Customer Training Workshop Traveo[™] II Mixer

Target Products

> Target product list for this training material

Family Category	Series	Code Flash Memory Size
Traveo™ II Automotive Cluster	CYT3DL	Up to 4160KB
Traveo™ II Automotive Cluster	CYT4DN	Up to 6336KB

- Mixer combines multiple PCM source streams in memory into a single PCM destination stream, which is either written to memory or transmitted over an I2S interface
- > Features
 - PCM source stream
 - Can be gain/volume-controlled
 - Can be faded in (at the stream start) and faded out (just before the stream end)
 - Sample frequency with a specific ratio to the PCM destination sample frequency (0.5x, 1x, 2x, 3x, 4x, 6x, 8x, 12x)
 - PCM destination stream
 - Can be gain/volume-controlled
 - Can be faded in and faded out
 - Fixed PCM sample formatting: 16-bit pairs
 - I2S transmitter with master and slave functionality

Review TRM section 33.5 for additional details

Mixer Block Diagram

- > Mixer components
 - Handling PCM Stream
 - Operation
 - Mixer Signal Processing
 - FIR Filter
 - Down and Up Conversion
 - Source Gain Control
 - Fade In Fade Out
 - Source Fade Control
 - Mixing
 - Destination Stream Options

SW identifies the enabled and deactivated source and programs its registers SW enables the P-DMA/M-DMA controller to provide PCM samples to the source FIFO

- SW may activate the source before or after the P-DMA/M-DMA controller provides PCM samples
- > PCM stream end event
 - Source is deactivated immediately, or it is faded out
 - On completion of a fade out, a MIXERx_MIXER_SRC_STRUCTy_INTR_SRC.FADED_OUT interrupt cause is activated, and the channel may be deactivated

Copyright © Infineon Technologies AG 2020. All rights reserved.

- > Mixer progress is throttled by the source and destination FIFO states
 - The enabled and activated source FIFOs should be non-empty

To handle a PCM stream, the source must be both enabled

(MIXER_MIXER_TX_STRUCT_TX_CTL.ENABLED) and activated

(MIXERx_MIXER_SRC_STRUCTy_SRC_FIFO_CTL.ACTIVE)

- PCM samples can be provided to the FIFO without activating the channel
- The enabled destination FIFO should be non-full

for additional details

a time

Review TRM section 33.5.3

Each source can handle one PCM source stream at

PCM stream start event

Mixer Signal Processing

- Mixer's signal processing path
 - 1 A source consumes PCM samples through its source FIFO from memory
 - (2) The PCM data goes through a 63-tap polyphase FIR filter
 - 3 Source gain control provides volume control
 - ④ Source fade control provides the HW-based volume control to create fade in fade out effects
 - **(5)** Mixing sums the PCM samples from all enabled sources
 - 6 Destination gain control mimics source gain control
 - ⑦ Destination fade control mimics source fade control
 - A destination produces PCM samples through its destination FIFO to either memory or directly to a I2S

Calculates PCM source stream at the de

- Calculates PCM source stream at the desired PCM destination stream sample frequency
- > Operation

FIR Filter

- OPCM source stream goes through a 63-tap FIR with 14-bit signed filter coefficients
- PCM source stream is upscaled or downscaled using the scale function: y_pcm[22:0] = x_pcm[35:13] + x_pcm[12]
- 3 The upscaled or downscaled PCM data is clipped to a 16-bit value

Hint Bar
Review TRM section 33.5.3.2 for additional details
Finite Impulse Response (FIR)
Review the Down and Up Conversion section for additional details about sample frequency upscale ratio

Mixer upscales or downscales a PCM source stream to the desired PCM destination stream sample frequency

- Upscaling factor: 2x, 3x, 4x, 6x, 8x, 12x
- Downscaling factor: 2x
- > Can be configured using SRC_CTL.FS_RATIO
- Each conversion factor and phase uses its own set of 63 FIR coefficients

Hint Bar	
Review TRM section 33.5.4 for additional details	
1x means no scaling. The source PCM samples are used as is	

Gain Control

> Provides volume control independent of fade control

- The scaling on a logarithmic scale in 1-dB steps is specified by the MIXERx_MIXER_SRC_STRUCTy_SRC_GAIN_CTL.CODE in the range [0, 127]
- > Operation
 - IR filtered PCM data1 goes through multiplication based on MultiplierTable[]
 - 2 The PCM data is right shifted based on ShiftTable[]
 - Gain function: y_pcm[17:0] = (MultiplierTable[] x fir_pcm[15:0]) >> ShiftTable[]
 - ③ The PCM data is clipped to a 16-bit value

nf	ine	on

Review TRM section 33.5.3.3 for additional details

The clip function is the same as the FIR clip function

Fade In Fade Out

- Fade in is used at PCM stream start and should be programmed before the stream start
- Fade out is used at PCM stream end and should be programmed on a stream end event
- To ensure proper fade out, the source should only be deactivated after fade out is complete¹
 - Advantage: HW deactivation prevents throttling of mixer progress due to a faded out source
- Fade in and fade out "in the middle" of a continuous PCM stream is possible
 - If the number of possible PCM streams is less than or equal to number of sources, all sources can be continuously enabled and deactivated with the same continuous PCM stream

Hint Bar

Review TRM section 33.5.3.1 for additional details

Review the <u>Fade Control</u> section for additional details about Fade In Fade Out

Copyright © Infineon Technologies AG 2020. All rights reserved.

Provides the hardware-based volume control to create fade in and fade out effects

- Fade in increments the fade control code to "115" (a gain of 0 dB)
- Fade out decrements the fade control code to "0" (a gain of -infinity dB)
- The scaling is specified by the fade control code FADE CTL.CODE in th range [0, 115]
- Operation >

Fade Control

- Gain-controlled PCM data goes through multiplication based on the MultiplierTable[] (1)
- The PCM data is right-shifted based on ShiftTable[] (2)
- (3) The PCM data is clipped to a 16-bit value

	Hint Bar
	Review TRM section 33.5.3.4 for additional details
ne	The fade function and the clip function are the same as the gain control functions

¹ Any enabled, deactivated source contributes PCM sample values of "0"

Mixing

- > Sums the PCM samples from all enabled sources1
- > Operation
 - The PCM samples from all enabled sources are combined

Clip to S16

② The summed PCM samples are clipped to a 16-bit value

Sum

fade_pcm[15:0] x_pcm[18:0]

Review TRM

Hint Bar

same as the FIR clip function

sum_pcm[15:0]

Destination Stream Options

Destination FIFO PCM samples are either written to memory or **Hint Bar** > transmitted over an I2S interface **Review TRM** section 33.5.3.6 for additional details MIXER MCK **I2S** transmitter MIXER SCK MIXER_WS MIXER_SD Dest. FIFO (64 entries) MIXERX MIXER DST STRUCT _DST_FIFO_RD(_SILENT). DATA Mixer Destination DST_CTL.ENABLE TX_CTL.ENABLE Operation Stream D bit D bit Memory path 1 0 Interrupt and/or trigger is activated when data is ready to be transferred out from the destination FIFO Data transfer is handled by P-DMA or by CPU I²S transmitter 1 1 No interrupt is generated Mixer streams out on the I²S interface autonomously

Part of your life. Part of tomorrow.

Revision	ECN	Submission Date	Description of Change
**	6630904	07/19/2019	Initial release
*A	6796198	02/04/2020	Added note descriptions in each slide
*B	7053115	12/21/2020	Updated page 2, 3, 5, 12