Low Dropout Linear Voltage Regulator

TLS715B0

TLS715B0V50

Linear Voltage Regulator

Data Sheet
Rev. 1.0, 2015-04-02

Automotive Power
Table of Contents

1. **Overview** ... 3
2. **Block Diagram** 4
3. **Pin Configuration** 5
 3.1 Pin Assignment PG-DSO-8 EP 5
 3.2 Pin Definitions and Functions PG-DSO-8 EP 5
4. **General Product Characteristics** 6
 4.1 Absolute Maximum Ratings 6
 4.2 Functional Range 7
 4.3 Thermal Resistance 8
5. **Block Description and Electrical Characteristics** 9
 5.1 Voltage Regulation 9
 5.2 Typical Performance Characteristics Voltage Regulator 11
 5.3 Current Consumption 13
 5.4 Typical Performance Characteristics Current Consumption 14
 5.5 Enable .. 15
 5.6 Typical Performance Characteristics Enable 16
6. **Application Information** 17
 6.1 Application Diagram 17
 6.2 Selection of External Components 17
 6.2.1 Input Pin ... 17
 6.2.2 Output Pin ... 17
 6.3 Thermal Considerations 18
 6.4 Reverse Polarity Protection 19
 6.5 Further Application Information 19
7. **Package Outlines** 20
8. **Revision History** 21
1 Overview

Features
- Wide Input Voltage Range from 4.0 V to 40 V
- Output Voltage 5 V
- Output Voltage Precision ±2 %
- Output Current up to 150 mA
- Low Current Consumption of 36 µA
- Very Low Dropout Voltage of typ. 200 mV at 100 mA Output Current
- Stable with Small Output Capacitor of 1 µF
- Enable
- Overtemperature Shutdown
- Output Current Limitation
- Wide Temperature Range from -40 °C up to 150 °C
- Green Product (RoHS compliant)
- AEC Qualified

Description
The TLS715B0 is a low dropout linear voltage regulator for load current up to 150 mA. An input voltage of up to 40 V is regulated to $V_{Q,\text{nom}} = 5$ V with ±2 % precision.

The TLS715B0, with a typical quiescent current of 36 µA, is the ideal solution for systems requiring very low operating current, such as those permanently connected to the battery.

It features a very low dropout voltage of 200 mV, when the output current is less than 100 mA. In addition, the dropout region begins at input voltages of 4.0 V (extended operating range). This makes the TLS715B0 suitable to supply automotive systems with start-stop requirements.

The device can be switched on and off by the Enable feature as described on Chapter “Enable” on Page 15.

In addition, the TLS715B0’s new fast regulation concept requires only a single 1 µF output capacitor to maintain stable regulation.

The device is designed for the harsh environment of automotive applications. Therefore standard features like output current limitation and overtemperature shutdown are implemented and protect the device against failures like output short circuit to GND, over-current and over-temperature. The TLS715B0 can be also used in all other applications requiring a stabilized 5 V supply voltage.
2 Block Diagram

Figure 1 Block Diagram TLS715B0EJV50
3 Pin Configuration

3.1 Pin Assignment PG-DSO-8 EP

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For compensating line influences, a capacitor to GND close to the IC terminals is recommended.</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>Enable (integrated pull-down resistor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable the IC with high level input signal. Disable the IC with low level input signal.</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4, 5, 6, 7</td>
<td>n.c.</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leave open or connect to GND.</td>
</tr>
<tr>
<td>8</td>
<td>Q</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Block to GND with a capacitor close to the IC terminals, respecting the values given for its capacitance C_Q and ESR in the table “Functional Range” on Page 7.</td>
</tr>
</tbody>
</table>

Pad – Exposed Pad

Connect to heatsink area.

Connect with GND on PCB.
4 General Product Characteristics

4.1 Absolute Maximum Ratings

Table 1 Absolute Maximum Ratings\(^1\)

\(T_J = -40 °C\) to +150 °C; all voltages with respect to ground (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input I, Enable EN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_{I, EN})</td>
<td>-0.3 – 45 V</td>
<td></td>
<td>-</td>
<td>P_4.1.1</td>
</tr>
<tr>
<td>Output Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_Q)</td>
<td>-0.3 – 7 V</td>
<td></td>
<td>-</td>
<td>P_4.1.2</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>(T_J)</td>
<td>-40 – 150 °C</td>
<td></td>
<td>-</td>
<td>P_4.1.3</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-55 – 150 °C</td>
<td></td>
<td>-</td>
<td>P_4.1.4</td>
</tr>
<tr>
<td>ESD Absorption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Susceptibility to GND</td>
<td>(V_{ESD})</td>
<td>-2 – 2 kV</td>
<td></td>
<td>HBM(^2)</td>
<td>P_4.1.5</td>
</tr>
<tr>
<td>ESD Susceptibility to GND</td>
<td>(V_{ESD})</td>
<td>-750 – 750 V</td>
<td></td>
<td>CDM(^3)</td>
<td>P_4.1.6</td>
</tr>
</tbody>
</table>

\(^1\) Not subject to production test, specified by design.
\(^2\) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF)
\(^3\) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
4.2 Functional Range

Table 2 Functional Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range for Normal Operation</td>
<td>V_i</td>
<td>$V_{Q,nom} + V_{dr}$</td>
<td>-</td>
<td>40 V</td>
<td>-</td>
</tr>
<tr>
<td>Extended Input Voltage Range</td>
<td>$V_{I,ext}$</td>
<td>-</td>
<td>40 V</td>
<td>-</td>
<td>1)</td>
</tr>
<tr>
<td>Enable Voltage Range</td>
<td>V_{EN}</td>
<td>-</td>
<td>40 V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Output Capacitor's Requirements for Stability</td>
<td>C_Q</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>µF</td>
</tr>
<tr>
<td>Output Capacitor's ESR</td>
<td>$ESR(C_Q)$</td>
<td>-</td>
<td>5 Ω</td>
<td>-</td>
<td>3)</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_j</td>
<td>-40</td>
<td>-</td>
<td>150 °C</td>
<td>-</td>
</tr>
</tbody>
</table>

1) When V_i is between $V_{I,ext,min}$ and $V_{Q,nom} + V_{dr}$, $V_Q = V_i - V_{dr}$. When V_i is below $V_{I,ext,min}$, V_Q can drop down to 0 V.
2) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%
3) Relevant ESR value at $f = 10$ kHz

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.
4.3 Thermal Resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Table 3 Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Junction to Case 1)</td>
<td>R_{thJC}</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>P_4.3.1</td>
</tr>
<tr>
<td>Junction to Ambient</td>
<td>R_{thJA}</td>
<td>–</td>
<td>46</td>
<td>–</td>
<td>P_4.3.2</td>
</tr>
<tr>
<td>Junction to Ambient</td>
<td>R_{thJA}</td>
<td>–</td>
<td>153</td>
<td>–</td>
<td>P_4.3.3</td>
</tr>
<tr>
<td>Junction to Ambient</td>
<td>R_{thJA}</td>
<td>–</td>
<td>71</td>
<td>–</td>
<td>P_4.3.4</td>
</tr>
<tr>
<td>Junction to Ambient</td>
<td>R_{thJA}</td>
<td>–</td>
<td>59</td>
<td>–</td>
<td>P_4.3.5</td>
</tr>
</tbody>
</table>

1) Not subject to production test, specified by design
2) Specified R_{thJA} value is according to Jedes JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
3) Specified R_{thJA} value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).
5 Block Description and Electrical Characteristics

5.1 Voltage Regulation

The output voltage V_Q is divided by a resistor network. This fractional voltage is compared to an internal voltage reference and drives the pass transistor accordingly.

The control loop stability depends on the output capacitor C_Q, the load current, the chip temperature and the internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in Table 2 “Functional Range” on Page 7 must be maintained. For details see the typical performance graph “Output Capacitor Series Resistor ESR(C_Q) versus Output Current I_Q” on Page 12. Since the output capacitor is used to buffer load steps, it should be sized according to the application’s needs.

An input capacitor C_I is not required for stability, but is recommended to compensate line fluctuations. An additional reverse polarity protection diode and a combination of several capacitors for filtering should be used, in case the input is connected directly to the battery line. Connect the capacitors close to the regulator terminals.

Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is limited and the output voltage decreases.

The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled, the regulator restarts. This oscillatory thermal behaviour causes the junction temperature to exceed the maximum rating of 150°C and can significantly reduce the IC’s lifetime.

![Block Diagram Voltage Regulation](image-url)

Figure 3 Block Diagram Voltage Regulation
Table 4 Electrical Characteristics Voltage Regulator

\(V_i = 13.5\ \text{V};\ T_j = -40\ °\text{C}\) to +150 °C; all voltages with respect to ground (unless otherwise specified). Typical values are given at \(T_j = 25\ °\text{C}, V_i = 13.5\ \text{V}\).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage Precision</td>
<td>(V_Q)</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05 mA < (I_Q) < 150 mA 6 V < (V_i) < 28 V</td>
<td>P_5.1.1</td>
</tr>
<tr>
<td>Output Voltage Precision</td>
<td>(V_Q)</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05 mA < (I_Q) < 100 mA 6 V < (V_i) < 40 V</td>
<td>P_5.1.2</td>
</tr>
<tr>
<td>Output Current Limitation</td>
<td>(I_{Q,max})</td>
<td>151</td>
<td>250</td>
<td>350 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 V < (V_Q) < 4.8 V 4 V < (V_i) < 28 V</td>
<td>P_5.1.5</td>
</tr>
<tr>
<td>Load Regulation steady-state</td>
<td>(</td>
<td>\Delta V_{Q,\text{load}}</td>
<td>)</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(I_Q = 0.05\ \text{mA to 100 mA}) (V_i = 6\ \text{V})</td>
<td>P_5.1.9</td>
</tr>
<tr>
<td>Line Regulation steady-state</td>
<td>(</td>
<td>\Delta V_{Q,\text{line}}</td>
<td>)</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_i = 8\ \text{V to 32 V}) (I_Q = 5\ \text{mA})</td>
<td>P_5.1.10</td>
</tr>
<tr>
<td>Dropout Voltage(^1) \n (V_{dr} = V_i - V_Q)</td>
<td>(V_{dr})</td>
<td>–</td>
<td>200</td>
<td>500 mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(I_Q = 100\ \text{mA})</td>
<td>P_5.1.11</td>
</tr>
<tr>
<td>Power Supply Ripple Rejection(^2)</td>
<td>(PSRR)</td>
<td>–</td>
<td>60</td>
<td>– dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(f_{\text{ripple}} = 100\ \text{Hz}) (V_{\text{ripple}} = 0.5\ \text{Vpp})</td>
<td>P_5.1.12</td>
</tr>
<tr>
<td>Overtemperature Shutdown Threshold (T_{j,\text{sd}})</td>
<td>(T_{j,\text{sd}})</td>
<td>151</td>
<td>–</td>
<td>200 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T_j) increasing(^2)</td>
<td>P_5.1.13</td>
</tr>
<tr>
<td>Overtemperature Shutdown Threshold Hysteresis (T_{j,\text{sdh}})</td>
<td>(T_{j,\text{sdh}})</td>
<td>–</td>
<td>15</td>
<td>– K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T_j) decreasing(^2)</td>
<td>P_5.1.14</td>
</tr>
</tbody>
</table>

\(^1\) Measured when the output voltage \(V_Q\) has dropped 100 mV from the nominal value obtained at \(V_i = 13.5\ \text{V}\)
\(^2\) Not subject to production test, specified by design
5.2 Typical Performance Characteristics Voltage Regulator

Typical Performance Characteristics

Output Voltage \(V_Q \) versus Junction Temperature \(T_j \)

Output Current \(I_Q \) versus Input Voltage \(V_I \)

Dropout Voltage \(V_{dr} \) versus Junction Temperature \(T_j \)

Dropout Voltage \(V_{dr} \) versus Output Current \(I_Q \)
Block Description and Electrical Characteristics

Output Voltage V_Q versus Input Voltage V_I

Power Supply Ripple Rejection $PSRR$ versus Ripple Frequency f_r

Output Capacitor Series Resistor $ESR(C_Q)$ versus Output Current I_Q
5.3 Current Consumption

Table 5 Electrical Characteristics Current Consumption

$V_i = 13.5 \text{ V}; \ T_j = -40 \degree \text{C} \text{ to } +150 \degree \text{C} \ (\text{unless otherwise specified}).$

Typical values are given at $T_j = 25 \degree \text{C}, \ V_i = 13.5 \text{ V}.$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
</table>
| Current Consumption $I_q = I_i$ | $I_{q,\text{off}}$ | $-$ | 1.5 | μA | $V_{\text{EN}} \leq 0.4 \text{ V}$
$T_j < 105 \degree \text{C}$ | P_5.3.1 |
| Current Consumption $I_q = I_i - I_Q$ | I_q | $-$ | 36 | μA | $0.05 \text{ mA} < I_q < 100 \text{ mA}$ | P_5.3.2 |
5.4 Typical Performance Characteristics Current Consumption

Typical Performance Characteristics

Current Consumption I_q versus Output Current I_Q

Current Consumption I_q versus Input Voltage V_i

Current Consumption I_q versus Junction Temperature T_j

Current Consumption in OFF mode $I_{q,off}$ versus Junction Temperature T_j
5.5 Enable

The TLS715B0 can be switched on and off by the Enable feature. Connect a HIGH level as specified below (e.g. the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to switch it off. The Enable function has a build-in hysteresis to avoid toggling between ON/OFF state, if signals with slow slopes are applied to the input.

Table 6 Electrical Characteristics Enable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Voltage High Level</td>
<td>$V_{EN,H}$</td>
<td>2</td>
<td>-</td>
<td>V</td>
<td>V_Q settled</td>
</tr>
<tr>
<td>Enable Voltage Low Level</td>
<td>$V_{EN,L}$</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
<td>$V_Q \leq 0.1$ V</td>
</tr>
<tr>
<td>Enable Threshold Hysteresis</td>
<td>$V_{EN,Hy}$</td>
<td>75</td>
<td>-</td>
<td>mV</td>
<td>-</td>
</tr>
<tr>
<td>Enable Input Current Low Level</td>
<td>$I_{EN,H}$</td>
<td>-</td>
<td>5.5</td>
<td>μA</td>
<td>$V_{EN} = 5$ V</td>
</tr>
<tr>
<td>Enable Input Current High Level</td>
<td>$I_{EN,H}$</td>
<td>-</td>
<td>22</td>
<td>μA</td>
<td>$V_{EN} < 18$ V</td>
</tr>
<tr>
<td>Enable internal pull-down resistor</td>
<td>R_{EN}</td>
<td>0.9</td>
<td>1.5</td>
<td>MΩ</td>
<td>-</td>
</tr>
</tbody>
</table>

$V_i = 13.5 \, V; \, T_j = -40 \, ^\circ C \, \text{to} \, +150 \, ^\circ C; \, \text{all voltages with respect to ground (unless otherwise specified).}$

Typical values are given at $T_j = 25 \, ^\circ C, \, V_i = 13.5 \, V$.

5.6 Typical Performance Characteristics Enable

Typical Performance Characteristics

Enabled Input Current I_{EN} versus
Enabled Input Voltage V_{EN}

![Graph showing I_{EN} versus V_{EN} for different temperatures.](image-url)
6 Application Information

6.1 Application Diagram

Figure 4 Application Diagram

6.2 Selection of External Components

6.2.1 Input Pin

The typical input circuitry for a linear voltage regulator is shown in the application diagram above.

A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to the input pin of the linear voltage regulator on the PCB.

An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to smooth out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of the linear voltage regulator on the PCB.

An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating of the linear voltage regulator and protect the device against any damage due to over-voltage above 45 V.

The external components at the input are not mandatory for the operation of the voltage regulator, but they are recommended in order to protect the voltage regulator against external disturbances and damages.

6.2.2 Output Pin

An output capacitor is mandatory for the stability of linear voltage regulators.

The requirement to the output capacitor is given in “Functional Range” on Page 7. The graph “Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 12 shows the stable operation range of the device.

TLS715B0 is designed to be stable with extremely low ESR capacitors. According to the automotive requirements, ceramic capacitors with X5R or X7R dielectrics are recommended.
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the same side of the PCB as the regulator itself. In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in accordance and verified in the real application that the output stability requirements are fulfilled.

6.3 Thermal Considerations

Knowing the input voltage, the output voltage and the load profile of the application, the total power dissipation can be calculated:

\[P_D = (V_I - V_Q) \times I_Q + V_I \times I_q \] \hspace{1cm} (6.1)

with

- \(P_D \): continuous power dissipation
- \(V_I \): input voltage
- \(V_Q \): output voltage
- \(I_Q \): output current
- \(I_q \): quiescent current

The maximum acceptable thermal resistance \(R_{thJA} \) can then be calculated:

\[R_{thJA,\text{max}} = \frac{(T_{j,\text{max}} - T_a)}{P_D} \] \hspace{1cm} (6.2)

with

- \(T_{j,\text{max}} \): maximum allowed junction temperature
- \(T_a \): ambient temperature

Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with reference to the specification in “Thermal Resistance” on Page 8.

Example

Application conditions:

\(V_I = 13.5 \text{ V} \)
\(V_Q = 5 \text{ V} \)
\(I_Q = 100 \text{ mA} \)
\(T_a = 85 \degree \text{C} \)

Calculation of \(R_{thJA,\text{max}} \):

\(P_D = (V_I - V_Q) \times I_Q + V_I \times I_q \) \hspace{1cm} (\text{\(V_I \times I_q \) can be neglected because of very low \(I_q \)})
\[= (13.5 \text{ V} - 5 \text{ V}) \times 100 \text{ mA} \]
\[= 0.85 \text{ W} \]
\[R_{thJA,\text{max}} = \frac{(T_{j,\text{max}} - T_a)}{P_D} \]
\[= \frac{150 \degree \text{C} - 85 \degree \text{C}}{0.85 \text{ W}} = 76.47 \text{ K/W} \]
As a result, the PCB design must ensure a thermal resistance R_{thJA} lower than 76.47 K/W. According to “Thermal Resistance” on Page 8, at least 300 mm² heatsink area is needed on the FR4 1s0p PCB, or the FR4 2s2p board can be used.

6.4 Reverse Polarity Protection

TLS715B0 is not self protected against reverse polarity faults and must be protected by external components against negative supply voltage. An external reverse polarity diode is needed. The absolute maximum ratings of the device as specified in “Absolute Maximum Ratings” on Page 6 must be kept.

6.5 Further Application Information

- For further information you may contact http://www.infineon.com/
7 Package Outlines

Figure 5 PG-DSO-8 EP

Index Marking

1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width
3) JEDEC reference MS-012 variation BA
8 Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2015-04-02</td>
<td>Data Sheet - Initial Version</td>
</tr>
</tbody>
</table>

