
Traveo™ II Inter-Processor

Communication (IPC)

Q4 2020

Customer Training Workshop

Target Products

› Target product list for this training material

Family Category Series Code Flash Memory Size

Traveo™ II Automotive Body Controller Entry CYT2B6 Up to 576KB

Traveo II Automotive Body Controller Entry CYT2B7 Up to 1088KB

Traveo II Automotive Body Controller Entry CYT2B9 Up to 2112KB

Traveo II Automotive Body Controller Entry CYT2BL Up to 4160KB

Traveo II Automotive Body Controller High CYT3BB/4BB Up to 4160KB

Traveo II Automotive Body Controller High CYT4BF Up to 8384KB

Traveo II Automotive Cluster CYT3DL Up to 4160KB

Traveo II Automotive Cluster CYT4DN Up to 6336KB

2002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Introduction to Traveo II Body Controller Entry

› IPC is implemented in CPUSS Hint Bar

Review TRM chapter 5 for
additional details

3002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

I/O Subsystem

Peripheral Interconnect (MMIO, PPU)

IO
S

S
 G

P
IO

PCLK

7
x
 S

C
B

I2
C

, S
P

I, U
A

R
T

CPU Subsystem

System Interconnect (Multi Layer AHB, IPC, MPU/SMPU)

Crypto
AES, SHA, CRC,

TRNG, RSA,

ECC

Initiator/MMIO

High-Speed I/O Matrix, Smart I/O, Boundary Scan

1
x
 S

C
B

I2
C

, S
P

I, U
A

R
T

CYT2BL
MXS40-HT

ASIL-B

Digital DFT

Test

Analog DFT

System Resources

Power

Reset

Sleep Control

PWRSYS-HT

REF

POR

Reset Control

TestMode Entry

XRES

LVD
BOD

OVD

LDO

Clock
Clock Control

IMO
WDT

CSV

1xPLL

ECO
2xILO

FLL 8
3
x
 T

C
P

W
M

T
IM

E
R

, C
T

R
, Q

D
, P

W
M

SWJ/MTB/CTI

MUL, NVIC, MPU

Arm

Cortex-M0+
100 MHz

5x Smart I/O

8
x
 C

A
N

F
D

C
A

N
-F

D
 In

te
rfa

c
e

e
F

U
S

E
1

0
2

4
 b

it

SWJ/ETM/ITM/CTI

Arm Cortex-M4
160 MHz

FPU, NVIC, MPU

eCT Flash
4160 KB Code-flash +

128 KB Work-flash

FLASH Controller

8 KB 8 KB

SRAM0
256 KB

SRAM Controller

ROM
32 KB

ROM Controller

1
2
x
 L

IN
L

IN
/U

A
R

T

Prog.

Analog

SAR

ADC

(12-bit)

x3

SARMUX

64 chWCO

SRAM1
256 KB

SRAM Controller

M
-D

M
A

0
4

 C
h

a
n

n
e

l

P
-D

M
A

1
4

4
 C

h
a

n
n

e
l

P
-D

M
A

0
9

2
 C

h
a

n
n

e
l

DeepSleep

Hibernate

Active/Sleep

LowePowerActive/Sleep

Power Modes

Up to 148x GPIO_STD, 4x GPIO_ENH

E
V

T
G

E
N

E
v
e
n

t G
e
n

e
ra

to
r

4
x
 C

X
P

I
C

X
P

I In
te

rfa
c
e

RTC

Introduction to Traveo II Body Controller High

› IPC is implemented in CPUSS Hint Bar

Review TRM chapter 5 for
additional details

4002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

I/O Subsystem

Up to 196x GPIO_STD, 4x GPIO_ENH, 40xHSIO

High-Speed I/O Matrix, Smart I/O, Boundary Scan

CYT4BF
MXS40-HT

ASIL-B

Digital DFT

Test

Analog DFT

System Resources

Power

Reset

Sleep Control

PWRSYS-HT

REF

POR

Reset Control

TestMode Entry

XRES

LVD

BOD

DeepSleep

Hibernate

Active/Sleep

LowPowerActive/Sleep

Power Modes

OVP

LDO

Clock

Clock Control

IMO

WDT

CSV

4xPLL

ECO

2xILO

FLL

5x Smart I/O

WCO

RTC

Peripheral Interconnect (MMIO,PPU)

IO
S

S
 G

P
IO

PCLK

CPU Subsystem

System Interconnect (Multi Layer AXI/AHB, IPC, MPU/SMPU)

1
1
5

x
 T

C
P

W
M

T
IM

E
R

, C
T

R
, Q

D
, P

W
M

1
0
x
 C

A
N

F
D

C
A

N
-F

D
 In

te
rfa

c
e

E
F

U
S

E

1
x
 F

L
E

X
R

A
Y

F
le

x
R

a
y
 In

te
rfa

c
e

SWJ/ETM/ITM/CTI

NVIC, MPU, AXI

Cortex M7
350 MHz

FPU

(SP/DP)

D$

16KB

I$

16KB
AHBSAHBP

ITCM

16 KB

DTCM

16 KB

SWJ/ETM/ITM/CTI

NVIC, MPU, AXI

Arm Cortex-M7
350 MHz

FPU

(SP/DP)

D$

16 KB

I$

16 KB
AHBSAHBP

ITCM

16 KB

DTCM

16 KB

eCT Flash
8384 KB Code flash

+ 256 KB Work flash

FLASH Controller
8 KB 8 KB

1
0
x
 S

C
B

I2
C

, S
P

I, U
A

R
T

, L
IN

1
x
 S

C
B

I2
C

, S
P

I, U
A

R
T

, L
IN

2
0
x
 L

IN
L

IN
/U

A
R

T

Crypto
AES, SHA, CRC,

TRNG, RSA,

ECC

Initiator/MMIO

SWJ/MTB/CTI

MUL, NVIC, MPU

Arm

Cortex-M0+
100 MHz

SRAM0
512 KB

SRAM

Controller

ROM
64 KB

ROM Controller

M
-D

M
A

0
8

 C
h

a
n

n
e

l

P
-D

M
A

1
6

5
 C

h
a

n
n

e
l

P
-D

M
A

0
1

4
3

 C
h

a
n

n
e

l

1
x
 S

M
IF

S
e

ria
l M

e
m

o
ry

 In
te

rfa
c
e

 (H
y
p

e
rb

u
s
, S

in
g

le
 S

P
I,

D
u
a

l S
P

I, Q
u

a
d

 S
P

I, O
c
ta

l S
P

I)

2
x
 E

T
H

1
0

/1
0

0
/1

0
0

0
 E

th
e

rn
e
t +

 A
V

B

S
D

H
C

S
D

/S
D

IO
/e

M
M

C

E
V

T
G

E
N

E
v
e
n

t G
e
n

e
ra

to
r

3
x
 A

U
D

IO
S

S
I2

S
/T

D
M

 In
/O

u
t

SRAM1
256 KB

SRAM

Controller

SRAM2
256 KB

SRAM

Controller

Prog.

Analog

SAR

ADC

(12-bit)

x3

SARMUX

96 ch

Introduction to Traveo II Cluster

› IPC is implemented in CPUSS Hint Bar

Review TRM chapter 5 for
additional details

5002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

I/O Subsystem

Peripheral Interconnect (MMIO,PPU)

IO
S

S
 G

P
IO

PCLK

52x GPIO_STD, 8x GPIO_ENH, 26x GPIO_SMC, 70x HSIO_STD, 22x HSIO_ENH, 4x HSIO_ENG_DIFF

CPU Subsystem

System Interconnect (Multi Layer AXI/AHB, IPC, MPU/SMPU)

High-Speed I/O Matrix, Smart I/O, Boundary Scan

CYT4DN
MXS40-HT

ASIL-B

Digital DFT

Test

Analog DFT

System Resources

Power

Reset

Sleep Control

PWRSYS-HT

REF

POR

Reset Control

TestMode Entry

XRES

LVD
BOD

DeepSleep
Hibernate

Active/Sleep

LowePowerActive/Sleep

Power Modes

OVP

Clock
Clock Control

IMO
WDT

CSV

8xPLL

ECO
FLL 8

2
x
 T

C
P

W
M

T
IM

E
R

, C
T

R
, Q

D
, P

W
M

, S
M

C

1x Smart I/O

4
x
 C

A
N

F
D

C
A

N
-F

D
 In

te
rfa

c
e

E
F

U
S

E

SWJ/ETM/ITM/CTI

NVIC, MPU, AXI

Cortex M7
320 MHz

FPU

(SP/DP)

D$

16KB

I$

16KB
AHBSAHBP

ITCM

64 KB

DTCM

64 KB

SWJ/ETM/ITM/CTI

NVIC, MPU, AXI

Arm Cortex-M7
320 MHz

FPU

(SP/DP)

D$

16 KB

I$

16 KB
AHBSAHBP

ITCM

64 KB

DTCM

64 KB

eCT Flash
6336 KB Code-flash

+ 128 KB Work-flash

FLASH Controller
8 KB 8 KB

Prog.

Analog

SAR

ADC

(12-bit)

x1

1
1
x
 S

C
B

I2
C

, S
P

I, U
A

R
T

, L
IN

1
x
 S

C
B

I2
C

, S
P

I, U
A

R
T

, L
IN

2
x
 L

IN
L

IN
/U

A
R

T

RTC

2xILO

SARMUX

48 ch

Crypto
AES, SHA, CRC,

TRNG, RSA,

ECC

Initiator/MMIO

SWJ/MTB/CTI

MUL, NVIC, MPU

Arm

Cortex-M0+
100 MHz

SRAM0
256 KB

SRAM

Controller

ROM
64 KB

ROM Controller

M
-D

M
A

0
8

 C
h

a
n

n
e

l

P
-D

M
A

1
8

4
 C

h
a

n
n

e
l

P
-D

M
A

0
7

6
 C

h
a

n
n

e
l

2
x
 S

M
IF

S
e

ria
l M

e
m

o
ry

 In
te

rfa
c
e

 (H
y
p

e
rb

u
s
, S

in
g

le
 S

P
I,

D
u
a

l S
P

I, Q
u

a
d

 S
P

I, O
c
ta

l S
P

I)

1
x
 E

T
H

1
0

/1
0

0
/1

0
0

0
 E

th
e

rn
e

t +
 A

V
B

E
V

T
G

E
N

E
v
e
n

t G
e
n

e
ra

to
r

LDO

WCO

SRAM1
256 KB

SRAM

Controller

GFX Subsystem

GFX Interconnect (AXI)

1
x
 R

G
B

/M
IP

I In
p
u
t

2
x
 R

G
B

/L
V

D
S

 O
u
tp

u
t

2
.5

D
 E

n
g
in

e

VRAM
4096 KB

VRAM Controller
V

e
c
to

r G
fx

2
x
 C

X
P

I
C

X
P

I In
te

rfa
c
e

4
x
 I2

S

2
x
 P

C
M

-P
W

M

5
x
 S

G

2
x
 M

ix
e

r

A
u
d
io

 D
A

C

4
x
 T

D
M

LPECO

SRAM2
128 KB

SRAM

Controller

Inter-Processor Communication (IPC) Overview

› IPC provides the functionality for multiple processors to

communicate and synchronize, and includes:
– Locks for mutual exclusion access

– Notification and release event generation

– Data communication

– Lock status indications

– Interrupt generation of event to each processor

– Some IPC channel and interrupt structures are reserved for API use (*)

› IPC has two structure types
– IPC channel

– IPC interrupt

Hint Bar

Review TRM sections 5.1.1
and 5.1.2 for additional
details

* Training section
reference for additional
details about API:

Nonvolatile Memory
Programming

6002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

http://doc.cypress.com/docdetails.do?parameter=submitsearch&submitsearch=docdetails&docnum=002-22217&searchresultsurl=/doclocate.do?wordsSelect=0%26documentType=%26roleID=101%26documentNumber=%26crossReference=%26sunsetGroup=%26sunsetOwner=KOST%26site=%26parameter=submitsearch%26changeCat=changeCategory%26submitsearch=getdoc%26documentTitle=%26documentStatuses=2%26parWordsSelect=0

IPC Channel Structure

› Channel structure hardware registers are implemented as:

– IPC_ACQUIRE: Provides lock feature by reading

– NOTIFY: Generates notification event

– RELEASE: Releases the IPC channel

– DATA0/1: 32-bit register to hold data1

– STATUS: Lock status for the IPC channel2

1 Can place a address pointer and data size when passing large amounts of data (for example, DATA0 uses address pointer, DATA1 uses data size).
2 Provides the processor’s ID, protection context, and other details.

System Interconnect

IPC 0 Channel Structure

ACQUIRE

NOTIFY

RELEASE

DATA0/1

STATUS
NOTIFY and RELEASE Events

to each IPC Interrupt Structure

IPC 0 Channel Structure

IPC N Channel Structure

Hint Bar

Review TRM section 5.1.1
for additional details

7002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

IPC Interrupt Structure

› Each IPC interrupt has a corresponding IPC interrupt structure

that is triggered by a notification or release event from any IPC

channel

IPC 0 Interrupt Structure

NOTIFY

(IPC 0–N)

RELEASE

To Interrupt

Controller

(IPC 0–N)

IPC 1 Interrupt Structure

IPC N Interrupt Structure

Hint Bar

Review TRM section 5.1.2
for additional details

8002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

IPC Channels and Interrupts

› Each IPC interrupt structure1

configures an interrupt line,

which can be triggered by a

notify or release event of

any IPC channel
– An IPC interrupt can be

triggered from any of the IPC

channels in the system

– The event generated from an

IPC channel can trigger any

or multiple interrupt

structures

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 0

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 1

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR_NOT N

INTR _NOT 6

INTR 2

INTR_REL 0

INTR_REL 1

INTR_REL 3

INTR_REL 2

INTR_NOT 0

INTR_NOT 1

INTR_NOT 3

INTR _NOT 2

INTR_REL 4

INTR_REL 5

INTR_REL N

INTR_REL 6

INTR_NOT 4

INTR_NOT 5

INTR _NOT 6

INTR 3

INTR 0

INTR 1

INTR 3

INTR 2

RELEASE

INTR 0

INTR 1

INTR 3

INTR 2

NOTIFY

IPC 0

INTR 0

INTR 1

INTR 3

INTR 2

RELEASE

INTR 0

INTR 1

INTR 3

INTR 2

NOTIFY

IPC 1

INTR 0

INTR 1

INTR 3

INTR 2

RELEASE

INTR 0

INTR 1

NOTIFY

INTR 3

INTR 2

IPC N

INTR N INTR N INTR N INTR N INTR N

Interrupt to

Processors

Interrupt to

Processors

Interrupt to

Processors

Interrupt to

Processors

INTR_NOT N

INTR N

1 Any processor can use all interrupt structures. However, some interrupt structures are reserved by the ROM API.

Hint Bar

Review TRM section 5.1.3
for additional details

Training section reference
for additional details about
API

Nonvolatile Memory
Programming

Advantage:

IPC provides the
functionality for multiple
processors to
communicate and
synchronize their activities

9002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

http://doc.cypress.com/docdetails.do?parameter=submitsearch&submitsearch=docdetails&docnum=002-22217&searchresultsurl=/doclocate.do?wordsSelect=0%26documentType=%26roleID=101%26documentNumber=%26crossReference=%26sunsetGroup=%26sunsetOwner=KOST%26site=%26parameter=submitsearch%26changeCat=changeCategory%26submitsearch=getdoc%26documentTitle=%26documentStatuses=2%26parWordsSelect=0

Use Case for Exclusive Control Using IPC

› Implementing Locks

– Example of exclusive control using lock function of IPC

IPC

ACQUIRE

RELEASE

Processor B

Shared

Memory

Processor A

10002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case for IPC Channel Structure

› ACQUIRE: Locks control by reading

› RELEASE: Unlocks control

System Interconnect

IPC Channel Structure

ACQUIRE

NOTIFY

RELEASE

DATA0/1

STATUS

Hint Bar

See the datasheet for the
number of IPC channels
implemented

Review TRM section 5.1.1
for additional IPC Channel
details

Review TRM section 5.1.2
for additional IPC Interrupt
details

11002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

– Processor A can read “1”, and

lock acquisition succeeds1

– Processor A acquires the lock

Implementing Locks

› Processor A accesses shared memory area usable by Processor

A and B

› Only the processor that acquires the lock can access the shared

memory

IPC

RELEASE

Processor B

Shared

Memory

ACQUIRE
1

2

1 If read ACQUIRE.SUCCESS = 1, the read acquired the lock. If read ACQUIRE.SUCCESS = 0, the read did not acquire.

1

2

Use Case:

Processor A

Hint Bar

Review the Register TRM
for additional details

12002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

– Processor A can read “1”, and

lock acquisition succeeded

– Processor A acquires a lock

Implementing Locks

› Processor A accesses the shared memory area usable by

Processor A and B

› Only the processor that acquires the lock can access the shared

memory

1 If another processor has already acquired the lock, register reading is “0” (lock cannot be acquired).

– Processor B cannot acquire the lock

because Processor A has already

acquired it1

– Processor B acquires the lock3

4

1

2

IPC

RELEASE

Processor B

Shared

Memory

ACQUIRE

3

4

Processor A

Hint Bar

Review the Register TRM
for additional details

13002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Implementing Locks

› Processor A accesses the shared memory area usable by

Processor A and B

› Only the processor that acquires the lock can access the shared

memory

5

– Processor B cannot acquire lock

because Processor A has already

acquired it

– Processor B acquires lock3

4

– Processor A accesses shared memory

Processor B cannot access shared memory

5

Processor A accesses shared memory by acquiring the lock

Processor B cannot acquire the lock

– Processor A can read “1”, and

lock acquisition succeeded

– Processor A acquires a lock1

2

IPC

RELEASE

Processor B

Shared

Memory

ACQUIRE
Processor A

Hint Bar

Implementation of lock
function requires the
software to set rules

14002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Implementing Locks

› Processor A accesses the shared memory area usable by

Processor A and B

› Only the processor that acquires the lock can access the shared

memory

6

– Processor A accesses shared memory

Processor B cannot access shared memory

– Processor A releases the lock after accessing shared memory

Both Processor A and Processor B can acquire the lock after

release

6

5

– Processor B cannot acquire lock

because Processor A has already

acquired it

– Processor B acquires lock3

4

– Processor A can read “1”, and

lock acquisition succeeded

– Processor A acquires a lock1

2

IPC

RELEASE

Processor B

Shared

Memory

ACQUIRE
Processor A

Hint Bar

Review TRM section 5.1.3
for additional details

Advantage:

Prevents reading or
writing from other
processors while writing
or reading to shared
memory

15002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Use Case for Message Passing Using IPC

› Message Passing
– Example of short message passing using the DATA register of IPC for communication between

processors

16002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Message Passing

› IPC Channel Structures

– ACQUIRE: Locks control by reading

– NOTIFY: Generates notification event

– RELEASE: Generates release event

– DATA: Data for message passing

– STATUS: Indicates Lock status of IPC

› IPC Interrupt Structures

– NOTIFY: Generates NOTIFY interrupt

– RELEASE: Generates RELEASE interrupt

– The interrupts can trigger from any IPC

structure

System Interconnect

IPC 0 Channel Structure

ACQUIRE

NOTIFY

RELEASE

DATA0/1

STATUS

IPC 0 Interrupt Structure

NOTIFY

(IPC 0–N)

RELEASE

(IPC 0–N)

Hint Bar

Review TRM section 5.1.1
for additional IPC Channel
details

Review TRM section 5.1.2
for additional IPC Interrupt
details

17002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

– Sender acquires a lock from the

IPC channel
1

1

1 IPC features two 32-bit data registers (DATA/1).

Sender

(Processor A)

Receiver

(Processor B)

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA

STATUS

Message Passing

› IPC1 can use the message passing function between processors
– Using security module from Processor A to Processor B by the API’s

message communication

Hint Bar

Review TRM section 5.3
for additional details

18002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

– Sender acquires a lock from the

IPC channel
1

– Sender writes the message data

to be sent

2

2

Sender

(Processor A)

Receiver

(Processor B)

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA

STATUS

Message Passing

› IPC can use the message passing function between processors
– Using security module from Processor A to Processor B by the API’s

message communication

Hint Bar

Review the Register TRM
for additional details

19002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

– Sender acquires a lock from the

IPC channel
1

– Sender writes the message data

to be sent 3

– Sender generates a notification

event (by writing to the NOTIFY

register) to the receiver

3

Sender

(Processor A)

Receiver

(Processor B)

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA

STATUS

4

2

– IPC generates interrupt to

the receiver
4

Message Passing

› IPC can use the message passing function between processors
– Using security module from Processor A to Processor B by the API’s message

communication

20002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

– Sender acquires a lock from the

IPC channel
1

– Sender writes the message data

to be sent

– Sender generates a notification event

(by writing NOTIFY register) to the

receiver

Sender

(Processor A)

Receiver

(Processor B)

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA

STATUS

5

2

– IPC generates interrupt to

the receiver

– Receiver reads message data from the DATA

register after checking the triggered IPC channel
5

3

4

Message Passing

› IPC can use the message passing function between processors
– Using security module from Processor A to Processor B by the API’s message

communication

21002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

– Receiver reads message data from the DATA

register after checking the triggered IPC channel

6

– Receiver releases the channel using the RELEASE

register and also generates a release event
6

5

6

6

– Sender acquires a lock from the

IPC channel
1

– Sender writes the message data

to be sent

– Sender generates a notification event

(by writing NOTIFY register) to the

receiver

2

– IPC generates interrupt to

the receiver

3

4

Sender

(Processor A)

Receiver

(Processor B)

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA

STATUS

Message Passing

› IPC can use the message passing function between processors
– Using security module from Processor A to Processor B by the API’s

message communication

Hint Bar

Use Case:
Security Module from
Main CPU to
Secondary CPU by API
message communication

If release event was not
masked, a release event is
generated for the sender

22002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Use Case for Large Message Passing Using IPC

› Large Message Passing

– Example of large message passing using IPC

– Large message passing can be activated by storing message data in shared memory and

passing the address pointer of the message data by using the IPC DATA register

(the following slides illustrate the large message passing sequence)

– It can make the passed data variable in length by passing the address pointer and size

(for example, DATA0 uses address pointer, DATA1 uses data size)

23002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Sender

(Processor A)

Receiver

(Processor B)

IPC

(Interrupt A)

IPC

(Interrupt B)

– Sender acquires a lock from the IPC channel

1

1

Shared Memory

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Large Message Passing

› Larger messages (>32-bit x2) can be sent as pointers
– Flash operation using APIs from Processor A to Processor B

Hint Bar

Review TRM section 5.3
for additional details

24002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

1 Messages in shared memory must be protected from erroneous rewriting from other masters.

Sender

(Processor A)

Receiver

(Processor B)

– Sender acquires a lock from the IPC channel1

– Sender writes the message data to

the shared memory1

2

2

Pointer
Address

MESSAGE

Shared Memory

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Use Case for Large Message Passing

› Larger messages (>32-bit x2) can be sent as pointers

– Flash operation using APIs from Processor A to Processor B

Hint Bar

The MPU and SMPU are
effective in preventing
message destruction of
memory used for data
passing from other
masters

25002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Sender

(Processor A)

Receiver

(Processor B)

– Sender acquires a lock from the IPC channel1

– Sender writes the message data to

the shared memory Pointer
Address

2

3

– Sender writes pointer address

to DATA0, and data size to DATA1

3

MESSAGE

Shared Memory

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Data Size

Large Message Passing

› Larger messages (>32-bit x2) can be sent as pointers

– Flash operation using APIs from Processor A to Processor B

26002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Sender

(Processor A)

Receiver

(Processor B)

– Sender acquires a lock from the IPC channel1

– Sender writes the message data to

the shared memory
2

4 4

4

– Sender writes pointer address

to DATA0, and data size to DATA1

– Sender generates a notification event

to the receiver

3

4

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Pointer
Address

MESSAGE

Shared Memory

Data Size

Large Message Passing

› Larger messages (>32-bit x2) can be sent as pointers

– Flash operation using APIs from Processor A to Processor B

27002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Sender

(Processor A)

Receiver

(Processor B)

– Sender acquires a lock from the IPC channel1

– Sender writes the message data to

the shared memory
2

5

– Sender writes pointer address

to DATA0, and data size to DATA1

– Sender generates a notification event

to the receiver

3

4

– Receiver can read the pointer and data

size from the DATA0/1 by using the

notification event

5

IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Pointer
Address

MESSAGE

Shared Memory

Data Size

Large Message Passing

› Larger messages (>32-bit x2) can be sent as pointers

– Flash operation using APIs from Processor A to Processor B

28002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Sender

(Processor A)

Receiver

(Processor B)

1 Messages in memory must be protected from erroneous rewriting from other masters.

6

– Sender acquires a lock from the IPC channel1

– Sender writes the message data to

the shared memory

– Sender writes pointer address

to DATA0, and data size to DATA1

2

– Sender generates a notification event

to the receiver

3

– Receiver can read the pointer and data

size from the DATA0/1 by using the

notification event

4

– Receiver reads message from address

indicated by pointer

5

6 IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Pointer
Address

MESSAGE

Shared Memory

Data Size

Large Message Passing

› Larger messages (>32-bit x2) can be sent as pointers

– Flash operation using APIs from Processor A to Processor B

29002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

Use Case:

Sender

(Processor A)

Receiver

(Processor B)

Use Case:

– Sender acquires a lock from the IPC channel1

– Sender writes the message data to

the shared memory

– Sender writes pointer address

to DATA0, and data size to DATA1

2

– Sender generates a notification event

to the receiver

3

7

– Receiver can read the pointer and data

size from the DATA0/1 by using the

notification event

4

– Receiver reads message from address

indicated by pointer

5 7 7

– Receiver releases the IPC channel and generates a

release event
7

6 IPC

(Interrupt A)

IPC

(Interrupt B)

IPC

ACQUIRE

NOTIFY

RELEASE

DATA 0

STATUS

DATA 1

Pointer
Address

MESSAGE

Shared Memory

Data Size

Large Message Passing

› Larger ,messages (> 32-bit x2) can be sent as pointers

– Flash operation using APIs from Processor A to Processor B

Hint Bar

Review TRM section 5.3
for additional details

Protection of message
area is released when IPC
is released

Training section reference
for additional details about
API

Nonvolatile Memory
Programming

30002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

http://doc.cypress.com/docdetails.do?parameter=submitsearch&submitsearch=docdetails&docnum=002-22217&searchresultsurl=/doclocate.do?wordsSelect=0%26documentType=%26roleID=101%26documentNumber=%26crossReference=%26sunsetGroup=%26sunsetOwner=KOST%26site=%26parameter=submitsearch%26changeCat=changeCategory%26submitsearch=getdoc%26documentTitle=%26documentStatuses=2%26parWordsSelect=0

Use Case for Mixing Short and Large Message Using IPC

› Software requires to set rules according to the situation

› Case 1: Use a dedicated IPC structure depending on short and large messages

– You can use the IPC6 structure for short messages and IPC7 structure for large messages only

› Case 2: Use a dedicated IPC interrupt structure depending on short and large messages

– You can use the IPC6 interrupt structure for short messages and IPC7 interrupt structure for large

messages only

– Different interrupt handlers are required depending on the message size

– You can use the same IPC channel structure

› Case 3: Use a dedicated code depending on short and large messages

– Use part of the data register to identify short or large messages (for example, short: 0x05, large: 0x0a)

– The receiver should check the message size

– For short messages, passing data size is up to 64 bits including code and data

Note: Some IPC channel and interrupt structures are reserved for API use

31002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

002-22192 *C 32

Revision History

Revision ECN Submission

Date

Description of Change

** 6084432 03/12/2018 Initial release

*A 6390493 11/21/2018 Added slides 2, 7, and 20.

Updated slides 3 and 4

Deleted IPC Channel/Interrupt Register Structures

*B 6633414 7/22/2019 Updated slide 2-4.

Added slide 5.

*C 7060646 01/06/2021 Updated slide 2-3, 23 - 30.

Added slide 31

33002-22192 *C 2020-12-03 Copyright © Infineon Technologies AG 2020. All rights reserved.

