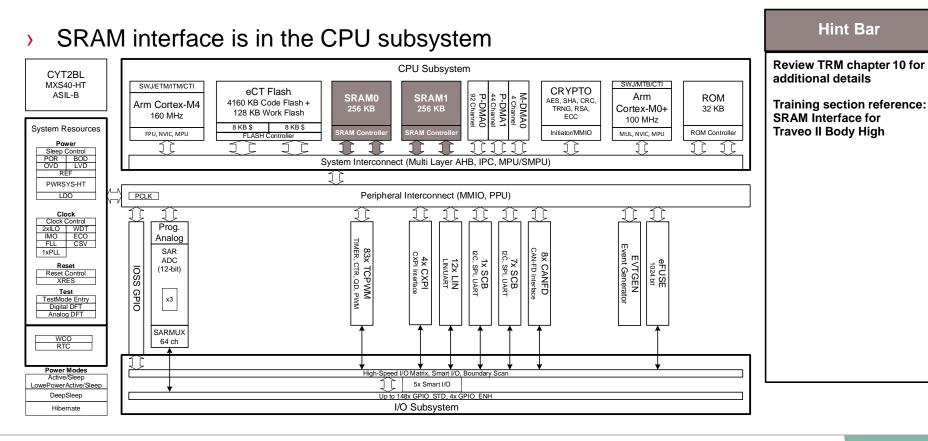
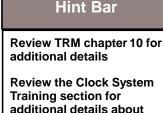
Customer Training Workshop Traveo™ II Body Entry SRAM Interface



Target Products

> Target product list for this training material

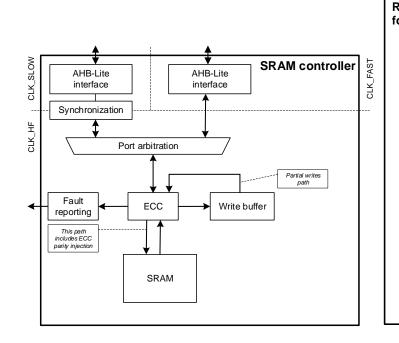
Family Category	Series	Code Flash Memory Size
Traveo™ II Automotive Body Controller Entry	CYT2B6	Up to 576KB
Traveo II Automotive Body Controller Entry	CYT2B7	Up to 1088KB
Traveo II Automotive Body Controller Entry	CYT2B9	Up to 2112KB
Traveo II Automotive Body Controller Entry	CYT2BL	Up to 4160KB

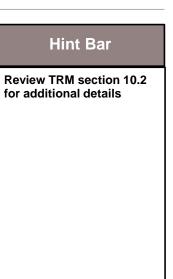


SRAM Interface Overview

- The SRAM controller in the SRAM memory interface has the following features:
 - Two AHB-Lite bus interfaces in two domains
 - Fast clock domain
 - Slow clock domain
 - Programmable wait states from 0 to 3
 - Wait states for the slow clock domain
 - In 0 wait cycle, up to 100 MHz of CLK_HF¹
 - In 1 wait cycle, from 100 MHz to 160 MHz of CLK_HF
 - Wait states for the fast clock domain
 - In 0 wait cycle, up to 160 MHz of CLK_HF
 - 32-bit wide interface to SRAM memory
 - Error-correcting code (ECC)
 - Optional retention of SRAM contents in DeepSleep mode

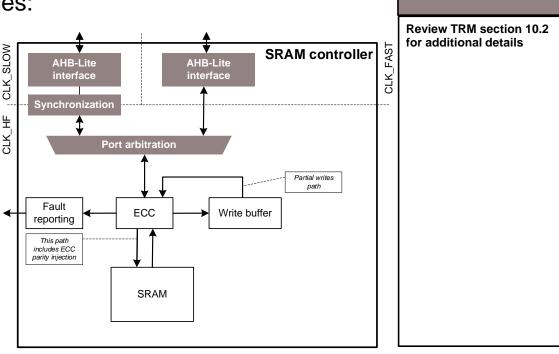
Copyright © Infineon Technologies AG 2020. All rights reserved.


high-frequency clocks



SRAM Controller Block Diagram

- > The SRAM controller consists of:
 - AHB-Lite interface
 - Synchronization
 - Port arbitration
 - Error-correcting code (ECC)
 - SRAM memory
 - Write buffer
 - Fault reporting



Hint Bar

AHB-Lite Interface

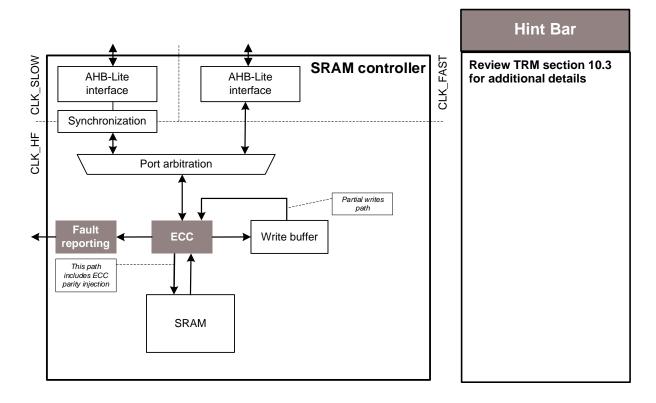
- > The AHB-Lite interface includes:
 - AHB-Lite transfers
 - Arbitration priority

AHB-Lite Transfers

- > There are three types of AHB-Lite transfers
 - AHB-Lite read transfers
 - Translated into an SRAM read access
 - Uses ECC syndrome logic
 - 32-bit AHB-Lite write transfers
 - Translated into an SRAM write access
 - Uses ECC parity logic
 - Partial (8-bit and 16-bit) AHB-Lite write transfers
 - Translated into an SRAM read access and an SRAM write access
 - Only type that uses the write buffer

Hint Bar Review TRM section 10.2 for additional details **Review the Error Correcting Code (ECC)** section for additional details about ECC **Review the Write Buffer** section for additional details about the Write Buffer

Arbitration Priority


- The arbiter component performs priority-based arbitration on the two AHB-Lite interfaces from the two interface ports
- The arbitration priority is set according to PROT_SMPU_MS0_CTL.PRIO register of SMPU (0 is highest, 3 is lowest)
- If Masters have the same priority, round-robin arbitration is performed according to the bus master identifier (starting from 15 to a lower identifier number)

Master Identifier	Bus Master
0	Arm [®] Cortex [®] -M0+
1	Cryptography component
2	P-DMA0
3	P-DMA1
4	M-DMA
14	Arm Cortex-M4
15	Test controller

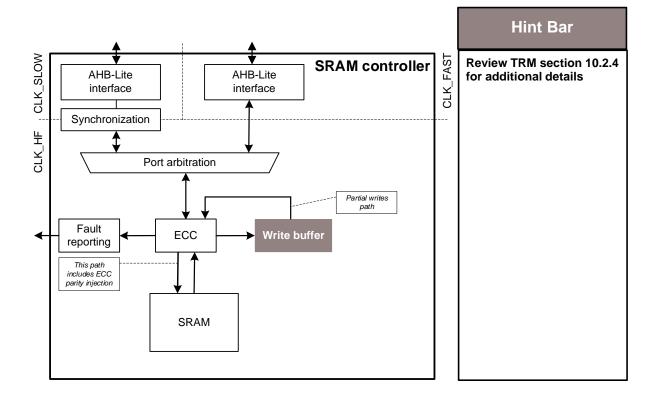
Error-Correcting Code (ECC)

- > ECC includes:
 - SECDED¹
 - Fault reporting
 - Error injection

SECDED	Hint Bar
 Corrects single-bit errors and detects double-bit errors 	Review TRM section 10.3
 Reports error to the fault reporting structure 	for additional details
 Includes 7-bit ECC per 32 bits of data and 25 bits of address 	
Fault Reporting	
- Correctable and non-correctable ECC errors are reported to the fault structure in	
the same way	
- Use Case	
 SEC report: Log single-bit error count via the trigger that connects to TCPWM 	
 DED report: Use for failsafe operations such as stop system control 	
Error injection	
 Providing an error injection address and injection parity can generate an ECC 	
error	
- Use Case	
 Use as initial diagnosis of ECC before running the application 	

ECC

>


>

>

Write Buffer

> Write buffer request

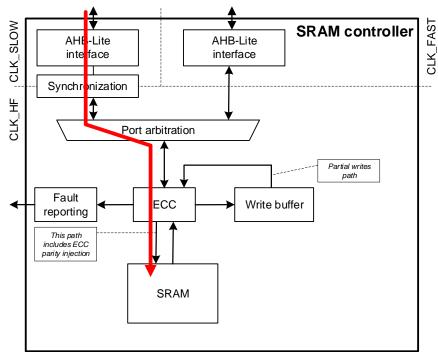
	Address and r
_	Δ future write

Write Buffer

- A future write buffer request results in an SRAM write access with the merged write data
- For 8-bit and 16-bit AHB-Lite write bus transfers, an additional SRAM read access precedes the SRAM write access to retrieve the "missing" data bytes
- Since the write buffer is not retained in DeepSleep mode, empty the buffer before entering the mode
- The write buffer state is reflected as WB EMPTY

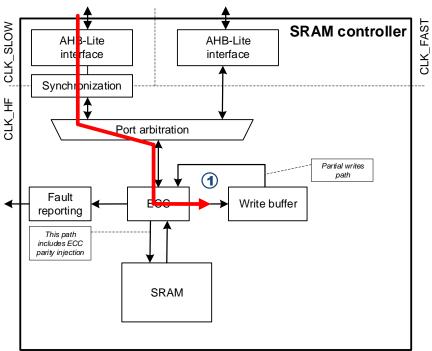
The SRAM controller write buffer is used only when ECC is enabled

- 32-bit AHB-Lite write bus transfers require only a single SRAM write > access
- Sequence of data merging involving the write buffer: >
 - Requested read data is merged with partial write data to provide a complete 32-bit data word
 - Address and merged write data are written to the write buffer

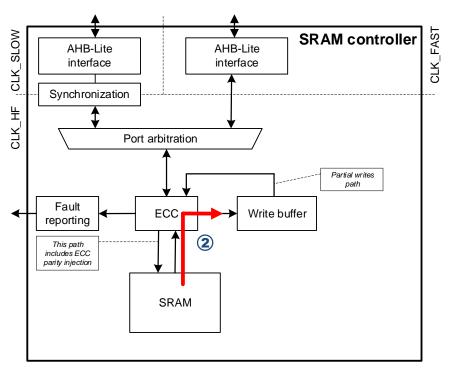

Hint Bar

Review TRM section 10.2.4 for additional details

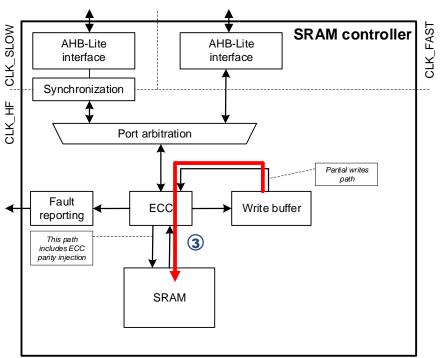
32-bit Write Buffer


> Only a single SRAM write access is required

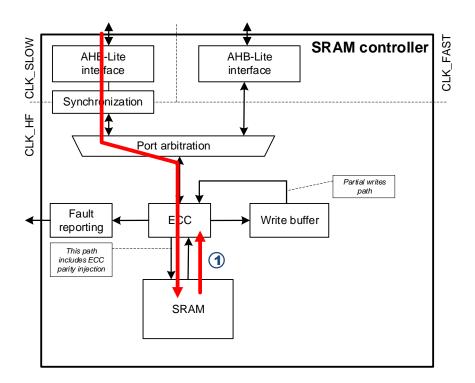
8/16-bit Write Buffers, Partial Write with ECC (1/3)


 Data from the AHB-Lite interface is stored in the write buffer

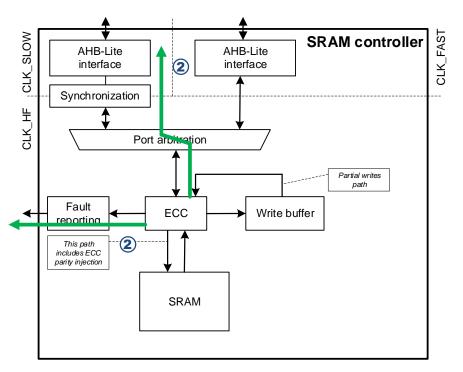
8/16-bit Write Buffers, Partial Write with ECC (2/3)


- Data from AHB-Lite interface is stored to the write buffer
- 2 Missing data are read from SRAM and stored in the write buffer to complete the 32-bit word

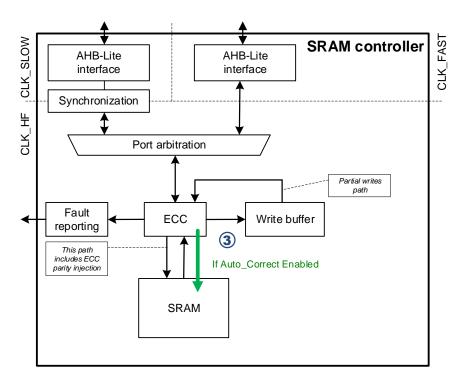
8/16-bit Write Buffers, Partial Write with ECC (3/3)

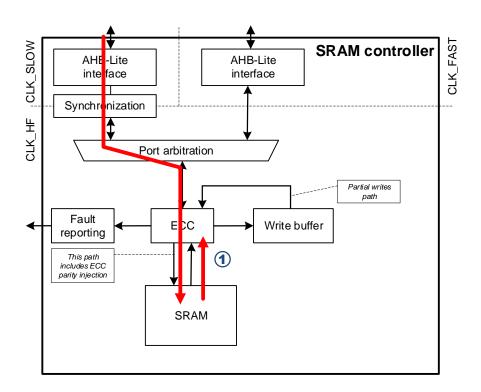

- Data from AHB-Lite interface is stored to the write buffer
- Missing data are read from SRAM and stored to the write buffer to complete the 32-bit word
- Complete 32-bit word with ECC is written to the SRAM

Read With ECC with 1-bit Correctable Error (1/3)

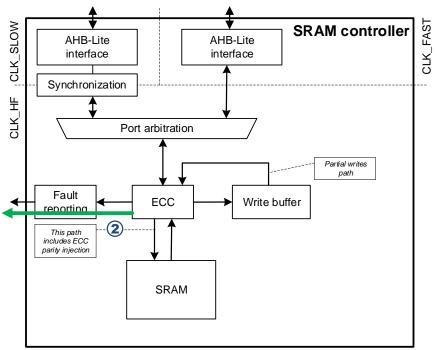

 1-bit error is detected in AHB-Lite interface bus read data

Read With ECC with 1-bit Correctable Error (2/3)


- 1-bit error is detected in AHB-Lite interface bus read data
- The error is notified to the fault reporting The corrected data is sent to the AHB-Lite master requester

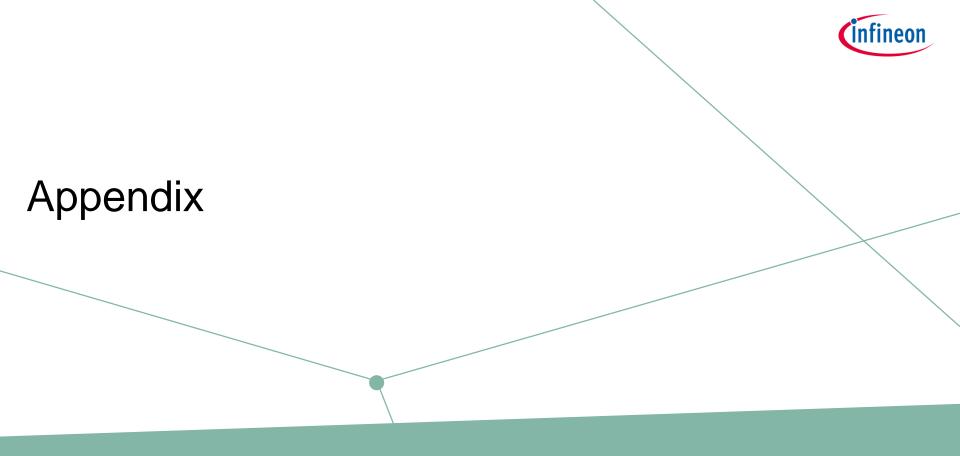

Read With ECC with 1-bit Correctable Error (3/3)

- 1 1-bit error is detected in AHB-Lite interface bus read data
- 2 The error is notified to the fault reporting The corrected data is sent to the AHB-Lite master requester
- ③ If ECC_AUTO_CORRECT is enabled, the corrected data is written to the SRAM


 Non-correctable error is detected in AHB-Lite interface bus read data

Read With ECC with Non-Correctable Error (2/2)

- Non- correctable error is detected in AHB-Lite interface bus read data
- 2 The error is notified to the fault report
 - Fault reporting captures the noncorrectable error
 - Single-bit error detected in the word address
 - Double-bit error detected in the data access
 - No bus error is detected while a fault is generated



SRAM Retention in DeepSleep

- In DeepSleep mode, SRAM0 can be fully retained or retained in increments of 32-KB sectors
- > Advantage
 - By setting the size of backup RAM according to the system, it is possible to optimize the current consumption during DeepSleep mode

Hint Bar
SRAM unit other than SRAM0 can be fully retained
Review TRM section 10.1 for additional details on SRAM region that is not guaranteed to be retained across resets

Comparison between CYT2BL, CYT4BF, and CYT4DN

	_ Features	CYT2BL	CYT4BF	CYT4DN
SRAM	Memory size option	512KB	1024KB	640KB
	Interface width to SRAM memory	32-bit	64-bit	
	Bus interface	AHB-Lite	AXI, AHB-Lite	
	Wait states	Slow clock domain: 0 wait cycle for CLK_HF <= 100 MHz 1 wait cycle for 100 MHz < CLK_HF <= 160 MHz Fast clock domain: 0 wait cycle for CLK_HF <= 160 MHz	Slow clock domain: 0 wait cycle for CLK_MEM <= 100 MHz 1 wait cycle for 100 MHz < CLK_MEM <= 200 MHz Fast clock domain: 0 wait cycle for CLK_MEM <= 200 MHz	
	Bus master priority of arbiter	0: Cortex-M0+ CPU 1: Cryptography Component 2: P-DMA0 3: P-DMA1 4: M-DMA 14: Cortex-M4 CPU 15: Test Controller	0: Cortex-M0+ CPU 1: Cryptography Component 2: P-DMA0 3: P-DMA1 4: M-DMA 5: SDHC 9: Ethernet 0 10: Ethernet 1 13: Cortex-M7_1 CPU 14: Cortex-M7_0 CPU 15: Test Controller	0: Cortex-M0+ CPU 1: Cryptography Component 2: P-DMA0 3: P-DMA1 4: M-DMA 9: Ethernet 0 12: Video Subsystem 13: Cortex-M7_1 CPU 14: Cortex-M7_0 CPU 15: Test Controller
	ECC (SED/DED)	Same		
	RAM retention in DeepSleep	Same		

Comparison between CYT2BL, CYT4BF, and CYT4DN

Features CYT2BL CYT4BF		CYT4BF	CYT4DN	
TCM Bus inte Wait sta	Memory size	N/A	16KB ITCM, 16KB DTCM	64KB ITCM, 64KB DTCM
	Interface width		ITCM: 64-bit D0TCM: 32-bit D1TCM: 32-bit	
	Bus interface		TCM interface	
	Wait states		Fast clock domain: 0 wait cycle for CLK_FAST <= 350 MHz	
	Priority		Cortex-M7 CPU only	
	ECC (SED/DED)		Supported	

Part of your life. Part of tomorrow.

Revision	ECN	Submission Date	Description of Change
**	6140653	04/25/2018	Initial release
*A	6333945	10/05/2018	Added page 2, 4, Appendix section and the note descriptions of all pages. Updated page 3, 6, 7, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22.
*В	6633591	07/22/2019	Updated page 2, 24.
*C	7076348	01/27/2021	Updated page 1, 2, 3, 8, 22, and 24.