Customer Training Workshop

Traveo™ II Body Entry Clock System

Q1 2021
Target Products

Target product list for this training material:

<table>
<thead>
<tr>
<th>Family Category</th>
<th>Series</th>
<th>Code Flash Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveo™ II Automotive Body Controller Entry</td>
<td>CYT2B6</td>
<td>Up to 576 KB</td>
</tr>
<tr>
<td>Traveo II Automotive Body Controller Entry</td>
<td>CYT2B7</td>
<td>Up to 1088 KB</td>
</tr>
<tr>
<td>Traveo II Automotive Body Controller Entry</td>
<td>CYT2B9</td>
<td>Up to 2112 KB</td>
</tr>
<tr>
<td>Traveo II Automotive Body Controller Entry</td>
<td>CYT2BL</td>
<td>Up to 4160 KB</td>
</tr>
</tbody>
</table>
Introduction to CYT2BL

The Clock system is part of the System Resources block.

Hint Bar

Review Chapter 18 in the TRM for additional details.
Clock System Overview

- The clock system supplies clocks for MCU operation
- Features
 - Internal clock sources
 - 8-MHz IMO
 - 32.768-kHz ILO0/1
 - External clock sources
 - External crystal oscillator (ECO)
 - Watch crystal oscillator (WCO)
 - External clock (EXT_CLK) generated using a signal through I/O pin
 It is also possible to output the internal clock
 - Clock generation
 - Phase lock loop (PLL)
 - Frequency lock loop (FLL)
- Clock supervision (CSV) for detecting clock abnormality
- Clock Calibration Counter

Copyright © Infineon Technologies AG 2020. All rights reserved.
Internal Clock Sources

- Internal Main Oscillator (IMO)
- Internal low-speed oscillator 0/1 (ILO0/1)
IMO: Internal Main Oscillator

› Produces an 8-MHz fixed frequency
› An accurate, high-speed internal (crystal-less) oscillator
› Available in only Active and Sleep modes
› Default clock source after POR or any other reset
› Used by PLL0 to generate a wide range of high-frequency clocks
› Enabled and disabled by register\(^1\)
 - Default is ENABLE\(^2\)

\(^1\) IMO should not be disabled if it is the source of the clock path to CLK_HF[0]
\(^2\) Refer to the Register TRM (CLK_IMO_CONFIG) for additional details
ILO 0/1: Internal Low-speed Oscillators

› ILO0
 - Produces a 32.768-kHz nominal fixed frequency
 - Low power and low accuracy
 - Available in all power modes
 - Always the source of the Watchdog timer\(^1\)

› ILO1
 - Used for ILO0 clock monitoring
 - Parameters for ILO1 are the same as ILO0

\(^1\) Always leave the ILO enabled, as it is the source of the Watchdog timer
External Clock Sources

- ECO
- WCO
- EXT_CLK
External Clock Sources Overview

› ECO
 - Contains an oscillator to drive an external 3.988 MHz to 33.34 MHz crystal
 - Used by PLL0 to generate a wide range of high-frequency clocks
 - ECO pre-scaler
 - ECO trimming
 - Enabled and disabled by register\(^1\)
 - Default is DISABLE

› WCO
 - Highly accurate 32.768-kHz clock source
 - Primary clock source for the real-time clock (RTC)
 - Enabled and disabled by register\(^2\)
 - Default is DISABLE

› EXT_CLK
 - 0.25 MHz to 80 MHz clock that can be sourced from a designated I/O pin
 - Can be used as the source clock for either the PLL or FLL
 - Can be used to output the internal clock (CLK_HF1 is available)
 - When using a pin as an input to EXT_CLK, I/O must be set appropriately\(^3\)

\(^1\) Refer to the Register TRM (CLK_ECO_CONFIG) for additional details
\(^2\) Refer to the Register TRM (CTL) for additional details
\(^3\) Refer to the TRM section 18.2.3 and the datasheet for additional details
ECO Trimming

ECO supports a wide variety of crystals and ceramic resonators
ECO can be configured by register

- The following trim bit fields can be configured to control the maximum peak oscillation voltage across the crystal (VP), the transconductance (gm), and the nominal frequency (f):
 - ATRIM (Amplitude Trim by AGC)
 - GTRIM (Gain Trim)
 - WDTRIM (Watchdog Trim)
 - FTRIM (Filter Trim)
 - RTRIM (Feedback Resistor Trim)

\[V_p = \frac{\sqrt{\frac{D_l}{2ESR}}}{\pi f (C_0 + C_L)} \]

\[f: \quad \text{Fundamental frequency of the crystal (XTAL)} \]
\[D_l: \quad \text{Maximum drive level of XTAL} \]
\[ESR: \quad \text{Equivalent series resistance} \]
\[C_0: \quad \text{Shunt capacitance of XTAL} \]
\[C_L: \quad \text{Parallel load capacitance of XTAL} \]

Transconductance:
\[g_m > 20 \times ESR \times (2\pi \times f)^2 \times (C_0 + C_L)^2 \]

Negative resistance:
\[|R_{neg}| = \frac{g_m \times 4 \times C_L^2}{(2\pi f)^2 (4 \times C_L^2 + 4 \times C_L \times C_0)^2} \]

1 Refer to the Register TRM (CLK_ECO_CONFIG2) for additional details.
High-speed Clock Generation

- Phase lock loop (PLL)
- Frequency lock loop (FLL)
PLL
- Input clock can be IMO (8 MHz), ECO, or EXTCLK
- PLL configuration parameters:
 - Input clock range: 3.988 to 33.34 MHz
 - Output clock range: 11 to 160 MHz (CYT2BL)\(^1\)

FLL
- Input clock can be IMO (8 MHz), ECO, or EXTCLK
- A counter with a current-controlled oscillator (CCO)
 - Starts up (locks) faster and uses lower power than the PLL
 - The lock tolerance is user adjustable
- Parameters on the FLL configuration:
 - Input clock range: 0.25 MHz to 80 MHz
 - Output clock range: 24 MHz to 100 MHz (CYT2BL)\(^1\)

\(^1\) Refer to the data sheet for target product.
PLL Configuration Example

- Parameters on PLL configuration:
 - Fref: 3.988 MHz to 33.34 MHz
 - Fout (Fvco/Output divider): 11 MHz to 160 MHz (CYT2BL)\(^1\)
 - Fpfd (Fref/Reference divider): 4 MHz to 8 MHz
 - Fvco (Fpdf * Feedback divider): 170 MHz to 400 MHz

<table>
<thead>
<tr>
<th>Divider Setting</th>
<th>Fref</th>
<th>Fout</th>
<th>Fpfd</th>
<th>Fvco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>8 MHz</td>
<td>160 MHz = Fvco/2</td>
<td>4 MHz = Fref/2</td>
<td>320 MHz = Fpdf x 80</td>
</tr>
<tr>
<td>Output Divider</td>
<td>-</td>
<td>Output Divider: 2</td>
<td>Reference Divider: 2</td>
<td>Feedback Divider: 80</td>
</tr>
</tbody>
</table>

\(^1\) Refer to the data sheet for target product.

Review section 18.3.1 in the TRM and Register TRM for additional details.
Clock Trees

- CLK_PATH0/1/2
- CLK_HF0/1
- clk_ref_hf
- CLK_LF
- CLK_BAK
- CLK_HF0 distribution
Clock Distribution

- **CLK_PATHx**
 - Input sources for the CLK_HF roots
 - CLK_PATH0 contains the FLL output
 Up to 100 MHz (using FLL)
 - CLK_PATH1 contains the PLL output
 Up to 160 MHz (using PLL)
 - CLK_PATH2 is a connection to root clocks
 Up to 33.34 MHz (using ECO)

- **CLK_REF_HF**
 - Selects IMO, ECO, EXTCLK
 - Typically selects the IMO (8 MHz)
 - Used as a reference clock for CLK_HF0/1 clock supervision

- **CLK_HF0/1**
 - Selects CLK_PATH0, 1, 2
 - CLK_HF0 is the input source for the CPUSS and resources such as Timer, SCB, and SAR ADC
 - CLK_HF1 is the input source for the event generator

1 Refer to the data sheet for target product.
Clock Distribution

› CLK_LF
 - ILO0, ILO1, or WCO (32.768 kHz) can be the input clock for CLK_LF
 - Input sources for the MCWDT clock
 - Uses reference clock for CLK_ILO0 Clock Supervision

› CLK_BAK
 - ILO0, ILO1, or WCO (32.768 kHz) can be the input clock for CLK_BAK
 - Input sources for RTC\(^1\) clock

\(^1\) Typically WCO is connected to RTC. CLK_LF also can connect to RTC.
CLK_HF0\(^1\) Distribution

- The root clock for the CPUSS and the peripherals
- Distributed to CLK_FAST, CLK_SLOW, and CLK_PERI
- CPUSS has CLK_FAST and CLK_SLOW domains
- **CLK_FAST**
 - Source clock for CM4
 - Up to 160 MHz\(^2\)
- **CLK_SLOW**
 - Source clock for the CM0+, Crypto, DMAs, Test Controller, some peripherals\(^3\)
 - Up to 100 MHz\(^2\)
- **CLK_PERI**
 - Source clock for all peripherals such as TCPWM and SCB, via divider
 - Up to 100 MHz\(^2\)

\(^1\) CLK_HF0 can be enabled and disabled by register. CLK_HF0 is always enabled as the clock source of CPU.

\(^2\) Refer to the data sheet for target product.

\(^3\) CPUSS and PPU registers
PERI Clock Distribution

- **PERI Clock Divider**
 - Four types of dividers
 - 8-bit divider
 - 16-bit divider
 - 16.5-bit divider
 - 24.5-bit divider
 - Fractional clock dividers supported
 - Output of dividers can be routed to any peripheral
 - Phase aligning
 - Can be phase-aligned with any of the other (enabled) clock dividers.

1 Not all dividers are supported

Hint Bar

Clock dividers can be configured through the following registers:
- DIV_8_CTL
- DIV_16_CTL
- DIV_16_5_CTL
- DIV_24_5_CTL

Clock Enable multiplexers can be configured through CLOCK_CTL registers, which are assigned for each peripheral.

Review Section 18.7 in the TRM for additional details on clock numbers, which are assigned for each peripheral.
Clock Supervision (CSV)

- Clock supervision (CSV) allows one clock to be monitored with another clock (reference clock)
- Monitored clock sources:
 - CLK_HF0
 - CLK_HF1
 - CLK_REF_HF
 - ILO0
 - CLK_LF
- CSV power domains:
 - Active domain CSV
 - DeepSleep domain CSV
Clock Supervision Features

- Checks that the frequency of the monitored clock is within the allowed frequency window
 - Uses a reference clock to supervise the behavior of the monitor clock

<table>
<thead>
<tr>
<th>CSV Components</th>
<th>Monitor Clock</th>
<th>Reference Clock</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV_HF0/1</td>
<td>CLK_HF0/1</td>
<td>clk_ref_hf</td>
<td>clk_ref_hf is typically selected the IMO (default)</td>
</tr>
<tr>
<td>CSV_REF</td>
<td>clk_ref_hf</td>
<td>ILO0</td>
<td>–</td>
</tr>
<tr>
<td>CSV_ILO</td>
<td>ILO0</td>
<td>CLK_LF</td>
<td>CLK_LF is selected WCO or ILO1</td>
</tr>
<tr>
<td>CSV_LF</td>
<td>CLK_LF</td>
<td>ILO0</td>
<td>–</td>
</tr>
</tbody>
</table>

- Active domain CSV: CSV_HF0/1, CSV_REF
 - Automatically stops during DeepSleep, and restarts by wakeup
 - Wait function of monitoring start for startup time\(^1\)
 - Possible to generate a Reset or a Fault report
- DeepSleep domain CSV: CSV_ILO, CSV_LF
 - Operates during Active and DeepSleep
 - Generates Wakeup and Fault reports
- All CSVs are initially OFF

\(^1\) Need to prevent a false error detection at startup
CSV Operation

- The monitored clock generates a Monitor event (Period), and the reference clock generates a lower and upper limit
- The Monitor event is compared against a lower limit/upper limit
- An error is reported, if the Monitor event ≤ lower limit, or the Monitor event > upper limit

Advantages
- Detects whether the clock stops, runs too fast or runs too slow, and if the period is not within the frequency window
- Monitors clock in each power mode such as Active, Sleep, and DeepSleep with Active domain CSV and DeepSleep domain CSV
- Can achieve ASIL-B

Hint Bar
The monitor clock and the reference clock are asynchronous (typical). Therefore, the frequency window needs to account for maximum clock tolerance.
Clock Calibration Counter

Clock Calibration Counter Operation
- Two counters: Counter1 and Counter2
 - Counter1 is clocked by clock1: reference clock
 - Counter2 is clocked by clock2: measurement clock.
- Counter1 sets the measurement period by the count number of clock1
- Counter2 indicates the count number of clock2 during the measurement period
- Clock2 frequency can be calculated from the following formula using two count numbers:

\[
\text{clock2frequency} = \frac{\text{Counter2value}}{\text{Counter1value}} \times \text{clock1frequency}
\]
- All clock sources are available as a source for these two clocks.

Use case
- Measure a lower-accuracy clock, such as the ILO, using a higher-accuracy clock such as the ECO

Hint Bar
Review Section 18.8 in the TRM for additional details
Count Clock1, 2 can be selected through registers:
CLK_OUTPUT_FAST
Appendix
Comparison Between CYT2BL, CYT4BF, and CYT4DN (1/4)

<table>
<thead>
<tr>
<th>Features</th>
<th>CYT2BL</th>
<th>CYT4BF</th>
<th>CYT4DN</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO</td>
<td>Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECO</td>
<td>Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILO 0</td>
<td>Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILO 1</td>
<td>Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCO</td>
<td>Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPECO</td>
<td>Not implemented</td>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of FLL</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Range</td>
<td>0.25 to 80 MHz</td>
<td>0.25 to 100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Range</td>
<td>24 to 100 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of PLL</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Input Range</td>
<td>3.988 to 33.34 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Range</td>
<td>11 to 160 MHz</td>
<td>11 to 200 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of PLL</td>
<td>Not implemented</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Input Range</td>
<td>Not implemented</td>
<td></td>
<td>3.988 to 33.34 MHz</td>
<td></td>
</tr>
<tr>
<td>Output Range</td>
<td>Not implemented</td>
<td>25 to 350 MHz (*)</td>
<td>25 to 400 MHz</td>
<td>(*) Spreading off</td>
</tr>
<tr>
<td>SSCG</td>
<td>Not implemented</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractional Operation</td>
<td>Not implemented</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Comparison Between CYT2BL, CYT4BF, and CYT4DN (2/4)

<table>
<thead>
<tr>
<th>Features</th>
<th>CYT2BL</th>
<th>CYT4BF</th>
<th>CYT4DN</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK Trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Clock</td>
<td>CLK_PATH 0</td>
<td>FLL</td>
<td>PLL</td>
<td>PLL400</td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 1</td>
<td>PLL</td>
<td>PLL400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 2</td>
<td>ECO,IMO,EXT_CLK,WCO, ILO0/1</td>
<td>PLL400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 3</td>
<td>ECO,IMO,EXT_CLK,WCO, ILO0/1</td>
<td>PLL</td>
<td>PLL400</td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 4</td>
<td>Not implemented</td>
<td>PLL</td>
<td>PLL400</td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 5</td>
<td>Not implemented</td>
<td>ECO,IMO,EXT_CLK,WCO, ILO0/1</td>
<td>PLL400</td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 6</td>
<td>Not implemented</td>
<td>PLL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 7</td>
<td>Not implemented</td>
<td>PLL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 8</td>
<td>Not implemented</td>
<td>PLL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLK_PATH 9</td>
<td>Not implemented</td>
<td>ECO,IMO,EXT_CLK,WCO, ILO0/1, LPECO</td>
<td></td>
</tr>
<tr>
<td>CLK_REF_HF</td>
<td>CLK_HF0, IMO</td>
<td>ECO,IMO,EXT_CLK</td>
<td>ECO,IMO,EXT_CLK, LPECO</td>
<td></td>
</tr>
<tr>
<td>CLK_TIMER</td>
<td></td>
<td>IMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLK_LF</td>
<td>ILO0/1, WCO, ECO</td>
<td>IMLO0/1, WCO, ECO, LPECO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLK_BAK</td>
<td>CLK_LF, ILO0, WCO</td>
<td>IMLO0, WCO, ECO, LPECO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison Between CYT2BL, CYT4BF, and CYT4DN (3/4)

<table>
<thead>
<tr>
<th>Features</th>
<th>CYT2BL</th>
<th>CYT4BF</th>
<th>CYT4DN</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK Distribution</td>
<td>CLK_HF0 CPUSS clocks, PERI, and AHB infrastructure</td>
<td>CPUSS (Memories, CLK_SLOW, Peripherals)</td>
<td>CPUSS (Memories, CLK_SLOW, Peripherals)</td>
<td></td>
</tr>
<tr>
<td>CLK_HF1</td>
<td>Event Generator</td>
<td>CPUSS (Cortex-M7 CPU 0, 1)</td>
<td>CPUSS (Cortex-M7 CPU 0, 1)</td>
<td></td>
</tr>
<tr>
<td>CLK_HF2</td>
<td>Not connect</td>
<td>CAN FD, FlexRay, LIN, TCPWM, SCB, SAR</td>
<td>CAN FD, CXPI, LIN, SCB, SAR</td>
<td></td>
</tr>
<tr>
<td>CLK_HF3</td>
<td>Not implemented</td>
<td>Event Generator</td>
<td>Event Generator</td>
<td></td>
</tr>
<tr>
<td>CLK_HF4</td>
<td>Not implemented</td>
<td>Ethernet</td>
<td>Ethernet</td>
<td></td>
</tr>
<tr>
<td>CLK_HF5</td>
<td>Not implemented</td>
<td>Audio subsystem</td>
<td>Sound Subsystem #0</td>
<td></td>
</tr>
<tr>
<td>CLK_HF6</td>
<td>Not implemented</td>
<td>SDHC Interface, SMIF</td>
<td>Sound Subsystem #1</td>
<td></td>
</tr>
<tr>
<td>CLK_HF7</td>
<td>Not implemented</td>
<td>Not connect</td>
<td>Sound Subsystem #2</td>
<td></td>
</tr>
<tr>
<td>CLK_HF8</td>
<td>Not implemented</td>
<td>Not implemented</td>
<td>SMIF #0</td>
<td></td>
</tr>
<tr>
<td>CLK_HF9</td>
<td>Not implemented</td>
<td>Not implemented</td>
<td>SMIF #1</td>
<td></td>
</tr>
<tr>
<td>CLK_HF10</td>
<td>Not implemented</td>
<td>Not implemented</td>
<td>Video Subsystem</td>
<td></td>
</tr>
<tr>
<td>CLK_HF11</td>
<td>Not implemented</td>
<td>Not implemented</td>
<td>Video Subsystem</td>
<td></td>
</tr>
<tr>
<td>CLK_HF12</td>
<td>Not implemented</td>
<td>Not implemented</td>
<td>Video Display #1</td>
<td></td>
</tr>
<tr>
<td>CLK_HF13</td>
<td>Not implemented</td>
<td>Not implemented</td>
<td>Not connect</td>
<td></td>
</tr>
</tbody>
</table>
Comparison Between CYT2BL, CYT4BF, and CYT4DN (4/4)

<table>
<thead>
<tr>
<th>Features</th>
<th>CYT2BL</th>
<th>CYT4BF</th>
<th>CYT4DN</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Divider</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Dividers</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractional Clock Divider</td>
<td>24.5-bit dividers</td>
<td>16.5-bit dividers, 24.5-bit dividers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Aligning</td>
<td></td>
<td></td>
<td></td>
<td>Supported</td>
</tr>
<tr>
<td>Clock Supervision</td>
<td></td>
<td></td>
<td></td>
<td>Supported</td>
</tr>
<tr>
<td>Calibration Counter</td>
<td></td>
<td></td>
<td></td>
<td>Supported</td>
</tr>
</tbody>
</table>
Part of your life. Part of tomorrow.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>6157641</td>
<td>04/29/2018</td>
<td>Initial release</td>
</tr>
<tr>
<td>*A</td>
<td>6364397</td>
<td>10/25/2018</td>
<td>Added slide 2 and the note descriptions of all pages. Updated slides 3-6, 9, 11, 14, 19. Added Clock Calibration Counter slide Updated the figures</td>
</tr>
<tr>
<td>*B</td>
<td>7060645</td>
<td>01/06/2021</td>
<td>Updated slide 2 - 4, 8, 10, 13, 16, 17, 18, 25-28 Deleted slide 4 Added slide 11</td>
</tr>
</tbody>
</table>