

2.5 A half bridge with integrated driver and level shifter

Features

- AEC-Q100 Grade 0 for high temperature mission profiles
- Integrated PMOS and NMOS complementary output bridge with 2.5 A current capability
- Integrated gate drivers
- Single control input with an integrated dead time logic for optimized control and high efficiency
- · Output current sensing
- Output current limitation
- Overtemperature protection
- Low quiescent current
- No external dead time adjustment required
- Infineon automotive quality
- Green Product (RoHS compliant)

Potential applications

Companion for the OPTIREG™ PMIC TLF3558xxxx for core voltage regulation of AURIX™ TC3xx microcontroller in:

- Car powertrain and transmission applications
- Electric power steering
- Battery management
- Inverter applications
- · Engine management
- Domain control

Product validation

Qualified for automotive applications with higher temperature requirements. Product validation according to AEC-Q100, Grade 0.

Description

The OPTIREG™ PMIC TLF11251EP is a 2.5 A half bridge with integrated driver and level shifter. It also contains a high side P-channel MOSFET and a low side N-channel MOSFET in a single package. The integrated level shifting stage allows for conversion of the input logic signals to the supply voltage level of the gate drivers. The input signal levels are CMOS compatible. The level shifter and the gate driver provide a dead time generation to simplify the interface with the embedded core voltage regulator of the AURIX™ TC3xx microcontroller. The low propagation delay allows for use in closed loop control applications with limited requirements for timing. The

2.5 A half bridge with integrated driver and level shifter

Description

output stage allows for a high switching frequency. The TLF11251EP integrates protection features against overcurrent at the high side MOSFET and at the low side MOSFET as well as against overtemperature events. Internal power-on reset releases the digital logic and ensures its operation for the supply voltage within the specified range.

Туре	Package	Marking
TLF11251EP	PG-TSDSO-14	TLF11251

2.5 A half bridge with integrated driver and level shifter

Table of contents

Table of contents

	Features	1
	Potential applications	1
	Product validation	1
	Description	1
	Table of contents	3
1	Block diagram	5
2	Pin configuration	6
2.1	Pin assignment	
2.2	Pin definitions and functions	7
3	General product characteristics	8
3.1	Absolute maximum ratings	8
3.2	Functional range	9
3.3	Thermal resistance	10
4	Block description and electrical characteristics	11
4.1	Logical inputs	11
4.2	Control parameters	13
4.2.1	Functional description control parameters	13
4.2.2	Electrical characteristics control parameters	14
4.3	Output stage	15
4.3.1	Functional description output stage	15
4.3.2	Electrical characteristics output stage	15
4.3.3	Typical performance characteristics output stage	16
4.4	Protection functions	17
4.4.1	Undervoltage shutdown	17
4.4.1.1	Functional description undervoltage shutdown	17
4.4.1.2	Electrical characteristics undervoltage shutdown	17
4.4.2	Overcurrent protection	18
4.4.2.1	Functional description overcurrent protection	18
4.4.2.2	Electrical characteristics overcurrent protection	19
4.4.3	Overtemperature protection	20
4.4.3.1	Functional description overtemperature protection	20
4.4.3.2	Electrical characteristics overtemperature protection	20
5	Application information	21
5.1	Application diagram	21
6	Package information	23
	Revision history	24

2.5 A half bridge with integrated driver and level shifter

Table of contents

Disclaimer

1 Block diagram

1 Block diagram

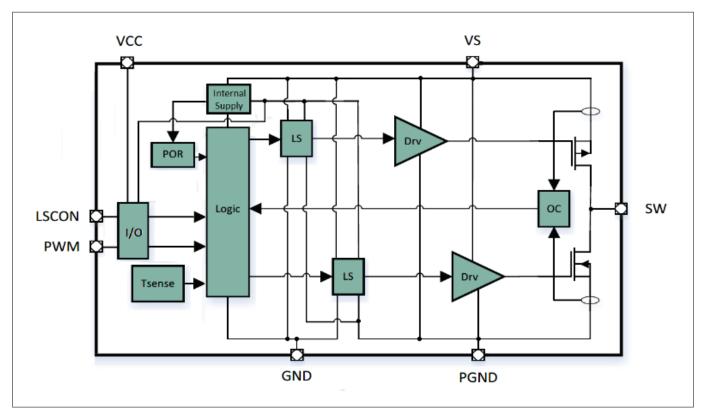
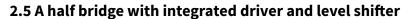



Figure 1 Block diagram

2 Pin configuration

2 Pin configuration

2.1 Pin assignment

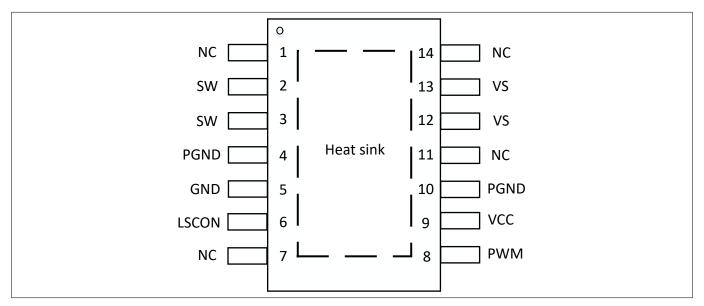


Figure 2 Pin configuration

2.5 A half bridge with integrated driver and level shifter

2 Pin configuration

2.2 Pin definitions and functions

Pin	Symbol	Function
1	NC	Not connected.
		This pin is not connected internally; leave it open.
2,3	SW	Switch node:
		Half bridge drains; typically connected to the input of the LC filter in buck circuits
4, 10	PGND	Power ground:
		Half bridge low side source
5	GND	Ground:
		Logical ground
6	LSCON	Bridge control scheme:
		Defines the low side state during PWM input "high".
		Switch to "high" enables synchronous control of high side and low side, based on PWM input state.
		Switch to "low" disables low side control.
7	NC	Not connected:
		This pin is not connected internally; leave it open.
8	PWM	Control input:
		Input for the logical signal that controls the state of the half bridge transistors. Switch to "high" opens the high side switch and closes the low side switch. Switch to "low" closes the high side switch and opens the low side switch.
9	VCC	Supply voltage input:
		Supply voltage for the PWM and LSCON inputs; typically the same as the supply of microcontroller output pins.
11	NC	Not connected:
		This pin is not connected internally; leave it open.
12, 13	VS	Supply voltage input:
		Supply to gate drivers, connected to half bridge high side source
14	NC	Not connected:
		This pin is not connected internally; leave it open
_	Heat sink	Connect to heat sink area.
		Connect to GND and PGND.

2.5 A half bridge with integrated driver and level shifter

3 General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 1 Absolute maximum ratings¹⁾

 T_j = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note or condition	Number	
		Min.	Тур.	Max.				
Voltages	-							
Supply voltage VS	V _S	-0.3	_	7.0	V	-	P_3.1.1	
Supply voltage VCC	V _{cc}	-0.3	_	7.0	V	-	P_3.1.2	
Switch node SW	$V_{\sf SW}$	-0.3	_	7.0	V	_	P_3.1.3	
Input PWM	V_{PWM}	-0.3	_	7.0	V	-	P_3.1.4	
Input LSCON	V _{LSCON}	-0.3	_	7.0	V	-	P_3.1.5	
Currents								
Continuous drain current high side	I _{DHS}	-2.5	_	_	А	PWM = off	P_3.1.6	
Continuous drain current low side	I _{DLS}	_	-	2.5	А	PWM = on	P_3.1.7	
Pulsed drain current high side	I _{DHS}	-4.4	_	_	А	Valid during active overcurrent protection	P_3.1.8	
Pulsed drain current low side	I _{DLS}	_	_	4.4	А	Valid during active overcurrent protection	P_3.1.9	
Temperatures								
Junction temperature	Tj	-40	_	150	°C	-	P_3.1.10	
Storage temperature	$T_{\rm stg}$	-55	_	150	°C	-	P_3.1.11	
ESD susceptibility								
ESD susceptibility all pins	V _{ESD}	-2	_	2	kV	²⁾ HBM	P_3.1.12	
ESD susceptibility all pins	V _{ESD}	-500	_	500	V	³⁾ CDM	P_3.1.13	
ESD susceptibility (corner pins)	V _{ESD}	-750	_	750	V	³⁾ CDM	P_3.1.14	

¹⁾ Not subject to production test, specified by design.

Notes:

- **1.** Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as outside the normal operating range. Protection functions are not designed for continuous repetitive operation.

²⁾ Human body model (HBM) robustness according to ANSI/ESDA/JEDEC JS-001 (1.5 k Ω , 100 pF).

³⁾ Charged device model (CDM) robustness according to JEDEC JESD22-C101.

2.5 A half bridge with integrated driver and level shifter

3 General product characteristics

3.2 Functional range

Table 2 Functional range

Parameter	Symbol		Values		Unit	Note or condition	Number
		Min.	Тур.	Max.			
Supply voltage range VS	$V_{S,nom}$	3.5	_	7.0	V	_	P_3.2.1
Supply voltage range VCC	$V_{\rm CC,nom}$	2.35	_	7.0	V	_	P_3.2.2
Supply voltage VS transient slew rate	dV _S /dt	-120	-	120	V/ms	1)	P_3.2.3
Supply voltage VCC transient slew rate	dV _{CC} /dt	-120	-	120	V/ms	1)	P_3.2.4
Junction temperature	Tj	-40	_	175	°C	_	P_3.2.6
Supply current total, normal operation	I _{C,norm}	_	-	35	mA	PWM input @ 1.8 MHz	P_3.2.9
Supply current total, no switching	I _{C,ns}	-	200	_	μА	$V_{\rm S}$ < 5.8 V; $V_{\rm cc}$ < 5.1 V; $T_{\rm j}$ < 85°C	P_3.2.10

¹⁾ Not subject to production test, specified by design.

Note:

Within the functional range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

2.5 A half bridge with integrated driver and level shifter

3 General product characteristics

3.3 Thermal resistance

Table 3 Thermal resistance¹⁾

Parameter	Symbol		Values		Unit	Note or	Number
		Min.	Тур.	Max.		condition	
Junction to case top, high side	R _{thJCT(HS)}	30.9	-	34.1	K/W	-	P_3.3.6
Junction to case top, low side	R _{thJCT(LS)}	39.5	_	43.7	K/W	_	P_3.3.7
Junction to case bottom, high side	R _{thJCB(HS)}	9.6	-	10.6	K/W	_	P_3.3.8
Junction to case bottom, low side	R _{thJCB(LS)}	13.4	-	14.8	K/W	-	P_3.3.9
Junction to ambient	R_{thJA}	_	43.3	_	K/W	2)	P_3.3.10

¹⁾ Not subject to production test, specified by design.

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information refer to www.jedec.org.

Specified R_{thJA} value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the product (chip and package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with two inner copper layers (2 × 70 μ m Cu, 2 × 35 μ m Cu). Where applicable, a thermal via array next to the package contacted the first inner copper layer.

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

4 Block description and electrical characteristics

The device simplifies the interface of microcontroller control outputs to the half bridge.

4.1 Logical inputs

A single PWM input controls the state of the half bridge MOSFETs. The inverted logical scheme translates the PWM input state to the gate signal shifted to the output supply level, thus the device switches the high side MOSFET off during PWM logical on-state, and it switches them on during PWM logical off state. The built-in dead time control circuitry prevents a shoot-through condition over the MOSFET bridge and improves system efficiency while used in buck power conversion circuits. No external dead time adjustment is required.

In addition to the PWM input, the LSCON input determines the low side MOSFET control scheme and allows for both synchronous as well as asynchronous operation in buck converter applications. Logical off state at the LSCON input switches off the low side MOSFET independently of the PWM input signal, so that the device only controls the high side MOSFET.

A permanent logical on state at the LSCON input allows both high side and low side operation according to PWM input state with the internal dead time generation. If such operation is required, then the LSCON input can be pulled-up or connected directly to the VCC supply rail.

The device interprets a toggling input signal at LSCON as a control request for synchronous low side and high side MOSFET switching. In this case the device generates dead time internally in accordance with the PWM input timing. Frequency detection at LSCON inputs detect toggling input signals within the acceptable range referred to as $t_{\rm det}$.

Table 4 Switching states

LSCON	PWM	High side MOSFET	Low side MOSFET
On	¹⁾ On	Off	On
On	²⁾ Off	On	Off
Off	On	Off	Off
Off	Off	On	Off
Toggling between on and off ³⁾	On	Off	On
	Off	On	Off
Toggling between on and off	On	Off	On
stopped ⁴⁾ ($ < t_{fil} $)	Off	On	Off
Toggling between on and off stopped	On	Off	On
(> t _{fil}); LSCON: on			
Toggling between on and off stopped (> t_{fil}); LSCON: on	Off	On	Off
Toggling between on and off stopped (> t_{fil}); LSCON: off	On	Off	Off
Toggling between on and off stopped (> $t_{\rm fil}$); LSCON: off	Off	On	Off

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

- 1) On: "high"
- Off: "low" 2)
- Toggling between on and off: The device detects switching on and off at a frequency corresponding to the detection range t_{det} at 3) the LSCON input.
- 4) Toggling between on and off stopped: After the toggling between on and off, the device detects a permanent on or off state.

The switching states in Table 4 are only valid for device input supplies within the operational range and if no protection feature is active.

If the PWM pin is not connected, then the integrated weak pull-up ensures a defined level.

If an AURIX™ TC3xx microcontroller controls the device, then place an additional pull-down resistor at the LSCON input to keep the low side MOSFET switched off during power-down, see Application information.

4 Block description and electrical characteristics

4.2 Control parameters

4.2.1 Functional description control parameters

The device provides a high frequency switching capability with a low propagation delay. The input stage and the drivers can react to fast changing PWM signals and provide a t_{res} resolution to the on-time of the input signal with a pulse duration longer than t_{pulse} . The "low" state pulse duration is limited to $t_{pulse, min}$.

The total propagation time t_{prop} is the time from the "low" to "high" edge transition or from the "high" to "low" edge transition at the PWM input to the SW output level transitions to 10% or 90% of V_{S} supply level accordingly. The internal dead time generation provides optimal efficiency during switching phases and performs the state change of the switching node SW within the specified propagation delay.

The device is optimized for a switching frequency in a buck converter application from 0.3 MHz to 2 MHz.

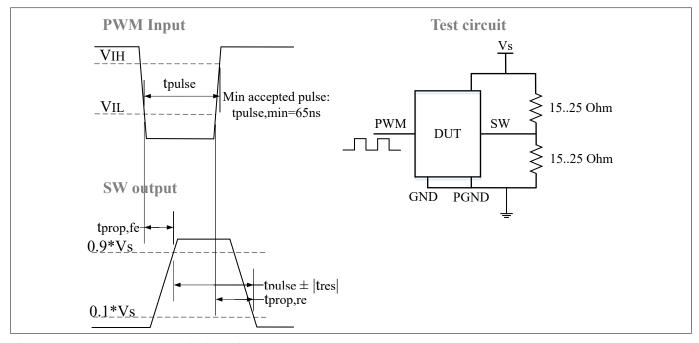


Figure 3 Control timing diagram

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

4.2.2 Electrical characteristics control parameters

Table 5 Electrical characteristics control parameters

 V_S = 3.5 V to 7 V; V_{CC} = 2.35 V to 7 V; T_j = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note or condition	Number	
		Min.	. Тур. Мах.					
Propagation time, PWM falling edge	t _{prop,fe}	-	-	60	ns	High side drain connected to resistive load; $V_{CC} > 3.0 \text{ V};$ $V_S > 4.5 \text{ V}$	P_4.2.1	
Propagation time, PWM rising edge	t _{prop,re}	-	-	60	ns	Low side drain connected to resistive load; $V_{CC} > 3.0 \text{ V};$ $V_S > 4.5 \text{ V}$	P_4.2.2	
Minimum pulse width input	t _{pulse,}	65	-	-	ns	1)	P_4.2.3	
Pulse resolution time	t_{res}	_	_	3	ns	1)	P_4.2.4	
Dead time "high" to "low"	t _{dead,hl}	_	15	_	ns	1)	P_4.2.5	
Dead time "low" to "high"	$t_{ m dead,lh}$	_	18	_	ns	1)	P_4.2.6	
LSCON frequency detector frequency range	f _{det,lscon}	0.72	-	-	MHz	_	P_4.2.7	
LSCON frequency detector filter time	t _{fil,lscon}	3	-	-	μs	1)	P_4.2.8	
Logic inputs								
Input voltage "high"	V _{IH}	0.67 × V _{cc}	_	_	V	CMOS function	P_4.2.9	
Input voltage "low"	V _{IL}	_	_	0.33 × V _{cc}	٧	CMOS function	P_4.2.10	
Input voltage hysteresis	V _{IHYS}	0.05	_	_	V	_	P_4.2.11	
Input capacitance	C _{IN}	_	10	_	pF	1)	P_4.2.12	

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

4.3 Output stage

4.3.1 Functional description output stage

The P-N-channel output half bridge of the device can operate at a switching frequency up to 2 MHz nominal range, providing very low power dissipation in synchronous buck converter topology. The P-channel MOSFET used as high side switch eliminates the need for a charge pump circuitry and improves the EMI performance. The output stage delivers a minimum output current of 2.5 A within the specified voltage and temperature range.

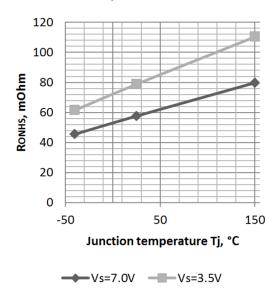
4.3.2 Electrical characteristics output stage

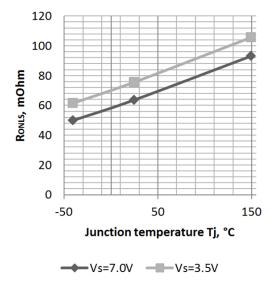
Table 6 Electrical characteristics output stage

 $V_S = 3.5 \text{ V}$ to 7 V; $V_{CC} = 2.35 \text{ V}$ to 7 V; $T_j = -40 ^{\circ}\text{C}$ to 150 °C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified).

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		condition	
On-state resistance high side	R _{ONHS}	-	-	100	mΩ	$T_{\rm j} \le 150^{\circ} C;$ $I_{\rm d} = -2 \text{ A};$ $V_{\rm s} = 5.8 \text{ V}$	P_4.3.1
		-	-	70	mΩ	$I_{\rm d} = -2 \text{ A};$ $I_{\rm d} = -2 \text{ A};$ $I_{\rm s} = 5.8 \text{ V}$	P_4.3.2
On-state resistance low side	R _{ONLS}	-	_	105	mΩ	$T_{\rm j} \le 150^{\circ} \text{C};$ $I_{\rm d} = 2 \text{ A};$ $V_{\rm s} = 5.8 \text{ V}$	P_4.3.3
		-	-	75	mΩ	1) $T_j \le 85$ °C; $I_d = 2 \text{ A};$ $V_s = 5.8 \text{ V}$	P_4.3.4
Body diode forward voltage high side	V _{DFHS}	_	0.67	0.95	V	I _{fw} = 2 A	P_4.3.5
Body diode forward voltage low side	V _{DFLS}	-	0.72	0.91	V	I _{fw} = 2 A	P_4.3.6

¹⁾ Not subject to production test, specified by design.


2.5 A half bridge with integrated driver and level shifter


4 Block description and electrical characteristics

4.3.3 Typical performance characteristics output stage

Maximum on-state resistance high side R_{ONHS} (PWM = "low") versus T_i = -40°C, 25°C, 150°C

Maximum on-state resistance low side R_{ONLS} (PWM = "high") versus T_i = -40°C, 25°C, 150°C

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

4.4 Protection functions

The following integrated protection functions prevent the device and the output circuitry from destruction as well as from operation under unspecified conditions:

- High side and low side overcurrent detection and limitation
- Undervoltage shutdown
- Overtemperature protection

The device reacts within the time specified for each protection feature. This is related to the state change of the half bridge MOSFETs independent from the PWM input signal. The device performs the input logic reset release at V_S voltage exceeding the minimum functional limit of 3.5 V, where protection functions are also operational. For the V_{CC} voltage below V_{CCUV} , the output half bridge MOSFETs remain in the off-state and the output switch node SW is floating.

4.4.1 Undervoltage shutdown

4.4.1.1 Functional description undervoltage shutdown

The device monitors the input supply $V_{\rm CC}$ for undervoltage conditions. If the output voltage drops below the $V_{\rm ccuv}$ limit, then the device switches off the high side MOSFET and the low side MOSFET, so that the device is only operational within the specified supply limits. The voltage hysteresis circuitry $V_{\rm ccuvh}$ protects from noise conditions.

4.4.1.2 Electrical characteristics undervoltage shutdown

Table 7 Electrical characteristics undervoltage shutdown

 $V_S = 3.5 \text{ V to 7 V}$; $T_j = -40 ^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified).

Parameter	Symbol		Values		Unit	Note or	Number	
		Min.	Тур.	Max.		condition		
Undervoltage limit at V _{CC} supply	V _{ccuv}	1.95	-	2.28	V	V _{CC} falling	P_4.4.2.1	
Undervoltage detector hysteresis	V _{ccuvh}	0.05	-	0.1	V	-	P_4.4.2.2	
Undervoltage detector reaction time	V _{uvr}	_	-	3	μs	1)	P_4.4.2.3	

¹⁾ Not subject to production test, specified by design.

4 Block description and electrical characteristics

4.4.2 Overcurrent protection

4.4.2.1 Functional description overcurrent protection

The overcurrent protection works in a cycle-by-cycle limitation mode. If the sensed input drain current exceeds the peak current limit $I_{oc, lim}$ during a switching cycle, then the device switches off the high side MOSFET and the switch node SW current decreases. If the overcurrent protection circuitry is active, then the device limits the PWM input duty cycle for each cycle.

During startup or with $V_{\rm CC}$ supply power cycle after the logic reset is released, the overcurrent protection remains inactive for the number of PWM pulses $n_{\rm pwm,st}$ to avoid accidental activation due to startup current overshoot.

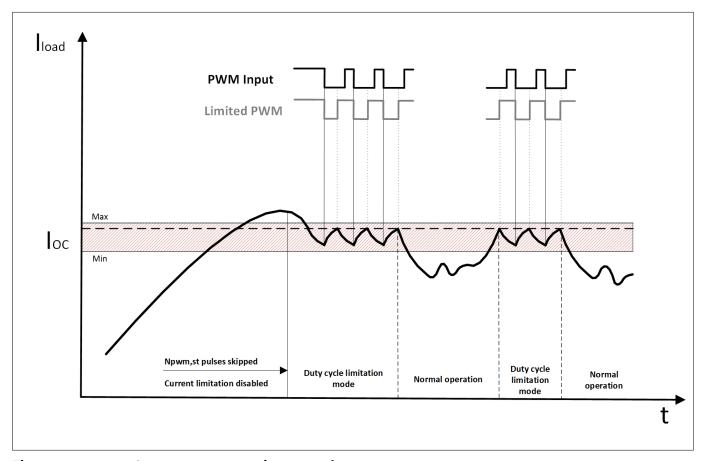


Figure 4 Overcurrent protection example

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

4.4.2.2 Electrical characteristics overcurrent protection

Table 8 Electrical characteristics overcurrent protection

 V_S = 3.5 V to 7 V; V_{CC} = 2.35 V to 7 V; T_j = -40°C to 150°C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified).

Parameter	Symbol		Values			Note or	Number
		Min.	Тур.	Max.		condition	
Overcurrent sensing limit	I _{oc, lim}	-4.4	_	-2.6	Α	_	P_4.4.3.1
Startup protection inactive, number of PWM pulses	n _{pwm,st}	-	-	5500	_	V _{CC} rising above V _{CC,min}	P_4.4.3.2

2.5 A half bridge with integrated driver and level shifter

4 Block description and electrical characteristics

4.4.3 Overtemperature protection

4.4.3.1 Functional description overtemperature protection

If an overtemperature condition $T_{\rm jOT}$ occurs, then the integrated temperature sensor disables the device by switching off the high side and low side MOSFETs. Only if both the temperature decreases by the hysteresis temperature $dT_{\rm j}$ and the temperature falls below $T_{\rm jSO}$, then the MOSFETs resume operation.

4.4.3.2 Electrical characteristics overtemperature protection

Table 9 Electrical characteristics overtemperature protection¹⁾

 $V_S = 3.5 \text{ V}$ to 7 V; $V_{CC} = 2.35 \text{ V}$ to 7 V; $T_j = -40 ^{\circ}\text{C}$ to 150 °C; all voltages with respect to ground; positive current flowing into pin (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		condition	
Overtemperature shutdown	T_{jOT}	175	-	200	°C	-	P_4.4.4.1
Switch-on temperature	$T_{\rm jSO}$	_	_	165	°C	_	P_4.4.4.2
Overtemperature switch-on hysteresis	dT_j	-	15	-	°C	_	P_4.4.4.3

¹⁾ Not subject to production test, specified by design.

2.5 A half bridge with integrated driver and level shifter

5 Application information

Application information 5

Note:

The following information is given as an example for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

5.1 Application diagram

In the target application scenario the device is the counterpart for an AURIX™ TC3xx microcontroller for core voltage generation with the system power supply TLF35584. The device configuration allows connectivity with the half bridge control output of the microcontroller's embedded voltage regulator core (EVRC) converter, which generates the core voltage $V_{\rm dd}$. The device only supports power supply topologies that use different sources for the microcontroller supply domain V_{ext} and the EVRC input V_{S} , expecting different voltage levels. V_{S} must exceed V_{CC} during startup, in normal operation and during power-down.

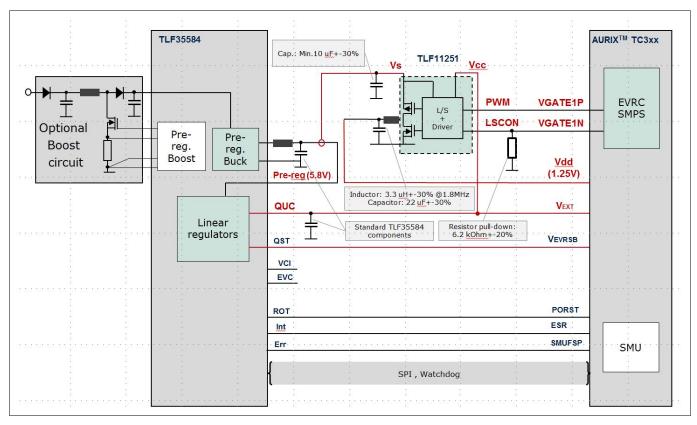


Figure 5 **Application diagram**

Note: This figure is a simplified example of an application circuit. The function must be verified in the application.

As soon as V_S voltage reaches 3.5 V during power-up, the device releases the internal logic reset. During this phase the central function logic is operational. Only if V_{CC} is within the specified range, then the device reacts to the input signals LSCON and PWM as specified. However, the operational V_{CC} voltage minimum is specified at 2.35 V, which allows for early device readiness, even if the microcontroller is not yet operational.

The VGATEP output of the microcontroller controls the PWM signal, while the VGATEN output is connected to LSCON. The microcontroller typically starts in an open loop mode, controlling only VGATEP and allowing for fast $V_{\rm dd}$ voltage ramp-up and startup. After ramp-up time, the EVRC starts to control the high side and low side MOSFETs of the half bridge. The LSCON input detects this phase with the frequency detector. If the microcontroller is switched into power-down mode and if the high side and low side control signals are off,

2.5 A half bridge with integrated driver and level shifter

5 Application information

then the frequency detector recognizes it as a request to set the SW output floating. Therefore add a pull-down resistor for the LSCON signal in order to limit its possible variation during the power-down phase after the supply voltage reaches the hard reset limit of the microcontroller.

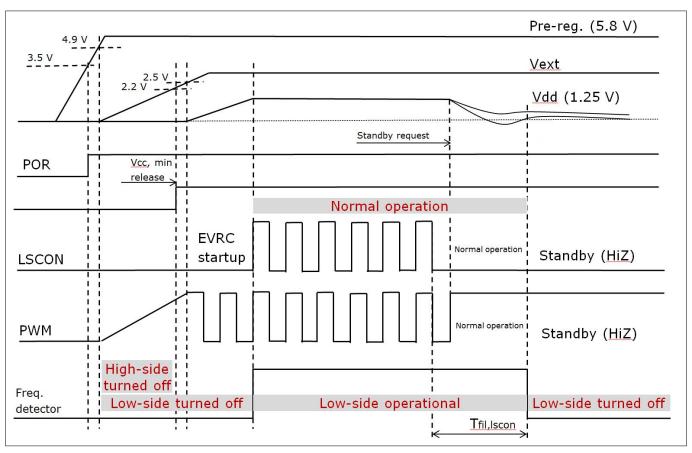


Figure 6 Start-up and ramp-down example

Table 10 shows the required nominal values of the discrete components for proper operation.

Table 10 Nominal values of discrete components

Component name	Nominal value	Acceptable variation	Note
C_{VS}	10 μF	±30%	Input capacitor
C_{VDD}	22 μF	±30%	Output capacitor
$\overline{L_{\text{VDD}}}$	3.3 μΗ	±30% (@ 1.8 MHz)	Output inductor
R _{LSCON}	6.2 kΩ	±20%	LSCON input pull-down

6 Package information

6 Package information

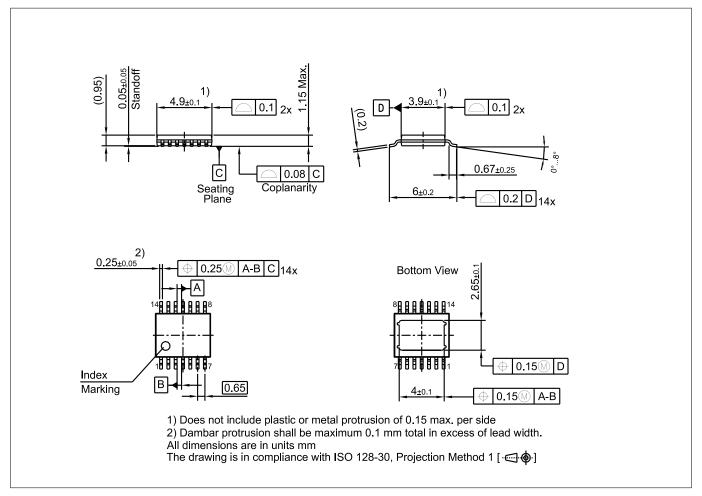


Figure 7 PG-TSDSO-14

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a Green Product. Green Products are RoHS compliant (Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Information on packages

For more information on packages, such as recommendations on assembly, refer to www.infineon.com/packages.

2.5 A half bridge with integrated driver and level shifter

Revision history

Revision history

Revision	Date	Changes	
1.05	2024-12-27	Editorial changes	
1.04	2024-10-02	Package information: dimension	
1.03	2022-11-25	Editorial changes	
1.02	2021-02-05	Editorial changes	
1.01	2021-01-14	Editorial changes	
1.0	2020-01-23	Datasheet created	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-12-27 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-kil1637761867377 Z8F57382527

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.