash-specific operations including:
 - Erase, Program, NORMAL access restrictions in SFlash¹, and storing public key
- CYT2B6/B7/B9/BL supports programming through the debug access port (DAP), Cortex[®]-M4, and Cortex[®]-M0+
- CYT3BB/4BB/4BF/6BJ, CYT3DL/4DN supports programming through DAP, Cortex[®]-M7, and Cortex[®]-M0+
- > eFuse memory
 - eFuse memory consists of a set of eFuse bits
 - Some eFuse bits store fixed device parameters, including factory trim settings, life-cycle stages, DAP security settings, and encryption keys
 - Limited set of eFuse bits are available for customer use

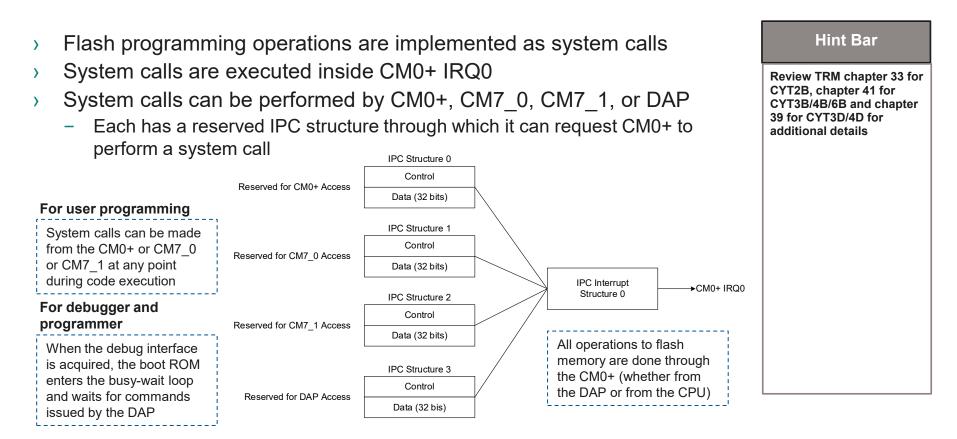
eFuse memory overview

- eFuse bits can be programmed (or "blown") in a manufacturing environment
 - eFuse bits cannot be programmed on the field
- Multiple eFuses can be read at the bit- or byte-level through an SROM call
 - An unblown eFuse reads as logic 0 and a blown eFuse reads as logic 1
 - There are no hardware connections from eFuse bits to elsewhere in the device
- > There are 1024 eFuse bits, of which 192 are available for custom purposes

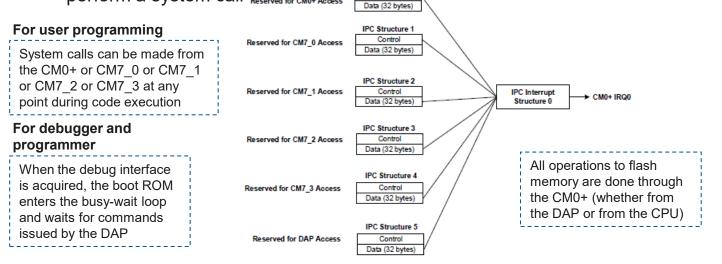

Hint Bar


Review TRM chapter 33 for CYT2B, chapter 41 for CYT3B/4B/6B, chapter 39 for CYT3D/4D and eFuse Memory for additional details

Flash programming operations for CYT2


- > Flash programming operations are implemented as system calls
- > System calls are executed inside Cortex[®]-M0+ (CM0+) IRQ0
- > System calls can be performed by CM0+, Cortex[®]-M4, or DAP
 - Each has a reserved IPC structure through which it can request CM0+ to perform a system call

Flash programming operations for CYT3/CYT4



Flash programming operations for CYT6

- > Flash programming operations are implemented as system calls
- System calls are executed inside CM0+ IRQ0
- System calls can be performed by CM0+, CM7_0, CM7_1, CM7_2, CM7_3, or DAP
 - Each has a reserved IPC structure through which it can request CM0+ to perform a system call Reserved for CM0+ Access

Review TRM chapter 33 for CYT2B, chapter 41 for CYT3B/4B/6B and chapter 39 for CYT3D/4D for additional details

SROM API Library (1/4)

	Questary Qall	0	Description		Access Allowed		Hint Bar
No.	System Call	Opcode	Description	Normal ¹	Secure	Dead	
1	BlankCheck	0x2A	Performs blank check on the addressed Work Flash	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Review TRM chapter 33 for CYT2B, chapter 41 for
2	BlowFuseBit	0x01	Blows an eFuse bit	CM0+, Main CPU ² , DAP	CM0+, Main CPU ²		CYT3B/4B/6B and chapter 39 for CYT3D/4D for
3	CheckFactoryHash	0x27	Generates the FACTORY_HASH as per TOC1 and compares with the FACTORY1_HASH fuses	CM0+, Main CPU ² , DAP			additional details
4	CheckFMStatus	0x07	Returns the status of the flash operation	CM0+, Main CPU ² , DAP	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	Security training section for additional details about
5	Checksum	0x0B	Calculates the checksum of a flash region	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Normal/Secure/Dead for Access Allowed
6	ComputeBasicHash	0x0D	Computes the hash value of a flash region	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	
7	ConfigureFMInterrupt	0x08	Configures the flash macro interrupt	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	
8	DirectExecute	0x0F	Directly executes code located at a configurable address	DAP			
9	EraseAll	0x0A	Erases all flash	CM0+, Main CPU ² , DAP		DAP	
10	EraseResume	0x23	Resumes a suspended erase operation	CM0+, Main CPU ² , DAP	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	

¹ Refer to TRM chapter 14 (Chip Operational Modes) ² The main CPU refers to CM4 or CM7 CPU in the MCU.

SROM API Library (2/4)

	Outstand Oall	0	Description		Access Allowed		Hint Bar
No.	System Call	Opcode	Description	Normal ¹	Secure	Dead	
11	EraseSector	0x14	Erases a flash sector	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Review TRM chapter 33 for CYT2B, chapter 41 for
12	EraseSuspend	0x22	Suspends an ongoing erase operation	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CYT3B/4B/6B and chapter 39 for CYT3D/4D for
13	GenerateHash	0x1E	Returns the truncated SHA-256 of the Flash boot programmed in SFlash	CM0+, Main CPU², DAP			additional details Refer to the Device Security training section
14	SwitchOverRegulators ³	0x11	Switches between REGHC and linear regulators	CM0+	CM0+		for additional details about Normal/Secure/Dead for
15	ConfigureRegulator ⁴	0x15	Configures high-current regulator (REGHC) for devices that include REGHC, or PMIC for devices that use PMIC control without REGHC	CM0+	CM0+		Access Allowed
16	ProgramRow	0x06	Programs the addressed flash page	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	
17	ProgramWorkFlash	0x30	Programs the addressed work flash page	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU², DAP	
18	ReadFuseByte	0x03	Reads addressed eFuse byte	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP		
19	ReadFuseByteMargin	0x2B	Reads addressed eFuse byte marginally	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP		

¹ Refer to TRM chapter 14 (Chip Operational Modes)
² The main CPU refers to CM4 or CM7 CPU in the MCU.

SROM API Library (3/4)

No.	System Call	Opcode	Description		Access Allowed		Hint Bar
	System Can	Opcode	Description	Normal ¹	Secure	Dead	
20	ReadSWPU	0x2C	Reads the identified SWPU from SRAM	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP		Review TRM chapter 33 for CYT2B, chapter 41 for
21	ReadUniqueID	0x1F	Reads the unique ID of the die from flash	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CYT3B/4B/6B and chapter 39 for CYT3D/4D for
22	SetEnforcedApproval	0x2E	Sets the EnforcedApproval bit in SRAM	CM0+	CM0+	CM0+	additional details
23	SiliconID	0x00	Returns Family ID, Revision ID, Silicon ID, and protection state	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Refer to the Device Security training section
24	SoftReset	0x1B	Provides system reset or Main CPU ² only reset	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	for additional details about Normal/Secure/Dead for
25	TransitiontoRMA	0x28	Converts parts from SECURE to RMA life-cycle stage		CM0+, Main CPU ² , DAP		Access Allowed
26	TransitiontoSecure	0x2F	Converts parts to Secure life-cycle stage	CM0+, Main CPU ² , DAP			
27	WriteRow	0x05	Programs SFlash	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	
28	WriteSWPU	0x2D	Updates the identified SWPU in SRAM	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP		
29	DebugPowerUpDown ³	0x12	Enables/disables CM7 debugging	CM0+, DAP	CM0+, DAP	CM0+, DAP	
30	LoadRegulatorTrims ⁴	0x16	Sets proper trims to PWR_TRIM_HT_PWRSYS_CTL	CM0+	CM0+		

¹ Refer to TRM chapter 14 (Chip Operational Modes) ² The main CPU refers to CM4 or CM7 CPU in the MCU. ³ DebugPowerUpDow is only for CYT3/4/6 ⁴ LoadRegulatorTrims is only for CYT3/4/6

SROM API Library (4/4)

No.	System Call	Opcode	Description		Access Allowed		Hint Bar
NO.	System Can	Opcode	Description	Normal ¹	Secure	Dead	
31	CheckFmStatus2	0x0C	Returns the status of the flash operation on the 2 nd Flash Controller	CM0+, Main CPU², DAP	CM0+, Main CPU², DAP	CM0+, Main CPU², DAP	These APIs are only available for CYT6BJ.
32	Checksum2	0x19	Calculates the checksum of a flash region on the 2 nd Flash Controller	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Review TRM chapter 41 for CYT6B for additional details
33	ComputeBasicHash2	0x04	Sets the EnforcedApproval bit in SRAM	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Refer to the Device
34	ConfigureFmInterrupt2	0x17	Computes the hash value of a flash region on the 2 nd Flash Controller	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	Security training section for additional details about
35	EraseAll2	0x18	Erases all flash on the 2 nd Flash Controller	CM0+, Main CPU ² , DAP		DAP	Normal/Secure/Dead for Access Allowed
36	EraseResume2	0x26	Resumes a suspended erase operation on the 2 nd Flash Controller	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU², DAP	
37	EraseSector2	0x1C	Erases a flash sector on the 2 nd Flash Controller	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU2, DAP	
38	EraseSuspend2	0x25	Suspends and ongoing erase operation on the 2 nd Flash Controller	CM0+, Main CPU², DAP	CM0+, Main CPU², DAP	CM0+, Main CPU², DAP	
39	ProgramRow2	0x09	Programs the addressed flash page on the 2 nd Flash Controller	CM0+, Main CPU², DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU², DAP	
40	ProgramWorkFlash2	0x31	Programs the addressed work flash page on the 2 nd Flash Controller	CM0+, DAP	CM0+, Main CPU ² , DAP	CM0+, Main CPU ² , DAP	

¹ Refer to TRM chapter 14 (Chip Operational Modes) ² The main CPU refers to CM7 CPU in the MCU.

API summary (1/5)

No.	System Call	Summary	Hint Bar
1	BlankCheck	Performs blank check on the addressed Work Flash.	
2	BlowFuseBit	Blows the addressed eFuse bit. The read value of a blown eFuse bit is '1'.	Review TRM chapter 33
3	CheckFactoryHash	Generates FACTORY_HASH as per TOC1 and compares with the FACTORY1_HASH fuses.	for CYT2B, chapter 41 for CYT3B/4B/6B, chapter 39
4	CheckFMStatus	Returns the status of the flash operation.	for CYT3D/4D, and System
5	CheckFMStatus2	CheckFmStatus2 is a copy of the CheckFmStatus system call. User shall call this function if he accesses the upper 8 MB of flash for the CYT6BJ.	Calls for additional details
6	Checksum	Reads either the whole flash or a row of flash and returns the sum of each byte read.	
7	Checksum2	Checksum2 is a copy of the Checksum system call. User shall call this function if he accesses the upper 8 MB of flash for the CYT6BJ.	
8	ComputeBasicHashGenerates the hash of the flash region provided using the formula: $H(n+1) = \{H(n)^{*}2+Byte\}\%$ 127; where $H(0) = 0$ This function returns an invalid address status if called on an out-of-bound flash region.		
9	ComputeBasicHash2	ComputeBasicHash2 is a copy of the ComputeBasicHash system call. User shall call this function if he accesses the upper 8 MB of flash for the CYT6BJ.	
10	ConfigureFMInterrupt	Configures the flash macro interrupt. The functionalities provided are: - Set interrupt mask - Clear interrupt mask - Clear interrupt	

API summary (2/5)

No.	System Call	Summary	Hint Bar
11	ConfigureFMInterrupt2	ConfigureFmInterrupt2 is a copy of the ConfigureFmInterrupt. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	Review TRM chapter 33
12	EraseAll	Erases the entire flash macro that is specified. This API will erase only the Code Flash. The API returns a fail status if the user does not have write access to flash based on the SMPU settings.	for CYT2B, chapter 41 for CYT3B/4B/6B, chapter 39
13	EraseAll2	EraseAll2 is a copy of the EraseAll. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	for CYT3D/4D, and System Calls for additional details
14	EraseResume	Resumes a suspended erase operation.	
15	EraseResume2	EraseResume2 is a copy of the EraseResume. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	
16	EraseSector	Starts an erase operation on a specified sector and cannot be called on SFlash ¹ .	
17	EraseSector2	EraseSector2 is a copy of the EraseSector. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	
18	EraseSuspend	Suspends an ongoing erase operation. Do not read from a suspended sector. The Program Row API function returns an error if invoked on the suspended sector.	
19	EraseSuspend2	EraseSuspend2 is a copy of the EraseSuspend. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	
20	GenerateHash	Returns the truncated SHA-256 of the flash boot programmed in SFlash and optionally includes the public key and other objects as indicated in the Table of Contents (TOC). Gets the flash boot size from TOC. Typically, this function is called to check if the HASH blown into eFuse matches with what the ROM boot expects it to be.	

API summary (3/5)

No.	System Call	Summary	Hint Bar
21	SwitchOverRegulators	Switch between the high-current regulator (REGHC or PMIC without REGHC) required to run CM7 and the linear regulator (LDO). It should be called to switch from LDO to REGHC before enabling CM7. Call the Configure Regulator system before using this function.	Review TRM chapter 33 for CYT2B, chapter 41 for
22	ConfigureRegulator	Configure the high-current regulator (REGHC) for devices that include REGHC, or PMIC for devices that use PMIC control without REGHC. It should be called to configure the desired regulator only once before switching to the regulator using the Switch Over Regulators system call.	CYT3B/4B/6B, chapter 39 for CYT3D/4D, and System Calls for additional details
23	ProgramRow	Programs the addressed flash page (Code Flash or Work Flash). The user must provide the data to be loaded and the flash address to be programmed. The flash page should be in the erased state. Any system call using Flash Programming cannot be aborted or cancelled.	
24	ProgramRow2	ProgramRow2 is a copy of the ProgramRow. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	
25	ProgramWorkFlash	Programs the addressed work flash. The flash page should be in the erased state.	
26	ProgramWorkFlash2	ProgramWorkFlash2 is a copy of the ProgramWorkFlash. Call this function if you need to access the upper 8 MB of flash for the CYT6BJ.	
27	ReadFuseByte	Returns the value of an eFuse. The read value of a blown eFuse bit is '1' and that of an unblown eFuse bit is '0'. This API inherits the client protection context.	
28	ReadFuseByteMargin	Returns the eFuse contents of the addressed byte read marginally. The read value of a blown eFuse bit is '1' and that of an unblown eFuse bit is '0'. This API inherits the client's protection context.	
29	ReadSWPU	Reads the identified SWPU from SRAM. The PU ID is based on the storage of SWPU in SFlash. Only one contiguous SWPU will index in SFlash ¹ even though there are two physically separate storage areas.	

Hint Bar

Review TRM chapter 33 for CYT2B, chapter 41 for CYT3B/4B/6B, chapter 39 for CYT3D/4D, and System Calls for additional details

API summary (4/5)

No.	System Call	Summary
30	ReadUniqueID	Returns the unique ID of the die from SFlash ¹ .
31	SetEnforcedApproval	Sets the EnforcedApproval bit in SRAM. EnforcedApproval bit is stored in PC1 private SRAM. If this bit is set, the API checks for a supervised marker.
32	SiliconID	Returns a 12-bit family ID, 16-bit silicon ID, 8-bit revision ID, and the current protection state.
33	SoftReset	Resets the system by setting the CM0+ AIRCR system reset bit. This results in a system-wide reset except for debug logic. This API can also be used to selectively reset just the CM4/CM7_0/CM7_1 cores based on 'type' parameter. CM4/CM7_0/CM7_1 should be in DeepSleep mode when it resets selectively.
34	TransitiontoRMA	Converts parts from SECURE to RMA life-cycle stage.
35	TransitiontoSecure	Validates the FACTORY_HASH and programs SECURE_HASH, secure access restrictions, and dead access restrictions into eFuse. Programs secure or secure with debug fuse to transition to SECURE or SECURE with DEBUG life-cycle stage. Only allowed in NORMAL_PROVISIONED stage.
36	DirectExecute	Directly executes code located at a configurable address. The API is allowed in VIRGIN state. In NORMAL, SECURE, and DEAD states, the API is allowed only if the corresponding DIRECT_EXECUTE_DISABLE bit (in SFlash ¹ /eFuse) is 0 ² .
37	WriteRow	Programs flash. User must provide data to be loaded and flash address to be programmed. This API can be called only on SFlash ¹ . Performs pre-program, erase, and then programs the flash page with contents provided in SRAM.

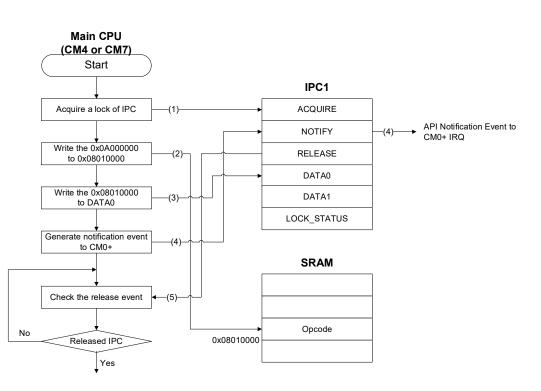
API summary (5/5)

No.	System Call	Summary	
38	WriteSWPU	Updates the identified SWPU in SRAM if the client has appropriate access. The PU ID is based on the storage of SWPU in SFlash. Only one contiguous SWPU indexes in SFlash even though there are two physically separate storages.	R fc C
39	DebugPowerUpDown	Used for handling the power transitions of CM7_0/1 power domains to properly connect/disconnect debug probe to/from the device.	f d
40	LoadRegulatorTrims	Used to adapt the output voltage for internal regulators during handover.	
41	OpenRMA	Enables full access to the device in the RMA life-cycle stage upon successful execution	

Hint Bar

Review TRM chapter 33 for CYT2B, chapter 41 for CYT3B/4B/6B, chapter 39 for CYT3D/4D, and System Calls for additional details

Example of Flash memory operation with API (1/2)

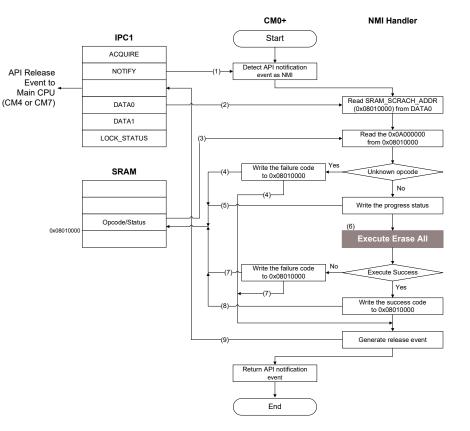

- F - -	 Use case Flash erase by CM4/CM7 master using the Erase All API CM4/CM7 requests a system call to CM0+ API parameters are passed using IPC Erase All API parameters are as follows Master (CM4/7) setting parameters of Erase All API					
Address	Value to be Written	Description	details			
IPC_DATA0	Register		Refer to the Inter- processor Communication			
Bits [31:0]	SRAM_SCRATCH_ADDR	SRAM address where the API parameters are stored. This must be a 32-bit aligned address	training section for			
SRAM_SCR	ATCH_ADDR		additional IPC details			
Bits [31:24]	0x0A	Erase All opcode				
Bits [23:0]	0xXXXXXX	Not used				
Return of Al	Return of API Execution Result from CM0+					
Address	Value to be Written	Description				
SRAM_SCR						
Bits [31:28]	0xA = SUCCESS 0xF = ERROR					
Bits [27:0]	Error Code	A failure status is indicated by 0xF00000XX				

¹ SRAM addresses for the CY2B7/B9 series.

Use case:

API operation (1/3)

- > Steps to activate Erase All API flow
 - SRAM_SCRATCH_ADDR = 0x08010000¹
 - Erase All opcode = 0x0A000000
 - 1. Acquire a lock
 - 2. Write the opcode of Erase All to SRAM_SCRATCH_ADDR
 - 3. Write SRAM_SCRATCH_ADDR to DATA0
 - 4. Generate notification event by writing to the IPC_NOTIFY register
 - 5. Wait to be released by the IPC by polling the IPC_RELEASE register or RELEASE event

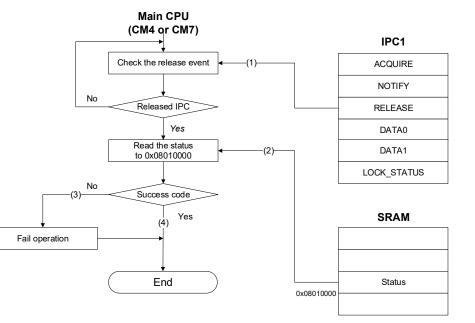


Use case:

API operation (2/3)

- > Steps to execute API flow of Erase All API
 - Execution of API is performed by CM0+
 - SRAM_SCRATCH_ADDR area is used as Status code after reading opcode
 - 1. Detect API notification event
 - 2. Read SRAM_SCRACH_ADDR (0x080100001) from DATA0
 - 3. Read the opcode (0x0A000000) from SRAM_SCRATCH_ADDR (0x08010000)
 - 4. If opcode is unknown, write the failure code to SRAM_SCRATCH_ADDR (0x08010000)
 - 5. Write the progress code to SRAM_SCRATCH_ADDR (0x08010000)
 - 6. Execute Erase All
 - 7. If the result is fail, write the failure code to SRAM_SCRATCH_ADDR (0x08010000)
 - 8. Write the success code to SRAM_SCRATCH_ADDR (0x08010000)
 - 9. Generate a release event by writing to the IPC_RELEASE register

¹ SRAM addresses for the CY2B7/B9 series.



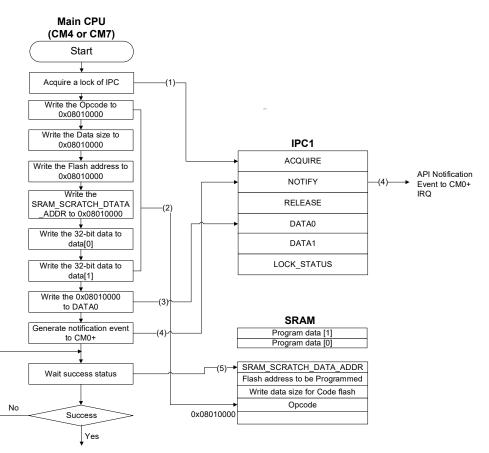
Use case:

API operation (3/3)

- > Closed API flow of Erase All-API
- > SRAM_SCRATCH_ADDR = 0x08010000¹
 - Erase All opcode = 0x0A000000
 - SRAM_SCRATCH_ADDR area is stored in Status code
 - 1. Detect API release event
 - 2. Read the Status from DATA0
 - 3. If the status code is failure, transfer to Fail operation and end API
 - 4. If the status code is success, the API ends normally
- Release event can also be reported as an interrupt

Example of flash memory operation with API (2/2)

– – – Tł fla	rogram operation by CM4/CM7 requests API parameters are Program Row API p	barameters are as follows write operation with 64-bit test data (0x55AA55AA x 2) into code	Hint Bar Review TRM chapter 33 for CYT2B, chapter 41 for CYT3B/4B/6B, chapter 39 for CYT3D/4D, System Calls, and System Call Status for additional details Refer to the Inter-	
Address	Value to be Written	Description	processor Communication	
IPC_DATA0 F	Register		training section for additional IPC details	
Bits [31:0]	SRAM_SCRATCH_ADDR	SRAM address where the API parameters are stored. This must be a 32-bit aligned address		
SRAM_SCRA	ATCH_ADDR			
Bits [31:24]	Bits [31:24] 0x06 Program Row opcode			
Bits [7:0]				
Return of AF				
Address	Value to be Written	Description		
CDAM CODA				

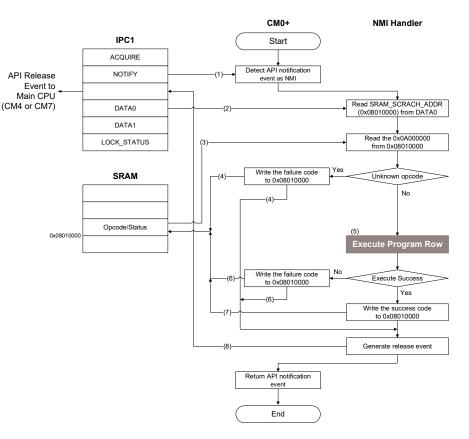

	SRAM_SCRAT	CH_ADDR	
		0xA = SUCCESS/Program command ongoing in background0xF = ERROR	
	Bits [27:0]	Error Code	A failure status is indicated by 0xF00000XX

infineon

Use case:

API operation (1/3)

- > Steps to activate Program Row API flow
 - SRAM_SCRATCH_ADDR = 0x08010000¹
 - Program Row opcode = 0x06000000
 - 1. Acquire a lock
 - Write the opcode of Program row/Data size/Flash address/SRAM_SCRATCH_DATA_ADDR to SRAM_SCRATCH_ADDR Write the 32-bit data (0x55AA55AA) to data[0] Write the 32-bit data (0x55AA55AA) to data[1]
 - 3. Write SRAM_SCRATCH_ADDR to DATA0
 - 4. Generate notification event by writing to the IPC_NOTIFY register
 - 5. Wait to be returned success status (0xA)


¹ SRAM addresses for the CY2B7/B9 series.

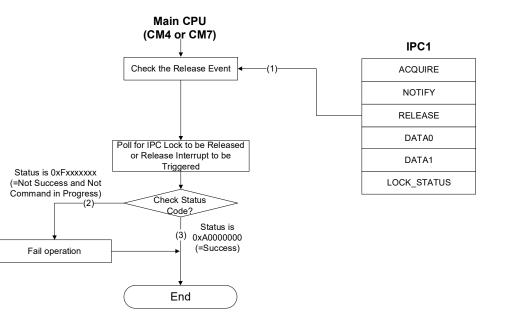
infineon

Use case:

API operation (2/3)

- > Steps to execute Program Row API flow
 - Execution of API is performed by CM0+
 - SRAM_SCRATCH_ADDR area is used as status code after reading opcode
 - 1. Detect API notification event
 - 2. Read the SRAM_SCRACH_ADDR (0x08010000¹) from DATA0
 - 3. Read the opcode (0x06000000) from SRAM_SCRATCH_ADDR (0x08010000)
 - 4. If opcode is unknown, write the failure code to SRAM_SCRATCH_ADDR (0x08010000)
 - 5. Execute Program Row
 - 6. If the result is fail, write the failure code to SRAM_SCRATCH_ADDR (0x08010000)
 - 7. Write the success code to SRAM_SCRATCH_ADDR (0x08010000)
 - 8. Generate a release event by writing to the IPC_RELEASE register

¹ SRAM addresses for the CY2B7/B9 series.


Use case:

API operation (3/3)

- Closed API flow of Program Row API
 - SRAM_SCRATCH_ADDR = 0x08010000¹
 - Program Row opcode = 0x06000000
 - SRAM_SCRATCH_ADDR area is stored in Status code
 - 1. Detect API release event
 - 2. If the status code is failure, transfer to Fail operation and end API
 - 3. If the status code is success, API ends normally
- > Release event can also be reported as an interrupt

¹ SRAM addresses for the CY2B7/B9 series.

Revision History

Revision	ECN	Submission Date	Description of Change
**	6136844	04/17/2018	Initial release
*A	6409117	12/12/2018	Added the note descriptions. Added CYT2B9 and CYT4BF to Introduction. Updated the Block Diagram in Introduction, Flash Memory Operation with API table and API Summary table. Added eFuse section. Fixed the diagram of P17 (API Operation (2/3); IPC0 to IPC1).
*B	6639127	07/29/2019	Added CYT4DN to the introduction and added information in all sections. Updated page 2. Added Program Row API use case in Example of Flash Memory Operation with API in pages 20 to 23.
*C	7072326	01/21/2021	Updated page 2, 3. Removed "Inject Public Key", "Write Normal Access Restriction", "Write TOC2", "EnterFlashMarginMode" and "ExitFlashMarginMode" APIs. Added "SwitchOverRegulators", "ConfigureRegulator", "DebugPowerUpDown", "LoadRegulatorTrims", and "OpenRMA" APIs.

Revision History (contd.)

Revision	ECN	Submission Date	Description of Change
*D	8016631	03/25/2024	Updated page 2, 4 for CYT6BJ Added page 10, 14 Updated page 15 to 19 for CYT6BJ