Customer training workshop

TRAVEO[™] T2G Body Entry Clock System

Target products

> Target product list for this training material:

Family category	Series	Code flash memory size
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2B6	Up to 576 KB
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2B7	Up to 1088 KB
TRAVEO [™] T2G Automotive Body Controller Entry	CYT2B9	Up to 2112 KB
TRAVEO™ T2G Automotive Body Controller Entry	CYT2BL	Up to 4160 KB

Hint Bar

Introduction to CYT2BL

The clock system is part of the System Resources block

Clock system overview

The clock system supplies clocks for MCU operation Hint Bar Features > **Review Chapter 18 in the** Internal clock sources TRM for additional details – 8-MHz IMO 32.768-kHz ILO0/1 External clock sources External crystal oscillator (ECO) Watch crystal oscillator (WCO) External clock (EXT_CLK) generated using a signal through I/O pin It is also possible to output the internal clock **Clock** generation Phase lock loop (PLL) Frequency lock loop (FLL) Clock supervision (CSV) for detecting clock abnormality Clock calibration counter

Clock system block diagram

Internal clock sources

- Internal main oscillator (IMO)
- Internal low-speed oscillator 0/1 (ILO0/1)

IMO: Internal main oscillator

- > Produces an 8-MHz fixed frequency
- > An accurate, high-speed internal (crystal-less) oscillator
- > Available in only Active and Sleep modes
- > Default clock source after POR or any other reset
- > Used by PLL0 to generate a wide range of high-frequency clocks
- > Enabled and disabled by register¹
 - Default is ENABLE²

Hint Bar	
-----------------	--

Review Section 18.2 in the TRM for additional details

Refer to the datasheet for additional details on AC specifications

¹ IMO should not be disabled if it is the source of the clock path to CLK_HF[0] ² Refer to the Register TRM (CLK_IMO_CONFIG) for additional details

ILO 0/1: Internal low-speed oscillators

> ILOO

- Produces a 32.768-kHz nominal fixed frequency
- Low power and low accuracy
- Available in all power modes
- Always the source of the Watchdog timer¹
- > ILO1
 - Used for ILO0 clock monitoring
 - Parameters for ILO1 are the same as ILO0

Refer to the datasheet for additional details on AC specification

¹ Always leave the ILO enabled, as it is the source of the Watchdog timer

External clock sources

- > ECO
- > WCO
- > EXT_CLK

- > ECO
 - Contains an oscillator to drive an external 3.988 MHz to 33.34 MHz crystal
 - Used by PLL0 to generate a wide range of high-frequency clocks
 - ECO pre-scaler
 - ECO trimming
 - Enabled and disabled by register¹
 - Default is DISABLE
- > WCO
 - Highly accurate 32.768-kHz clock source
 - Primary clock source for the real-time clock (RTC)
 - Enabled and disabled by register²
 - Default is DISABLE
- > EXT_CLK
 - 0.25 MHz to 80 MHz clock that can be sourced from a designated I/O pin
 - Can be used as the source clock for either the PLL or FLL
 - Can be used to output the internal clock (CLK_HF1 is available)
 - When using a pin as an input to EXT_CLK,
 I/O must be set appropriately³

Refer to the Register TRM (CLK_ECO_CONFIG) for additional details
 Refer to the Register TRM (CTL) for additional details
 Refer to the TRM section 18.2.3 and the datasheet for additional details

Review Section 18.2 in the TRM for additional details

Refer to the datasheet for additional details on AC specification

ECO trimming

- ECO supports a wide variety of crystals and ceramic resonators >
- ECO can be configured by register¹ >
 - The following trim bit fields can be configured to control the maximum peak oscillation voltage across the crystal (VP), the transconductance (gm), and the nominal frequency (f):
 - ATRIM (Amplitude Trim by AGC)
 - GTRIM (Gain Trim)
 - WDTRIM (Watchdog Trim)
 - FTRIM (Filter Trim)
 - RTRIM (Feedback Resistor Trim)

Max peak value: $V_P = \frac{\sqrt{\frac{\nu_L}{2ESR}}}{\pi f(C_1 + C_2)}$

- f: Fundamental frequency of the crystal (XTAL)
- D_i: Maximum drive level of XTAL
- ESR: Equivalent series resistance
- Shunt capacitance of XTAL
- C₁: Parallel load capacitance of XTAL

Transconductance: $g_m > 20 \times ESR \times (2\pi \times f)^2 \times (C_0 + C_L)^2$

Negative resistance: $|R_{neg}| = \frac{g_m \times 4 \times C_L^2}{(2\pi \times f)^2 \times (4 \times C_L^2 + 4 \times C_L \times C_L)^2}$

Hint Bar

Review TRM section 18.2 for additional details

High-speed clock generation

- > Phase lock loop (PLL)
- > Frequency lock loop (FLL)

Clock generation: PLL and FLL

> PLL

- Input clock can be IMO (8 MHz), ECO, or EXTCLK
- PLL configuration parameters:
 - Input clock range: 3.988 to 33.34 MHz
 - Output clock range: 11 to 160 MHz (CYT2BL)¹
- > FLL
 - Input clock can be IMO (8 MHz), ECO, or EXTCLK
 - A counter with a current-controlled oscillator (CCO)
 - Starts up (locks) faster and uses lower power than the PLL
 - The lock tolerance is user adjustable
 - Parameters on the FLL configuration:
 - Input clock range: 0.25 MHz to 80 MHz
 - Output clock range: 24 MHz to 100 MHz (CYT2BL)¹

Н	int	Bar

Review Section 18.3 in the TRM and Register TRM for additional details

Refer to the datasheet for additional details on AC specification

PLL configuration example

- > Parameters on PLL configuration:
- > Fref:
- > Fout (Fvco/Output divider):
- > Fpfd (Fref/Reference divider):
- > Fvco (Fpfd * Feedback divider):

3.988 MHz to 33.34 MHz 11 MHz to 160 MHz (CYT2BL)¹

4 MHz to 8 MHz

170 MHz to 400 MHz

Hint Bar

Review section 18.3.1 in the TRM and Register TRM for additional details

¹ Refer to the data sheet for target product.

Clock trees

- > CLK_PATH0/1/2
- > CLK_HF0/1
- > clk_ref_hf
- > CLK_LF
- > CLK_BAK
- > CLK_HF0 distribution

Clock distribution

- CLK_PATHx
 - Input sources for the CLK_HF roots
 - CLK_PATH0 contains the FLL output Up to 100 MHz (using FLL)¹
 - CLK_PATH1 contains the PLL output
 Up to 160 MHz (using PLL)¹
 - CLK_PATH2 is a connection to root clocks
 Up to 22.24 MHz (using ECO)
 - Up to 33.34 MHz (using ECO)
- CLK_REF_HF
 - Selects IMO, ECO, EXTCLK
 - Typically selects the IMO (8 MHz)
 - Used as a reference clock for CLK_HF0/1 clock supervision

¹ Refer to the data sheet for target product.

- CLK_HF0/1
 - Selects CLK_PATH0, 1, 2
 - CLK_HF0 is the input source for the CPUSS and resources such as Timer, SCB, and SAR ADC
 - CLK_HF1 is the input source for the event generator

¹ Typically WCO is connected to RTC. CLK_LF also can connect to RTC.

Clock distribution

- CLK_LF >
 - ILO0, ILO1, or WCO (32.768 kHz) can be the input clock for CLK_LF
 - Input sources for the MCWDT clock
 - Uses reference clock for CLK_ILO0 Clock Supervision
- CLK_BAK >
 - ILO0, ILO1, or WCO (32.768 kHz) can be the input clock for CLK_BAK
 - Input sources for RTC¹ clock

Hint Bar

Training section reference:

- CPU Subsystem

17

CLK_HF0¹ distribution

¹CLK_HF0 can be enabled and disabled by register. CLK_HF0 is always enabled as the clock source of CPU.

² Refer to the data sheet for target product.

³ CPUSS and PPU registers

Peri clock distribution

- PERI clock divider >
 - Four types of dividers¹
 - 8-bit divider
 - 16-bit divider
 - 16.5-bit divider _
 - 24.5-bit divider _
 - Fractional clock dividers supported _
 - Output of dividers can be routed to any peripheral
 - Phase aligning _
 - Can be phase-aligned with any of the other (enabled) clock dividers.

Hint Bar
Clock dividers can be configured through the following registers:
DIV_8_CTL
DIV_16_CTL
DIV_16_5_CTL
DIV_24_5_CTL
Clock Enable multiplexers

CI can be configured through **CLOCK_CTL** registers, which are assigned for each peripheral

Review Section 18.7 in the TRM for additional details on clock numbers, which are assigned for each peripheral

¹Not all dividers are supported

Clock supervision (CSV)

- Clock supervision (CSV) allows one clock to be monitored with another clock (reference clock)
- > Monitored clock sources:
 - CLK_HF0
 - CLK_HF1
 - CLK_REF_HF
 - ILO0
 - CLK_LF
- > CSV power domains:
 - Active domain CSV
 - DeepSleep domain CSV

Clock supervision features

- > Checks that the frequency of the monitored clock is within the allowed frequency window
 - Uses a reference clock to supervise the behavior of the monitor clock

CSV Components	Monitor Clock	Reference Clock	Note
CSV_HF0/1	CLK_HF0/1	clk_ref_hf	clk_ref_hf is typically selected the IMO (default)
CSV_REF	clk_ref_hf	ILO0	-
CSV_ILO	ILO0	CLK_LF	CLK_LF is selected WCO or ILO1
CSV_LF	CLK_LF	ILO0	-

- Active domain CSV: CSV_HF0/1, CSV_REF
 - Automatically stops during DeepSleep, and restarts by wakeup
 - Wait function of monitoring start for startup time¹
 - Possible to generate a Reset or a Fault report
- DeepSleep domain CSV: CSV_ILO, CSV_LF
 - Operates during Active and DeepSleep
 - Generates Wakeup and Fault reports
- All CSVs are initially OFF

Hint Bar

See the Register TRM for additional details

¹Need to prevent a false error detection at startup

infineon

CSV operation

- The monitored clock generates a monitor event (Period), and the reference clock Hint Bar generates a lower and upper limit The monitor event is compared against a lower limit/upper limit The monitor clock and the reference clock are An error is reported if the monitor event \leq lower limit, or if the monitor event > upper limit asynchronous (typical). Therefore, the frequency Frequency is Normal Frequency is too Fast Frequency is too Slow window needs to account for maximum clock Period ——> — Period Period tolerance. Monitor Clock Monitor In Range 📕 Out of Range 📕 Out of Range Event Upper limit Upper limit Lower limit Lower limit Lower limit Reference Clock Normal Frequency Window
- > Advantages
 - Detects whether the clock stops, runs too fast or runs too slow, and if the period is not within the frequency window
 - Monitors clock in each power mode such as Active, Sleep, and DeepSleep with Active domain CSV and DeepSleep domain CSV
 - Can achieve ASIL-B

Clock calibration counter

- > Clock calibration counter operation
 - Two counters: Counter1 and Counter2
 - Counter1 is clocked by clock1: reference clock
 - Counter2 is clocked by clock2: measurement clock.
 - Counter1 sets the measurement period by the count number of clock1
 - Counter2 indicates the count number of clock2 during the measurement period
 - Clock2 frequency can be calculated from the following formula using two count numbers:

 $clock2 frequency = \frac{Counter2 value}{Counter1 value} \times clock1 frequency$

All clock sources are available as a source for these two clocks.

> Use case

 Measure a lower-accuracy clock, such as the ILO, using a higher-accuracy clock such as the ECO

Comparison Between CYT2BL, CYT4BF, and CYT4DN (1/4)

	Features	CYT2BL	CYT4BF	CYT4DN	Note
IMO		Supported			
ECO			Supported		
ILO 0			Supported		
ILO 1			Supported		
WCO			Supported		
LPECO		Not impl	emented	Supported	
FLL	Number of FLL		1		
	Input Range	0.25 to	0.25 to 80 MHz 0.25 to 100 M		
	Output Range		24 to 100 MHz		
PLL	Number of PLL	1 2		3	
	Input Range		3.988 to 33.34 MHz		
	Output Range	11 to 160 MHz	11 to 2	00 MHz	
PLL400	Number of PLL	Not implemented	2	5	
	Input Range	Not implemented 3.988 to 33.34 MHz		3.34 MHz	
	Output Range	Not implemented 25 to 350 MHz (*)		25 to 400 MHz	(*) Spreading off
	SSCG	Not implemented Yes			
	Fractional Operation	Not implemented	Yes		

Comparison Between CYT2BL, CYT4BF, and CYT4DN (2/4)

Fe	eatures	CYT2BL CYT4BF		CYT4DN	Note
CLK Trees	CLK_PATH 0		FLL		
Source Clock	CLK_PATH 1	PLL	PLL	PLL400	
	CLK_PATH 2	ECO,IMO,EXT_CLK,WCO, ILO0/1	PLL	400	
	CLK_PATH 3	ECO,IMO,EXT_CLK,WCO, ILO0/1	PLL	PLL400	
	CLK_PATH 4	Not implemented	PLL	PLL400	
	CLK_PATH 5	Not implemented	ECO,IMO,EXT_CLK,WCO, ILO0/1	PLL400	
	CLK_PATH 6	Not impl	Not implemented		
	CLK_PATH 7	Not impl	emented	PLL	
	CLK_PATH 8	Not implemented		PLL	
	CLK_PATH 9	Not implemented		ECO,IMO,EXT_CLK,WCO, ILO0/1,LPECO	
	CLK_REF_HF	ECO,IMO,EXT_CLK		ECO,IMO,EXT_CLK ,LPECO	
	CLK_TIMER	CLK_HF0, IMO		0	
	CLK_LF	ILO0/1, WCO, ECO		ILO0/1, WCO, ECO ,LPECO	
	CLK_BAK	CLK_LF, ILO0, WCO		CLK_LF, ILO0, WCO ,LPECO	

Comparison between CYT2BL, CYT4BF, and CYT4DN (3/4)

Featu	ires	CYT2BL	CYT4BF	CYT4DN	Note
CLK Distribution	CLK_HF0	CPUSS clocks, PERI, and AHB infrastructure	CPUSS (Memories, CLK_SLOW, Peripherals)	CPUSS (Memories, CLK_SLOW, Peripherals)	
	CLK_HF1	Event Generator	CPUSS (Cortex-M7 CPU 0, 1)	CPUSS (Cortex-M7 CPU 0, 1)	
	CLK_HF2	Not connect	CAN FD, FlexRay, LIN, TCPWM, SCB, SAR	CAN FD, CXPI, LIN, SCB, SAR	
	CLK_HF3	Not implemented	Event Generator	Event Generator	
	CLK_HF4	Not implemented	Ethernet	Ethernet	
	CLK_HF5	Not implemented	Audio subsystem	Sound Subsystem #0	
	CLK_HF6	Not implemented	SDHC Interface, SMIF	Sound Subsystem #1	
	CLK_HF7	Not implemented	Not connect	Sound Subsystem #2	
	CLK_HF8	Not implemented	Not implemented	SMIF #0	
	CLK_HF9	Not implemented	Not implemented	SMIF #1	
	CLK_HF10	Not implemented	Not implemented	Video Subsystem	
	CLK_HF11	Not implemented	Not implemented	Video Display #0	
	CLK_HF12	Not implemented	Not implemented	Video Display #1	
	CLK_HF13	Not implemented	Not implemented	Not connect	

Comparison between CYT2BL, CYT4BF, and CYT4DN (4/4)

	Features	CYT2BL CYT4BF		CYT4DN	Note
Clock Divider	Number of Dividers	1 2		2	
	Fractional Clock Divider	24.5-bit dividers16.5-bit dividers, 24.5-bit dividers			
	Phase Aligning	Supported			
Clock Supervision		Supported			
Calibration Counter		Supported			

Part of your life. Part of tomorrow.

Revision History

Revision	ECN	Submission Date	Description of Change
**	6157641	04/29/2018	Initial release
*A	6364397	10/25/2018	Added slide 2 and the note descriptions of all pages. Updated slides 3-6, 9, 11, 14, 19. Added Clock Calibration Counter slide Updated the figures
*В	7060645	01/06/2021	Updated slide 2 - 4, 8, 10, 13, 16, 17, 18, 25-28 Deleted slide 4 Added slide 11
*C	7450141	11/16/2021	Updated slide 1, 2, 14