Customer Training Workshop
Traveo™ II FlexRay

Q4 2020
Target Products

Target product list for this training material

<table>
<thead>
<tr>
<th>Family Category</th>
<th>Series</th>
<th>Code Flash Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveo™ II Automotive Body Controller High</td>
<td>CYT4BF</td>
<td>Up to 8384KB</td>
</tr>
</tbody>
</table>
Introduction to Traveo II Body Controller High

FlexRay is part of the Peripheral blocks

System Resources
- Power
- System Interconnect (Multi Layer AXI/ABH, IPC, MPU/SMPU)
- 10x SCB
- I2C, SPI, UART, LIN
- 20x LIN
- 1x SCB
- I2C, SPI, UART, LIN
- 1x SMIF
- Serial Memory Interface (Hyperbus, Single SPI, Dual SPI, Quad SPI, Octal SPI)
- 2x ETH
- 10/100/1000 Ethernet + AVB
- SDHC
- SD/SDIO/eMMC
- EVTGEN
- Event Generator
- 3x AUDIOSS
- I2S/TDM In/Out
- SRAM 256 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- P-DMA
- MUX
- DMA
- eFUSE
- MUX
- 1x FLEXRAY
- 1x FLEXRAY
- Event Generator
- Event Generator
- eFUSE
- eFUSE
- 100 MHz
- Arm Cortex-M0+
- 64 KB
- ROM Controller
- ROM
- 64 KB
- 10x CANFD
- CAN-FD Interface
- 1x FLEXRAY
- FlexRay Interface
- SWJ/ETM/ITM/CTI
- MUL, NVIC, MPU, AXI
- 100 MHz
- Arm Cortex-M0+
- SRAM 512 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- P-DMA
- MUX
- DMA
- eFUSE
- MUX
- 1x FLEXRAY
- 1x FLEXRAY
- Event Generator
- Event Generator
- eFUSE
- eFUSE
- 100 MHz
- Arm Cortex-M0+
- 64 KB
- ROM Controller
- ROM
- 64 KB
- 10x CANFD
- CAN-FD Interface
- 1x FLEXRAY
- FlexRay Interface
- SWJ/ETM/ITM/CTI
- MUL, NVIC, MPU, AXI
- 100 MHz
- Arm Cortex-M0+
- SRAM 512 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- P-DMA
- MUX
- DMA
- eFUSE
- MUX
- 1x FLEXRAY
- 1x FLEXRAY
- Event Generator
- Event Generator
- eFUSE
- eFUSE
- 100 MHz
- Arm Cortex-M0+
- 64 KB
- ROM Controller
- ROM
- 64 KB
- 10x CANFD
- CAN-FD Interface
- 1x FLEXRAY
- FlexRay Interface
- SWJ/ETM/ITM/CTI
- MUL, NVIC, MPU, AXI
- 100 MHz
- Arm Cortex-M0+
- SRAM 512 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- P-DMA
- MUX
- DMA
- eFUSE
- MUX
- 1x FLEXRAY
- 1x FLEXRAY
- Event Generator
- Event Generator
- eFUSE
- eFUSE
- 100 MHz
- Arm Cortex-M0+
- 64 KB
- ROM Controller
- ROM
- 64 KB
- 10x CANFD
- CAN-FD Interface
- 1x FLEXRAY
- FlexRay Interface
- SWJ/ETM/ITM/CTI
- MUL, NVIC, MPU, AXI
- 100 MHz
- Arm Cortex-M0+
- SRAM 512 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- SRAM 256 KB
- SRAM Controller
- P-DMA
- MUX
- DMA
- eFUSE
- MUX
- 1x FLEXRAY
- 1x FLEXRAY
- Event Generator
FlexRay Overview

- FlexRay controller support is based on FlexRay protocol V2.1 Rev. A

- Features
 - Up to 10 Mbps per channel (supports A and B channels)
 - 8-KB total message buffer RAM
 - Up to 128 message buffers (approximately 16 bytes overhead per message)
 - Variable length data section, depending on number of buffers
 - Examples: 128 buffers with 48-bytes data; 30 buffers with 254-bytes data
 - Each message buffer is configurable as a reception buffer, transmission buffer, or as part of the reception FIFO
 - Host access to message buffers via input and output buffers
 - Input buffer: Holds messages to be transferred to the message RAM
 - Output buffer: Holds messages read from the message RAM
 - Filtering
 - Maskable interrupts

Hint Bar

Review the datasheet and TRM chapter 30 for additional details
Traveo II FlexRay Additional Features

› Timer 0 Trigger
› Stop Watch Event Trigger
› DMA Trigger

 Hint Bar
Review the Register TRM and TRM section 30.15 for additional details
Traveo II FlexRay Timer 0 Trigger

- **Timer 0 Trigger Output**
 - A pulse will be generated on `tr_tint0_out` when the timer 0 interrupt is asserted

- **Timer 0**
 - Timer 0 is an absolute timer in macroticks (MT)
 - Timer 0 setting
 - Start/stop setting
 - One execution/continuous execution setting
 - Cycle control to operate timer 0
 - Set number of offsets for MT

```
Static Segment
Slot0 | Slot1 | Slot2 | ... | Slot45 | Slot50 | Slot51 | ... | Slot54 | Slot55 | SW | NT

Dynamic Segment
```

- **Cycle Control**
 - Start of cycle
 - Offset of macroticks
 - Generates an interrupt
 - Generates a trigger

Review TRM section 30.15 for additional details
Traveo II FlexRay Stop Watch Event Trigger

Stop Watch Event Trigger Input

- Stop watch trigger sources
 - Software Trigger
 - Interrupt Line 0 event (E-Ray INT0)
 - Interrupt Line 1 event (E-Ray INT1)
 - External Trigger (from Traveo II trigger mux)

- Stop watch function
 - Stores the time that a specific event occurred
 - Cycle number
 - Macrotick (MT) value

![Diagram showing cycle numbers and macroticks]

MT

Cycle000000 Cycle000001 Cycle000010 ...

Trigger

Stores; cycle=1, macrotick=11

Hint Bar
Review TRM section 30.15 for additional details
DMA Trigger Interface for Input Buffer Access

- Trigger input and output signals transfer data between the system memories and FlexRay controller message RAM via the input/output buffer using DMA controller.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tr_ibf_in</td>
<td>Input</td>
<td>Trigger input that indicates that the DMA transfer to write IBCR has completed.</td>
</tr>
<tr>
<td>tr_ibf_out</td>
<td>Output</td>
<td>Trigger output for triggering the DMA transfer from system memory to IBF.</td>
</tr>
</tbody>
</table>

- DMA channel 0
 - 2D Descriptor
 - TR_OUT_TYPE=1
 - TR_IN_TYPE=1
 - No interrupt
 - Asserted by software for first message

- DMA channel 1
 - 1D Descriptor
 - TR_IN_TYPE=0
 - TR_OUT_TYPE=0
 - INTR_TYPE=3
 - System Memory
 - Message buffer # 1
 - Message buffer # 2
 - Message buffer # 3
 - Message buffer # n

(1) tr_ibf_in is asserted by software for first message
(2) tr_ibf_out requests DMA to transfer the message header/data from system memory to the IBF
(3) DMA ch.0 is triggered by tr_ibf_out
(4) Header and data sections of IBF are written
(5) When the transfer is complete, it triggers DMA ch.1 using the Traveo II trigger multiplexer
(6) DMA ch.1 is responsible for writing the IBCR
(7) When it is done, it asserts the tr_ibf_in trigger signal
(8) After DMA ch.1 completes the write, interrupt to notify the application

Review TRM section 30.15 for additional details

Input buffer command request (IBCR)
Traveo II FlexRay DMA Trigger

DMA Trigger Interface for Output Buffer Access
- Trigger input and output signals transfer data between the system memories and FlexRay controller message RAM via the input/output buffer using DMA controller

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tr_obf_in</td>
<td>Input</td>
<td>Trigger input that indicates that the DMA transfer from OBF to the system memory is complete.</td>
</tr>
<tr>
<td>tr_obf_out</td>
<td>Output</td>
<td>Trigger output for triggering the DMA transfer to write OBCR.</td>
</tr>
</tbody>
</table>

System Memory
- Message buffer #1 REQ, VIEW
- Message buffer #2 REQ, VIEW
- Message buffer #3 REQ, VIEW

Output Buffer (OBF)
- Header + Data
- OBF

FlexRay Controller
- tr_obf_out asserted by software for first message
- DMA ch.0 triggered by tr_obf_out
- OBCR is written
- When the transfer is complete, it triggers DMA ch.1 using the Traveo II trigger multiplexer
- DMA ch.1 is responsible for transferring the header and data sections from the OBF to the system memory
- When it is done, it asserts the tr_obf_in trigger signal
- After DMA ch.1 completes the transfer, it may raise an interrupt to notify the application

Output buffer command request (OBCR)
- DMA channel 1
 - 2D Descriptor
 - TR_IN_TYPE=1
 - TR_OUT_TYPE=1
 - INTR_TYPE=3
 - Dummy Data
 - Message 1
 - Message 2
 - Message 3
 - Message n

- DMA channel 0
 - 1D Descriptor
 - TR_OUT_TYPE=0
 - TR_IN_TYPE=0
 - No interrupt

Copyright © Infineon Technologies AG 2020. All rights reserved.
Appendix
FlexRay Protocol

Communication Cycle Structure

- **Communication Cycle Level**
 - Static Segment
 - Dynamic Segment
 - Symbol Window
 - Network Idle Time

- **Arbitration Grid Level**
 - Static Slot
 - Dynamic Slot
 - Minislot

- **Macrotick (MT) Level**

- **Microtick (µT) Level**

Review the Register TRM and TRM section 30.15 for additional details.
FlexRay Controller Block Diagram (1/3)

- CPU I/F (CIF)
- Input Buffer (IBF)
- Output Buffer (OBF)
- Message Handler (MHD)
- Message RAM (MRAM)

Copyright © Infineon Technologies AG 2020. All rights reserved.
FlexRay Controller Components

- Transient Buffer RAM (TBF A/B)
- FlexRay Channel Protocol Controller (PRT A/B)

Hint Bar

Review TRM chapter 30 for additional details

Copyright © Infineon Technologies AG 2020. All rights reserved.
FlexRay Controller Components

- Global Time Unit (GTU)
- System Universal Control (SUC)
- Frame and Symbol Processing (FSP)
- Network Management (NEM)
- Interrupt Control (INT)

Review TRM chapter 30 for additional details
FlexRay Controller Components (1/4)

- **FlexRay Controller Component Features:**
 - **CPU I/F (CIF):** Connects the host CPU to the FlexRay controller
 - **Input Buffer (IBF):**
 - Used to write to the message buffers configured in the message RAM
 - Host CPU writes header and data sections for a specific message buffer to the input buffer
 - Message handler transfers data from the input buffer to the selected message buffer in the message RAM
 - **Output Buffer (OBF):**
 - Used to read the message buffers configured in the message RAM
 - Message handler transfers data from the selected message buffer to the output buffer
 - When the data transfer is complete, Host CPU can read the header and data sections of the transferred message buffer from the output buffer
 - **Message Handler (MHD):**
 - Acceptance filtering
 - Controls the data transfers between the following components:
 - Input/output buffer and message RAM
 - Transient buffer RAMs of the two FlexRay protocol controllers and message RAM
 - **Message RAM (MRAM):** Consists of a single-port RAM that stores configuration data (header and data) for up to 128 FlexRay message buffers
FlexRay Controller Components (2/4)

FlexRay Controller Component Features:

- Transient Buffer RAM (TBF A/B)
 - Stores the data sections of two messages

- FlexRay channel protocol controller (PRT A/B)
 - Consists of a shift register and FlexRay protocol finite state machine (FSM)
 - Functions:
 - Checks and controls bit timings
 - Receives and transmits FlexRay frames and symbols
 - Checks the header CRC
 - Generates and checks the frame CRC
 - Connects to the bus driver

Hint Bar

Review TRM chapter 30 for additional details
FlexRay Controller Component Features

- Global Time Unit (GTU)
 - Microtick generation
 - Macrotick generation
 - Fault-tolerant clock synchronization using the Fault Tolerant Midpoint (FTM) algorithm for rate correction and offset correction
 - Cycle counter
 - Static segment timing control
 - Dynamic segment (minislot) timing control
 - Support for external clock correction

- System Universal Control (SUC)
 - Configuration
 - Wakeup
 - Startup
 - Normal operation
 - Passive operation
 - Monitor mode

Hint Bar
Review TRM chapter 30 for additional details
FlexRay Controller Component Features

- Frame and Symbol Processing (FSP)
 - Controls the following functions:
 - Ensuring that the timing of frames and symbols is correct
 - Testing the syntactic and semantic validity of received frames
 - Setting the slot status flags
- Network Management (NEM)
 - Handles the network management vector
- Interrupt control (INT)
 - Functions:
 - Providing error and status interrupt flags
 - Enabling and disabling interrupt factors
 - Controlling the allocation of interrupt factors to the two module interrupt lines
 - Enabling and disabling module interrupt lines
 - Managing two interrupt timers
 - Capturing the Stop Watch time

Review TRM chapter 30 for additional details
Part of your life. Part of tomorrow.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>6410080</td>
<td>12/12/2018</td>
<td>Initial release</td>
</tr>
<tr>
<td>*A</td>
<td>7036601</td>
<td>12/01/2020</td>
<td>Updated to Infineon format</td>
</tr>
</tbody>
</table>