
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document Number: 002-27076 Rev. ** 1

AN227076

Traveo II Bootloader

Author: Kenichi Sunada

Associated Part Family: Traveo™ II Family

Related Documents: For a complete list, see Related Documents

This application note describes a CAN/LIN-based bootloader for Traveo II Family. This application note also explains

how to communicate with a CAN/LIN-based bootloader.

Contents

1 Introduction .. 1
1.1 Terms and Definitions ... 1
1.2 Using a Bootloader ... 2
1.3 Bootloader Function Flow 2
1.4 Device Interface Configurations 4
1.5 Communication Flow .. 7
1.6 Command/Response Packet Structure 7

1.7 Commands ... 8
1.8 Data Constrains .. 12

2 Glossary .. 13
3 Related Documents ... 13
Document History .. 14
Worldwide Sales and Design Support 15

1 Introduction

Bootloaders are commonly present in an MCU system design. A bootloader makes it possible for a product's firmware
to be updated in the field. At the factory, the firmware is initially programmed into a product typically through the MCU's
Joint Test Action Group (JTAG) or the Arm® serial wire debug (SWD) interface. However, these interfaces are usually
not accessible in the field.

Bootloading is a process that allows you to upgrade your system firmware over an automotive standard communication
interface such as CAN or LIN. A bootloader communicates with a host to get new application code or data and writes
it into the device's flash memory.

In this application note, you will learn how to communicate with a CAN/LIN-based bootloader.

This application note assumes that you are familiar with bootloader concepts, CAN and LIN protocol. For more details
on CAN and LIN Components, see the “Flash Boot”, “CAN FD Controller”, and “Local Interconnect Network” chapters
of the Architecture Technical Reference Manual.

1.1 Terms and Definitions

Figure 1 illustrates the main elements in a bootloader system. It shows that the product's embedded firmware must be
able to use the communication port for two different purposes: normal operation and updating flash. The portion of the
embedded firmware that knows how to update the flash is called the “bootloader.” The other terms in Figure 1 are
defined in the following paragraphs.

http://www.cypress.com/
http://www.cypress.com/products/cypress-traveo-32-bit-arm-cortex-r5-core-automotive-microcontrollers-mcus

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 2

Figure 1. Bootloading System Diagram

Target

Traveo II

Memory

Bootloader

Application

Host
Communication

Channel

Application

File
CAN or LIN

The system that provides the data to update the flash is called the host, and the system being updated is called the
target. The host can be an external PC (PC host) or another MCU.

The act of transferring data from the host to the target is called bootloading, or a bootload operation, or a bootload for
short. The firmware that is placed in the memory is called the application or the bootloadable.

1.2 Using a Bootloader

A bootloader communication port is typically shared between the bootloader and the actual application. The first step
in using a bootloader is to manipulate the target, so that the bootloader and not the application is executing.

Once the bootloader is running, the host can send a Enter Bootloader command over the communication channel.

If the bootloader sends an OK response, bootloading can begin.

1.3 Bootloader Function Flow

During bootloading, the host reads the file for the new application, parses it with the commands downloaded to RAM,
and sends those commands to the bootloader. After the entire file is sent, the bootloader can pass control to the new
application.

An internal bootloader typically executes in flash boot after the device resets. The bootloader can then perform the
following actions:

▪ Check the new application's validity before transferring control to that application

▪ Manage the timing to start host communication

▪ Perform the bootloading operation

▪ Pass control to the new application

Figure 2 shows the bootloading sequence.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 3

Figure 2. Bootloading Sequence

Run

Bootloader?

Run

Internal Bootloader

Download Flash

Loader into RAM

Is

Flash Loader

Valid?

Download App

into User Flash

Is

User App #1

Valid?

F
la

sh
 b

o
o
t

F
la

sh
 L

o
a
d
e

r

Flash Boot

Switch to

Flash Loader

(located in RAM)

Flash Loader

Switch to

User App #1

May Contain

Bootloader

U
se

r
A

p
p

 #
1

User App #1

(in Flash)

Switch to

User App #2

Switch to

User App #1

(in User Flash)

YES

NO

YES

NO

YES

NO

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(A) The flash boot checks if the internal bootloader (part of the flash boot) should be run.

(B) The Internal bootloader is a part of the flash boot firmware that has a goal to download the flash loader into RAM (C) and
launch it (E).

(D) The flash loader requires neither a secure signature nor an encryption. However, the checksum (CRC-32C) needs to be
placed in the last 4 bytes of the flash loader if the host uses Verify Application command.

(F) The flash loader downloads a user application through CAN or LIN communication and stores it into the code flash or work
flash.

(G) Flash loader verifies the user application for integrity. If the user application signature verification fails, the flash loader tries
to restart bootloading and receives a new image.

(H) The user application may or may not contain a bootloader. It is up to the user.

Note that only the flash boot part of the bootloading sequence (A) to (E) is developed as the flash boot firmware; the remaining
sequence is developed by the user.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 4

1.4 Device Interface Configurations

The bootloader enables the end-of-line programming using only CAN or LIN when the following conditions are met:

▪ Two words at the start of the flash must be both equal to ‘0’ or ‘0xFFFFFFFF’.

▪ TOC2 is valid and internal bootloader is enabled (default) by TOC2_FLAGS.FB_BOOTLOADER_CTL bits, or
TOC2 is empty

▪ Protection mode is not SECURE and not SECURE_DEAD.

▪ No debugger connection happened during the one second wait window.

First, the bootloader prepares the channel configuration for CAN and waits for the preconfigured time for the frame
from the host. If there is a timeout, the channel is reconfigured for LIN and it again waits for the frame. If no frame from
the host is received, this procedure is repeated for 300 seconds, which is the overall bootloading time as shown in
Figure 3.

Figure 3. Bootloader Polling Sequence

CAN, 100-kbps

polling

CAN, 500-kbps

polling
LIN, 20-kbps polling

CAN, 100-kbps

polling
…

Bootloader

Stopped

10 ms 10 ms 150 ms

Overall bootloading time, if no communication (300 seconds)

If an Enter Bootloader command is received on either of the communication interface, the polling stops and the
bootloader starts using this interface only. If the bootloading succeeds, the bootloader launches the updated application
in RAM. This application is named a flash loader.

Figure 4 shows a default startup timing on a new device without a firmware in the flash. Note that once the firmware is
written to flash, the internal bootloader is no longer launched.

Figure 4. Startup Timing

Debug access port (DAP)

CM0+ operation ROM boot

EN, CAN, LIN pins

Power on reset or XRES_L

Flash boot Bootloader User app in RAM

Enabled ConfigurableHigh-Z

Release

1.2 ms 20.4 ms No limitation

300 seconds, if no

bootloading activity.

No timeout, if

communication in

process265

µs

DAP enabled, SWD/JTAG pins configured

0.4 ms

HI-Z

1.4.1 CAN Conf igurat ion

Table 1 shows the CAN configuration. Figure 5 shows the CAN interface configuration. The flash boot sets two EN pins
as strong drive outputs on entering the bootloader. Before or after the bootloader, EN pins are configured as the high
impedance inputs. EN pins can be used to enable the CAN transceiver. If you keep the CAN transceiver always enabled,
you do not need to use the EN pins.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 5

Table 1. CAN Configuration

Parameter
Configuration

CYT2B, CYT4B CYT4D

CAN instance CAN0_1 CAN1_0

TX pin P0.2/CAN0_1_TX P2.3/CAN1_0_TX

RX pin P0.3/CAN0_1_RX P2.4/CAN1_0_RX

EN (HIGH) pin P2.1 (optional) P0.2 (optional)

EN (LOW) pin P23.3 (optional) P0.5 (optional)

CAN mode CAN classic mode (CAN FD mode is not in use)

Baud rate 100 kbps or 500 kbps

RX message ID 0x1A1

TX message ID 0x1B1

Phase segment 1 39 tq (time quantum)

Phase segment 2 10 tq (time quantum)

SJW (Resynchronization jump width) 5 tq (time quantum)

Sampling point 80 %

Figure 5. CAN Interface Configuration

TX

RX

TX

RX

EN (HIGH)

EN (LOW)

Traveo II MCU CAN transceiver

NSTB

EN

P0.3

P0.2

(Optional)

(Optional)

1.4.2 LIN Configurat ion

Table 2 shows the LIN configuration. Figure 6 shows the LIN interface configuration. Note that not all LIN transceivers
support 115.2 kbps (Fast mode).

Table 2. LIN Configuration

Parameter
Configuration

CYT2B, CYT4B CYT4D

LIN instance LIN1

TX pin P0.1/LIN1_TX

RX pin P0.0/LIN1_RX

EN (HIGH) pin P2.1 (optional) P0.2 (optional)

EN (LOW) pin P23.3 (optional) P0.5 (optional)

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 6

Parameter
Configuration

CYT2B, CYT4B CYT4D

LIN mode Slave

Baud rate 20 kbps or 115.2 kbps (as an option for fast flash programming)

Break field length 11 bits

Break delimiter length 1 bit

Stop bit 1 bit

PID (RX) 45

PID (TX) 46

Checksum type Classic

Figure 6. LIN Interface Configuration

TX

RX

TX

RX

EN (HIGH)

EN (LOW)

Traveo II MCU LIN transceiver

EN

P0.0

P0.1

VDDD

or VDDIO

(Optional)

(Optional)

1.4.3 LIN Configurat ion for 115.2 kbps

Some LIN transceivers require the special signals on TX and EN pins, as shown in Figure 7, to enter a Fast mode
which supports 115.2 kbps. Some LIN transceivers support 115.2 kbps without the special signals.

Figure 7. Signals Timing for Fast Mode

T1 T2 T3

EN

TX

T1 = T2 = T3 = 12 μs

First, the bootloader waits for an Enter Bootloader command on LIN at 20 kbps. When the Enter Bootloader command
is received, the bootloader expects the next command to be Set Application Metadata. If Set Application Metadata has
Application ID = ‘0’, the bootloader continues at 20 kbps. If Set Application Metadata has Application ID = ‘1’, the
bootloader switches to 115.2 kbps using the special signals. If Set Application Metadata has Application ID = ‘2’, the
bootloader switches to 115.2 kbps without the special signals.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 7

1.5 Communication Flow

Figure 8 shows the example of a communication flow between the host and bootloader. Figure 8 gives the order in
which commands are issued to the target and responses are received. See Command/Response Packet Structure and
Commands for a complete list of bootloader commands, their codes, and their expected responses.

Figure 8. Communication Flow

Host Bootloader

Saves data in the Receive Buffer

.

.

.

.

Sends the ‘Enter Bootloader’ Command

to Start the Bootload Operation

Verifies the Entire Application Image

Checksum against the Checksum Stored

in RAM

Jumps to the Newly Downloaded

Application

Jumps to the Newly Downloaded

Application

Sends the ‘Program Data’ Command

Sends the ‘Verify Application’

Command to Verify the Application

Image Checksum

Sends ‘Exit Bootloader’

Command

Enter Bootloader Command Gets the Product ID. Sends the

Device JTAG ID, Device Revision,

and Bootloader Version in the

Response Packet
Checks the Device JTAG ID, Device

Revision, and Bootloader Version

Sends the ‘Set Application Metadata’
Command Gets the Application ID,

Bootloadable Application Start

Address, and Size in Bytes.

Sends the ‘Send Data’ Command

Writes data into Bootloadable

Application Image

Device JTAG ID, Device Revision, Bootloader Version

Set Application Metadata Command

Success/Error

Send Data Command

Success/Error

Program Data Command

Success/Error

Verify Application Checksum

Checksum Good/Bad

Exit Bootloader Command

1.6 Command/Response Packet Structure

The commands and responses are in the form of a byte stream, packetized in a manner that ensures the integrity of
the data being transmitted. Each packet includes checksum bytes. The checksum is a basic summation (2’s
complement). When sending multibyte data such as Data Length and Checksum, the least significant byte is sent first.
Bootloader packet length is limited to four CAN or LIN messages, each with 8 bytes of data. Each CAN or LIN message
can contain up to 8 bytes of user data, which hold bootloader command data. The message length needs to be adapted
to the actual packet size.

Figure 9 shows the structure of the communication packets sent from the host to the bootloader.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 8

Figure 9. Command Packet Structure

Start of Packet

(0x01)
Command

Data Length (N)

1 byte 1 byte 2 bytes 2 bytes 1 byteN bytes

LSB MSB

N bytes of data

Checksum

LSB MSB

End of Packet

(0x17)

Compute check sum for these bytes

Maximum 32 bytes (Four CAN/LIN messages)

Figure 10 shows the structure of the response packets sent from the bootloader to the host.

Figure 10. Response Packet Structure

Start of Packet

(0x01)
Status Code

Data Length (N)

1 byte 1 byte 2 bytes 2 bytes 1 byteN bytes

LSB MSB

N bytes of data

Checksum

LSB MSB

End of Packet

(0x17)

Compute check sum for these bytes

The bootloader responds to each command from the host with a response packet. The format of the response packet
is similar to the command packet except that there will be a status code instead of the command code.

1.7 Commands

Table 3 shows a list of commands supported by the bootloader. All commands except Exit Bootloader are ignored until
the Enter Bootloader command is received.

Table 3. Commands List

Commands

Enter/Exit Bootload Operation Miscellaneous

Enter Bootloader Send Data Verify Application

Sync Bootloader Send Data Without Response Set Application Metadata

Exit Bootloader Program Data

There is no specific requirement for command execution time.

Table 4 shows a list of status codes supported by the bootloader.

Table 4. Status Codes List

Status Code Value Description

CY_BOOTLOAD_SUCCESS 0x00 Successful status

CY_BOOTLOAD_ERROR_VERIFY 0x02 Error verifying application image

CY_BOOTLOAD_ERROR_LENGTH 0x03 Unexpected or wrong data length

CY_BOOTLOAD_ERROR_DATA 0x04 Data in bootloader command packet is wrong

CY_BOOTLOAD_ERROR_CMD 0x05 Command byte is not recognized

CY_BOOTLOAD_ERROR_CHECKSUM 0x08 Bootloader packet has wrong checksum

CY_BOOTLOAD_ERROR_ROW 0x0A Wrong address to bootload an application

CY_BOOTLOAD_ERROR_ROW_ACCESS 0x0B Address cannot be accessed due to MPU or SWPU protection

CY_BOOTLOAD_UNKNOWN 0x0F Any other error condition

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 9

1.7.1 Enter Boot loader

This command begins a bootloading operation. All other commands except Exit Bootloader are ignored until this
command is received. This command responds with device information and the bootloader version.

▪ Input

 Command Byte: 0x38

 Data Bytes:

▪ 4 bytes: Product ID. Must be 0x01020304.

▪ Output

 Status Codes:

▪ Success

▪ Error Command

▪ Error Data used for product ID mismatch

▪ Error Length

▪ Error Checksum

 Data Bytes:

▪ 4 bytes: Device JTAG ID

▪ 1 byte: Device revision

▪ 3 bytes: Bootloader version

1.7.2 Sync Bootloader

This command resets the bootloader communication to the initial state, making it ready to accept a new command. Any
data that was buffered is discarded. This command is needed only if the bootloader and the host get out of sync with
each other.

▪ Input

 Command Byte: 0x35

 Data Bytes: N/A

▪ Output: N/A – This command is not acknowledged

1.7.3 Exi t Boot loader

This command stops listening for other bootloader commands and jumps to the newly downloaded application (Flash
loader).

▪ Input

 Command Byte: 0x3B

 Data Bytes: N/A

▪ Output: N/A – This command is not acknowledged

1.7.4 Send Data

This command transfers a block of data to the bootloader. This data is buffered in anticipation of a Program Data
command. The bootloader buffer size for the data received by Send Data and Program Data command is 256 bytes of
data. If the data is not programmed using Program Data and the data is still sent, the buffer will overflow and
CY_BOOTLOAD_ERROR_LENGTH error will be send in the response packet. If a sequence of multiple send data
commands is sent, the data is appended to the previous block. This command is used to break up large data transfers
into smaller pieces, to prevent channel starvation in some communication protocols. If the host uses the Verify
Application command, the checksum (CRC-32C) for the entire application needs to be placed in the last 4 bytes of the
application image.

▪ Input

 Command Byte: 0x37

 Data Bytes:

▪ n bytes: Data to write

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 10

▪ Output

 Status Codes:

▪ Success

▪ Error Command

▪ Error Data

▪ Error Length

▪ Error Checksum

 Data Bytes: N/A

1.7.5 Send Data Without Response

This command is same as the Send Data command, except that no response is generated by the bootloader. This
reduces bootloading time for some applications.

▪ Input

 Command Byte: 0x47

 Data Bytes:

▪ n bytes: Data to write

▪ Output: N/A

1.7.6 Program Data

This command writes data into the bootloadable application image, and might follow a series of Send Data or Send
Data Without Response commands.

▪ Input

 Command Byte: 0x49

 Data Bytes:

▪ 4 bytes: Address. Must be aligned to 256 bytes and within a valid RAM memory length – [RAM_START
+ 512, RAM_END -4096].

▪ 4 bytes: CRC-32C of the entire n bytes of the data in the buffer which has been previous transferred
using the Send Data command.

▪ n bytes: An arbitrary value.

▪ Output

 Status Codes:

▪ Success

▪ Error Command

▪ Error Data

▪ Error Length

▪ Error Checksum

▪ Error Row

▪ Error Row Access

 Data Bytes: N/A

1.7.7 Veri fy Appl icat ion

This command reports whether the checksum (CRC-32C) for the entire application image (Flash loader) in RAM is
valid. The host can decide to use Verify Application command or to skip it. The checksum (CRC-32C) for the entire
application needs to be placed in the last 4 bytes of the application image.

▪ Input

 Command Byte: 0x31

 Data Bytes:

▪ 1 byte: Application ID of the application to be verified. Must be the same value as in the Set Application
Metadata command.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 11

▪ Output

 Status Codes:

▪ Success

▪ Error Command

▪ Error Data

▪ Error Length

▪ Error Checksum

▪ Error Row Access

 Data Bytes:

▪ 1 byte: 0x01 indicates that application is valid. 0x00 indicates that application is invalid.

1.7.8 Set Appl icat ion Metadata

This command is used to set a given application’s metadata. This command must be the second bootloader command
which the host delivers to the MCU; the first one being Enter Bootloader.

▪ Input

 Command Byte: 0x4C

 Data Bytes:

▪ 1 byte: Application ID

Table 5 shows the values of application ID.

Table 5. Application ID

Application ID Value Description

0 For either LIN at 20 kbps or CAN

1 For LIN at 115.2 kbps with a Fast mode. See LIN Configuration for 115.2 kbps.

2 For LIN at 115.2 kbps without a Fast mode.

▪

▪ 4 bytes: Bootloadable application start address. Must be aligned to 256 bytes and within a valid RAM
memory length – [RAM_START + 512, RAM_END – 4096].

▪ 4 bytes: Bootloadable application size in bytes. Must be a value for which the bootloadable application
image fits into a RAM address range [RAM_START + 512, RAM_END -4096].

▪ Output

 Status Codes:

▪ Success

▪ Error Command

▪ Error Length

▪ Error Data

▪ Error Checksum

▪ Error Row Access

 Data Bytes: N/A

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 12

1.8 Application Format

Figure 11 shows an example of an application format. If the host uses the Verify Application command, the checksum
(CRC-32C) for the entire application needs to be placed in the last 4 bytes of the application image.

Figure 11. Example for Application Format

CM0+ Vector Table

Application code

CRC-32C

Start address must be aligned to 256 bytes

Address range [RAM_START + 512, RAM_END – 4096]

1.9 Example Command/Response Data

Table 6 shows the example data for each Command/Response. If a sequence of multiple Send Data commands is
sent, the data is appended to the previous block. This command is used to break up large data transfers into smaller
pieces, to prevent channel starvation in some communication protocols.

Table 6. Example Command/Response Data

Command/
Response

Start of
Packet

Command/
Status Code

Data Length N bytes of Data Checksum End of
Packet

Enter Bootloader 0x01 0x38 0x04, 0x00 0x04, 0x03, 0x02, 0x01 0xB9, 0xFF 0x17

Response 0x01 0x00 0x08, 0x00 0x00, 0x00, 0x00, 0x00,
0x00, 0x14, 0x02, 0x01

0xE0, 0xFF 0x17

Set Application
Metadata

0x01 0x4C 0x09, 0x00 0x00, 0x00, 0x00, 0x40,
0x00, 0x08, 0xFC, 0x7F,
0x00, 0x00

0xE7, 0xFD 0x17

Response 0x01 0x00 0x00, 0x00 - 0xFF, 0xFF 0x17

Send Data 0x01 0x37 0x19, 0x00 0x00, 0xE0, 0x00, 0x08,
0xF1, 0x49, 0x00, 0x08,
0x7F, 0x49, 0x00, 0x08,
0xF9, 0x4A, 0x00, 0x08,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00

0x6A, 0xFB 0x17

Response 0x01 0x00 0x00, 0x00 - 0xFF, 0xFF 0x17

Program Data 0x01 0x49 0xE0, 0x00 0x00, 0x40, 0x00, 0x08,
0x91, 0xE6, 0x0D, 0xD8,
0xFF, 0xFF, 0xFF 0xFF,
0xFF, 0xFF

0x0A, 0xF7 0x17

Response 0x01 0x00 0x00, 0x00 - 0xFF, 0xFF 0x17

Verify Application 0x01 0x31 0x01, 0x00 0x00 0xCD, 0xFF 0x17

Response 0x01 0x00 0x01, 0x00 0x01 0xFD, 0xFF 0x17

Exit Bootloader 0x01 0x3B 0x00, 0x00 - 0xC4, 0xFF 0x17

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 13

2 Glossary

Terms Description

CAN FD Controller Area Network with Flexible Data rate

CRC Cyclic Redundancy Check

DAP Debug Access Port

JTAG Joint Test Action Group

LIN Local Interconnect Network

MPU Memory Protection Unit

SJW Resynchronization Jump Width

SWD Single Wire Debug

TOC2 Table of Contents 2

tq Time Quantum

3 Related Documents

The following are the Traveo II family series datasheets and technical reference manuals. Contact Technical Support
to obtain these documents.

▪ Device datasheet

 CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo™ II Family

 CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo™ II Family

 CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ II Family

 CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ II Family

▪ CYT2B Series

 Traveo™ II Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B7

 Traveo™ II Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B9

▪ CYT4B Series

 Traveo™ II Automotive Body Controller High Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Body Controller High Registers Technical Reference Manual (TRM)

▪ CYT4D Series

 Traveo™ II Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)

 Traveo™ II Automotive Cluster 2D Registers Technical Reference Manual (TRM)

http://www.cypress.com/
http://www.cypress.com/support

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 14

Document History

Document Title: AN227076 - Traveo II Bootloader

Document Number: 002-27076

Revision ECN Submission
Date

Description of Change

** 6648564 08/23/2019 New application note.

http://www.cypress.com/

Traveo II Bootloader

www.cypress.com Document Number: 002-27076 Rev.** 15

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph,
grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you
do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive,
nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and
reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims
of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with
Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 Terms and Definitions
	1.2 Using a Bootloader
	1.3 Bootloader Function Flow
	1.4 Device Interface Configurations
	1.4.1 CAN Configuration
	1.4.2 LIN Configuration
	1.4.3 LIN Configuration for 115.2 kbps

	1.5 Communication Flow
	1.6 Command/Response Packet Structure
	1.7 Commands
	1.7.1 Enter Bootloader
	1.7.2 Sync Bootloader
	1.7.3 Exit Bootloader
	1.7.4 Send Data
	1.7.5 Send Data Without Response
	1.7.6 Program Data
	1.7.7 Verify Application
	1.7.8 Set Application Metadata

	1.8 Application Format
	1.9 Example Command/Response Data

	2 Glossary
	3 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

