

Automotive Low Power 3D Magnetic Sensor with I²C Interface

TLE493D-A1B6

3D Hall Sensor

Data Sheet

Rev. 1.2, 2019-04-09

Sense & Control

Table of Contents

1	Product Description	5
1.1	Target Applications	
1.2	Features	
2	Functional Description	7
2.1	General	
2.1.1	Power mode control	7
2.1.2	Sensing part	8
2.2	Pin Configuration (top view)	8
2.3	Definition of Magnetic Field	9
2.4	Sensitive Area	9
2.5	Application circuit	10
3	Specification	11
3.1	Absolute Maximum Ratings	11
3.2	Operating Range	11
3.3	Electrical Characteristics	13
3.4	Magnetic Characteristics	14
3.5	Temperature measurement (default = activated)	16
3.6	Overview of Modes	16
4	Interface and Timing Description	17
5	Package Information	19
5.1	Package Parameters	
5.2	Package Outlines	
6	Revision History	22

List of Tables

Table 1	Ordering Information	6
Table 2	TSOP6 pin description and configuration (see Figure 3)	8
Table 3	Absolute maximum ratings	11
Table 4	Electrostatic Discharge Protection	11
Table 5	Operating Range	
Table 6	Electrical setup	13
Table 7	Initial Magnetic Characteristics	14
Table 8	Sensor Drifts	
Table 9	Conversion table for 12Bit	15
Table 10	Conversion table for 8Bit	15
Table 11	Temperature Measurement Characteristics	16
Table 12	Overview of modes and its corresponding current consumption with sample rates	16
Table 13	Interface and timing	17
Table 14	Package Parameters	19

List of Figures

igure 1	Image of TLE493D-A1B6 in TSOP6 package	5
igure 2	Block Diagram	7
igure 3	Pinout	
igure 4	Definition of Magnetic Field Direction	9
igure 5	Center of Sensitive Area (all dimensions in mm)	9
igure 6	Application circuit with external power supply and μC	10
igure 7	I ² C readout frame, ADC conversion and related timing	18
igure 8	I ² C timing specification	
igure 9	Image of TLE493D-A1B6 in TSOP6	
igure 10	Footprint for PG-TSOP6-6-5 and PG-TSOP6-6-8 (all dimensions in mm)	19
igure 11	Package Outlines (all dimensions in mm)	20
igure 12	Packing (all dimensions in mm)	21

Product Description

1 Product Description

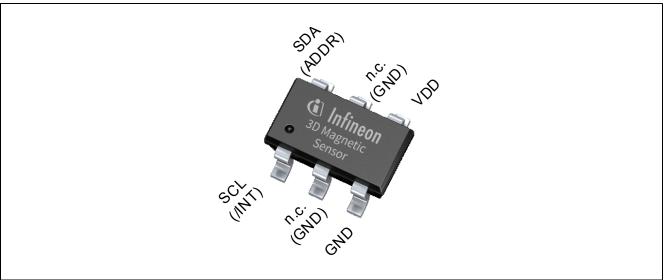


Figure 1 Image of TLE493D-A1B6 in TSOP6 package

1.1 Target Applications

The TLE493D-A1B6 is designed for linear, rotary and 3D position sensing in automotive applications, such as:

- Gear stick
- Turnlight and wiper control elements
- · Multi function knobs
- Pedal/valve position sensing
- Integration in the top column module for direction indicator for instance

1.2 Features

- · 3D magnetic flux density sensing
- Ultra low power consumption with typical 5µA during operation (typical 6Hz)
- Power-down mode with typical 7nA power consumption
- Digital output via 2-wire standard I²C interface
- 12 bit data resolution for each measurement direction incl. chip temperature
- Bx, By and Bz linear field measurement of <u>+</u>60mT
- Excellent matching of X/Y measurement for accurate angle sensing
- Variable update frequencies and power modes (configurable during operation)
- Supply voltage range = 2.9V...3.5V
- Temperature range T_i = -40°C...125°C
- Triggering by external μC possible via I²C protocol
- Interrupt signal to signalise end of measurement cycle
- Temperature measurement

Product Description

- Automotive qualified
- Small 6-pin TSOP package

Table 1 Ordering Information

Product Name	Marking	Ordering Code	Package
TLE493D-A1B6	EA	SP001368598	PG-TSOP6-6-5

2 Functional Description

2.1 General

Description of the Block diagram and its functions.

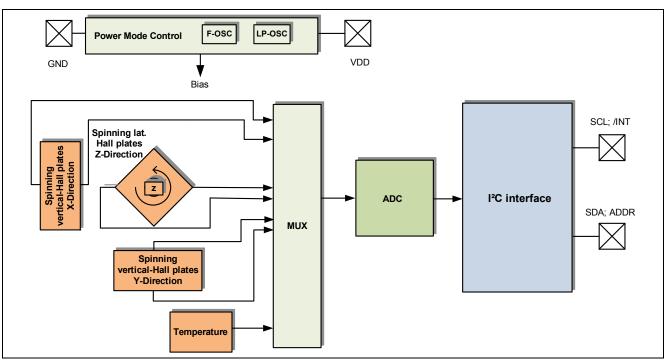


Figure 2 Block Diagram

The IC consists of three main function units containing following building blocks:

- The power mode control system, containing a low-power oscillator, basic biasing, accurate reset, undervoltage detection and a fast oscillator.
- The sensing part, containing the HALL biasing, HALL probes with multiplexers and ADC. Furthermore a temperature sensor is implemented.
- The I²C interface, containing the register files and I/O pads.

2.1.1 Power mode control

The power mode control provides the power distribution in the IC, a power-on reset function and a specialized low-power oscillator as clock source. Additionally it is handling the start-up behavior.

- On start-up this unit:
 - activates the biasing, provides an accurate reset detector and fast oscillator
 - interprets the applied voltage level on ADDR pin as logical "0" or "1". This represents than the address
 - sensor enters low power mode (and can be configured via I²C interface)
- After re-configuration a measurement cycle is performed regularly containing of:
 - activation the internal biasing, checks for reset condition and provides the fast oscillator
 - the HALL biasing

- the measurement of the three HALL probe channels sequentially incl. temperature (default = activated)
- and enters the configured mode again
- In any case functions are only executed if the supply voltage is high enough, otherwise the reset circuit will halt the state machine until the level is reached and restarts its operation afterwards. The functions are also restarted if a reset event occurs in between (parameter "Reset Level" in **Chapter 3.2**).

2.1.2 Sensing part

Performs the measurements of the magnetic field in X, Y and Z direction. Each X, Y and Z-Hall probe is connected sequentially to a multiplexer, which is then connected to an Analog to Digital Converter (ADC). Optional, the temperature (default = activated) is determined as well after the three Hall channels.

2.2 Pin Configuration (top view)

Figure 3 shows the pinout of the TLE493D-A1B6.

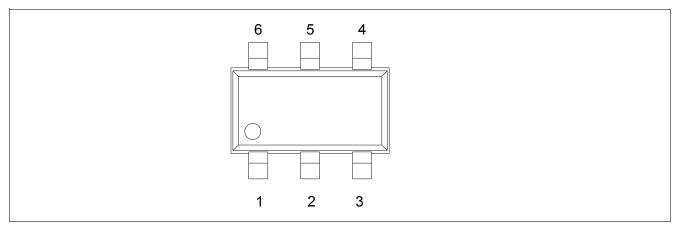


Figure 3 Pinout

Table 2 TSOP6 pin description and configuration (see Figure 3)

Pin No.	Name	Description
1	SCL /INT	Interface serial clock pin (input) Interrupt pin, signals a finished measurement cycle, open drain
2	GND	connect to GND
3	GND	Ground Pin
4	V _{DD}	Supply Pin
5	GND	connect to GND
6	SDA ADDR	Interface serial data pin (input/output), open drain Sensor ID configuration during power up

2.3 Definition of Magnetic Field

A positive field is considered as South-Pole facing the corresponding Hall element.

Figure 4 shows the definition of the magnetic field directions X, Y, Z of the TLE493D-A1B6.

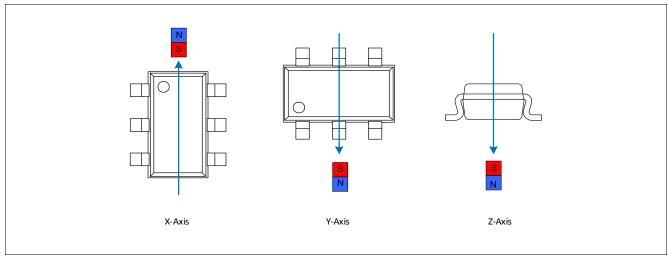


Figure 4 Definition of Magnetic Field Direction

2.4 Sensitive Area

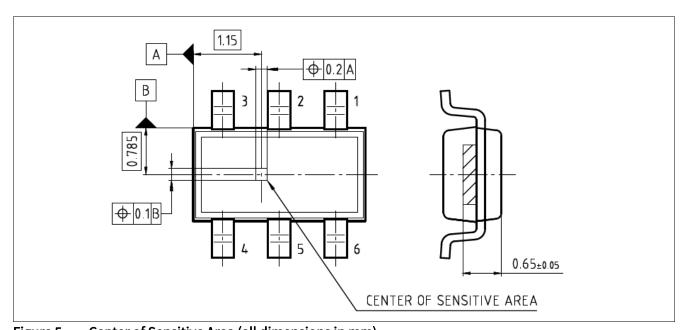


Figure 5 Center of Sensitive Area (all dimensions in mm)

2.5 Application circuit

The use of an interrupt line is optional, but highly recommended to ensure proper and efficient readout of the sensor data.

The pull-up resistor values of the I²C bus have to be calculated in a way to fulfill the rise- and fall time specification of the interface for the given worst case parasitic (capacitive) load of the actual application setup.

Please note: too small resistive values $R_{1/2}$ have to be prevented to avoid unnecessary power consumption during interface transmissions, especially for low-power applications.

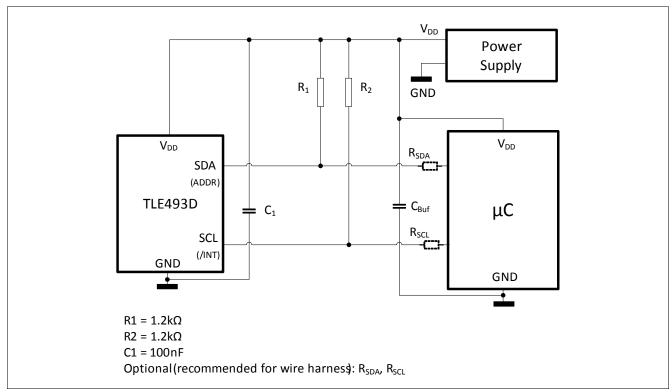


Figure 6 Application circuit with external power supply and μC

For additional EMC precaution in harsh environments, C_1 may be implemented by two 100nF capacitors in parallel, which should be already given by C_{Buf} near the μC and/or power supply.

3 Specification

3.1 Absolute Maximum Ratings

Attention:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Furthermore, only single error cases are assumed. More than one stress/error case may also damage the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions the voltage on VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings.

Table 3 Absolute maximum ratings

Parameter	Symbol	min	typ	max	Unit	Note/Condition
Junction temperature	Tj	-40	_	125	°C	-
Voltage on V _{DD}	V _{DD}	-0.3	_	3.5	V	-
Magnetic field	B _{max}	_	_	<u>+</u> 1	Т	-
Voltage range on any pin to GND	V_{max}	-0.1	-	3.5	V	open-drain outputs are not current limited.

Table 4 Electrostatic Discharge Protection

Parameter	Symbol	Values		Unit	Note or Test Condition	
		Min.	Тур.	Мах.		
ESD voltage	V_{HBM}			<u>+</u> 2.0	kV	$^{1)}$ R = 1.5 kΩ, C = 100 pF
	V_{CDM}			<u>+</u> 0.5	kV	2)
				<u>+</u> 0.75	kV	²⁾ for corner pins

¹⁾ Human Body Model (HBM) tests according to ANSI/ESDA/JEDEC JS-001.

3.2 Operating Range

Table 5 Operating Range

Parameter	Symbol	min	typ	max	Unit	Note/Condition
Operating temperature	T _j	-40	_	125	°C	T _j = Ta + 3°C in fast mode
Supply voltage	V _{DD}	2.9	3.3	3.5	V	Supply voltage must be above reset level
Reset level	V _{Res}	2.2	2.5	2.9	V	min. ADC operating level

²⁾ Charged Device Model (CDM), ESD susceptibility according to JESD22-C101.

Note: To provide this ultra low power consumption figures, the chip does not use a classic (and current consuming) reset concept. The implemented reset focus on ensuring a proper supply for the ADC operation only (so it inhibits the ADC reliably until the sensor supply is high enough). Thus, the sensor relays on a proper supply ramp incl. 3.3mA current consumption during power-on to ensure it is initialized correctly, typically a monotonic rise of Vdd from zero to 3.3V within less than 10µs and without over/undershoots larger than 300mV. The I²C reset feature of the sensor shall be used by the µC after power-up. If an supply monitoring is used in the system (e.g. brown-out detector etc.), it is also recommended to use the I²C reset of the sensor upon events detected by this monitor. In any case, an external supply switch (either provided by a System-Basis-Chip solution which includes a supply-enable feature, a Bias-Resistor-Transistor device, a capable µC GPIO pin, etc.) shall allow a power-cycle of the sensor as backup for high availability applications to cope with any form of Vdd ramps (including potential EMC influences).

3.3 Electrical Characteristics

Note: All specification parameters refer to 3.3V \pm 5% nominal supply V_{DD} on the pins directly. Typical values refer to 25°C and to 3.3V \pm 5% nominal supply.

Table 6 Electrical setup

Parameter	Symbol	min	typ	max	Unit	Note/Condition
Supply current 1)	I_{DD}	-	7	_	nA	power-down mode, all off
		_	5	-	μΑ	ultra low power mode
		-	57	-	μΑ	low power mode (default after power on)
		-	3.3	-	mA	fast mode
Average operating current	I _{DD_op}	-	3.3	-	mA	during active ADC measurement for about 172µs ²⁾³⁾
Input voltage low threshold ⁴⁾	V_{IL}	_	_	30	%V _{DD}	all input pads
Input voltage high threshold ⁴⁾	V _{IH}	70	-	-	%V _{DD}	all input pads
Input voltage hysteresis ⁴⁾	$V_{\rm I_Hyst}$	5	_	_	%V _{DD}	all input pads
Output voltage low level @ 3mA load	V _{OL}	-	-	0.4	V	all output pads, static load
Output high level	V_{OH}	_	V_{DD}	-	V	given by ext. pull-up resistor

- 1) Average values considering measuring period and power-down
- 2) Typical conversion time is 172 μs with temperature and 129 μs without
- 3) Current at Pull ups needs to be considered for power supply dimensioning, consider minimum 10mA for the power supply for the sensor only
- 4) Based on I^2C standard 1995 for V_{DD} related input levels

Note: The average supply current I_{DD} in the 2 low power modes and I^2C triggered mode will decrease by about 25% when the temperature measurement is disabled.

3.4 Magnetic Characteristics

Table 7 Initial Magnetic Characteristics¹⁾

Values for 25°C, 0h and $V_{\rm DD}$ = 3.3V, unless otherwise stated

Parameter	Symbol	min	typ	max	Unit	Note/Condition
Magnetic linear range ²⁾	$B_{\rm xyz_LIN}$	<u>+</u> 60	_	_	mT	Bx, By and Bz for
	, -					-40°C < T _{junction} < +125°C
Offset	B _{OZ}	-1.8	±0.2	+1.8	mT	Offset of Bz
	B _{OXY}	-0.75	±0.2	+0.75	mT	Offset of Bx and By
Sensitivity	Sens	5.5	7.7	10.5	LSB ₁₂ /	Bx, By and Bz; (12bit)
					mT	
X to Y magnetic matching ³⁾	M _{X/Y}	-15	_	+15	%	
X/Y to Z magnetic matching ³⁾	$M_{X/YZ}$	-25	_	+25	%	
Resolution 12-bit readout ⁴⁾	Res ₁₂	95	130	182	μΤ/	
					LSB ₁₂	
Resolution 8-bit readout ⁴⁾	Res ₈	1.52	2.08	2.91	mT/	
					LSB ₈	
Magnetic initial noise (rms)	B_{iNeff}	_	0.1	0.5	mT	rms = 1 sigma
Magnetic hysteresis	B _{HYS}	_	1	_	LSB ₁₂	due to quantization effects

¹⁾ Magnetic test on wafer level. It is assumed that initial variations are stored and compensated in the external μ C during module test and calibration.

Table 8 Sensor Drifts¹⁾ Values for V_{DD} = 3.3V \pm 5%, T_j = -40 to 125 °C, static magnetic field within usable linear range

Parameter	Symbol	min	typ	max	Unit	Note/Condition
Sensitivity drift	Sens _D	-15	<u>+</u> 5	+15	%	Bx, By and Bz
Offset drift	$B_{O_{DZ}}$	-1.6	<u>+</u> 0.2	+1.6	mT	Bz @ 0mT
	B_{O_DXY}	-0.75	<u>+</u> 0.2	+0.75	mT	Bx and By @ 0mT
X to Y magnetic matching drift ²⁾	$M_{\rm XY_D}$	-9	<u>+</u> 1	+9	%	
X/Y to Z magnetic matching drift ²⁾	$M_{\rm X/YZ_D}$	-15	<u>+</u> 10	+15	%	
Temperature compensation ³⁾	TC ₀	_	<u>+</u> 0	_	ppm/K	Bx, By and Bz (default)
	TC_1	_	-750	_		Bx, By and Bz (option 1)
	TC ₂	_	-1500	_		Bx, By and Bz (option 2)
	TC ₃	_	+350	_		Bx, By and Bz (option 3)

²⁾ Not subject to production test - verified by design/characterization; magnetic minimum linear range is valid for the specified 0h sensitivity range

³⁾ The matching is defined for sensitivity values of Bx (=X), By (=Y) and Bz (=Z) as: X/Y matching: $100\cdot2\cdot(X-Y)/(X+Y)$ [in %], X/Y to Z matching: $100\cdot2\cdot(X+Y-2\cdot Z)/(X+Y+2\cdot Z)$ [in %]

⁴⁾ Resolution is calculated as 1/Sensitivity (and multiplied by 16 for 8-bit value).

Table 8 Sensor Drifts¹⁾

Values for $V_{DD} = 3.3 \text{V} \pm 5\%$, $T_i = -40 \text{ to } 125 \,^{\circ}\text{C}$, static magnetic field within usable linear range

Parameter	Symbol	min	typ	max	Unit	Note/Condition
DNL (Differential Non Linearity)	DNL	_	<u>+</u> 2 ⁴⁾	_	LSB ₁₂	Bx, By and Bz
INL (Integral Non Linearity)	INL	_	<u>+</u> 2 ⁴⁾	_	LSB ₁₂	Bx, By and Bz
Magnetic noise (rms)	B _{Neff}	_	_	1	mT	rms = 1 sigma

- 1) Not subject to production test, verified by design/characterization. Drifts are changes from the initial characteristics due to external influences.
- 2) The matching is defined for sensitivity values of Bx (=X), By (=Y) and Bz (=Z) as: X/Y matching: $100 \cdot 2 \cdot (X-Y)/(X+Y)$ [in %], X/Y to Z matching: $100 \cdot 2 \cdot (X+Y-2 \cdot Z)/(X+Y+2 \cdot Z)$ [in %]
- 3) The temperature sensitivity variation alone is +13%. It is mandatory to set the TC value before performing data readouts of the sensor on given magnetic points or angles for sensitivity trimming (with external microcontroller as zero-hour trim in production).
- 4) Represents 0.1%FSR.

Conversion register value to magnetic field value:

Table 9 Conversion table for 12Bit

	MSB	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	LSB
	-2048	1024	512	256	128	64	32	16	8	4	2	1
e.g.	1	1	1	1	0	0	0	0	1	1	1	1

The conversion is realized by the two's complement. Please use following table for transformation:

Example for 12Bit read out: 1111 0000 1111: -2048 + 1024 + 512 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 + 1 = -241 LSB

Calculation to mT: -241 LSB * 0.130 mT/LSB = -31.3mT

Table 10 Conversion table for 8Bit

	MSB	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	LSB
	-128	64	32	16	8	4	2	1
e.g.	0	1	0	1	1	1	0	1

Example for 8-Bit read out: 0101 1101: 0 + 64 + 0 + 16 + 8 + 4 + 0 + 1 = 93 LSB

Calculation to mT: 93 LSB * 2.08 mT/LSB = 193.4 mT

3.5 Temperature measurement (default = activated)

Table 11 Temperature Measurement Characteristics¹⁾

Parameter	Symbol	min	typ	max	Unit	Note/Condition
Digital value @ 25°C ²⁾	T ₂₅	974	1217	1460	LSB ₁₂	_
Resolution 12bit	T_{Res12}	0.24	0.28	0.32	°C/LSB ₁₂	_
Resolution 8bit	$T_{\rm Res8}$	_	4.48	_	°C/LSB ₈	_
Accuracy	T_{ACC}	_	<u>+</u> 7	_	°C	_

¹⁾ The temperature measurement is not trimmed on the sensor. An external μC can measure the sensor during module production and implement external trimming to gain higher accuracies.

3.6 Overview of Modes

Table 12 Overview of modes and its corresponding current consumption with sample rates¹⁾

Mode	Register Address	Typ. Update Rate	Typ. IDD	Remark
Power Down	_	_	7 nA	-
Low Power	Reg 11, Bit 01 = 00 Reg 13, Bit 75= 001	94 Hz	57 μΑ	Default after Power On
	Reg 11, Bit 01 = 00 Reg 13, Bit 75= 100	6 Hz	5 μΑ	Ultra low power mode
Fast Mode	Reg 11: Bit 01 = 11 Reg 13: Bit 75= x	5.7 kHz	3.3 mA	Temperature enabled (default). 1Mbit example
	Reg 11, Bit 01 = 11 Reg 13, Bit 75= x	7.5 kHz	3.3 mA	Temperature disabled (Reg 10: Bit 7 = 1). 1Mbit example
MCM (Master Controlled Mode: I ² C triggered)	Reg 11: Bit 01 = 01 Reg 13: Bit 6 = x	0 Hz 7.5 kHz ~2.8 kHz	<1 μA 3.3 mA ~1.7 mA	400 kbit example

¹⁾ Default low power setting also used to signal a sensor error.

 I^2 C triggered mode typ. consumption (μC triggers every "trigger_period") estimation formula: I_{DD} [mA] ~= 3.3 [mA] * 0.18 [ms] / trigger_period [ms]

²⁾ Theoretical possible measurement range from -50°C to 150°C

Interface and Timing Description

4 Interface and Timing Description

This chapter refers to how to set the boundary conditions in order to establish a proper interface communication.

Table 13 Interface and timing¹⁾

Parameter	Symbol	min	typ	max	Unit	Note/Condition
End-of-Conversion /INT pulse	t _{INT}	-	2.5	-	μs	low-active (when activated)
Time window to read first value	t _{RD1}	-	40	-	μs	read after rising /INT edge
Time window to read next value	t _{RDn}	-	43	_	μs	consecutive reads
Internal clock accuracy	t _{clk_E}	-25	_	+25	%	all above timing parameters
Allowed I ² C bit clock frequency	f _{I2C_clk}	_	400	1000	kHz	400kHz is I ² C fast mode
Low period of SCL clock	t _L	0.5	-	-	μs	1.3μs for 400kHz mode
High period of SCL clock	t _H	0.4	-	-	μs	0.6μs for 400kHz mode
SDA fall to SCL fall hold time (hold time start condition to clock)	t _{STA}	0.4	-	_	μs	0.6μs for 400kHz mode
SCL rise to SDA rise su. time (setup time clock to stop condition)	t _{STOP}	0.4	-	_	μs	0.6μs for 400kHz mode
SDA rise to SDA fall hold time (wait time from stop to start cond.)	t _{WAIT}	0.4	-	-	μs	0.6μs for 400kHz mode
SDA setup before SCL rising	t _{SU}	0.1	-	-	μs	-
SDA hold after SCL falling	t _{HOLD}	0	-	_	μs	-
Fall time SDA/SCL signal ²⁾	t _{FALL}	-	0.05 ³⁾	0.3	μs	0.3μs for 400kHz mode (or may require less C load)
Rise time SDA/SCL signal ²⁾	t_{RISE}	-	0.63)	-	μs	R = 1.2k

¹⁾ Not subject to production test - verified by design/characterization

²⁾ Dependent on used R-C-combination

³⁾ For given AppCircuit; Capacitive load for each bus line = 200pF (SDA, SCL)

Interface and Timing Description

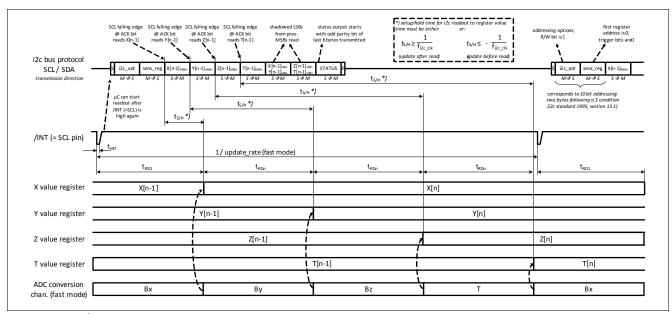


Figure 7 I²C readout frame, ADC conversion and related timing

Note: The fast mode requires a very strict I²C behavior synchronized with the sensor conversions and high bit rates; other modes are available for more relaxed timing and also for a synchronous µC operation of sensor conversions; in 3-channel mode, the T chan. is not converted and updated (so the cycle starts over with Bx after Bz is finished); in all other modes the conversion stops after the T chan. (or Bz chan. in 3-channel mode) until it is triggered again by an internal or external trigger source (which will start an Bx chan. conv.).

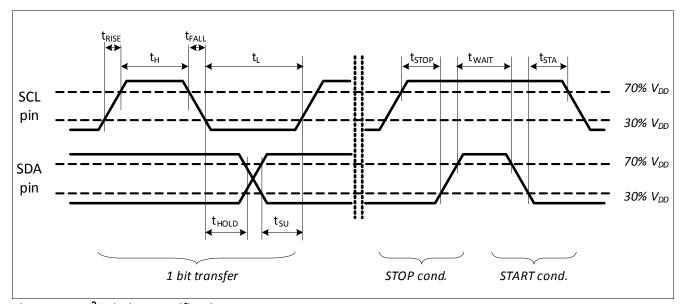


Figure 8 I²C timing specification

Package Information

5 Package Information

5.1 Package Parameters

Table 14 Package Parameters

Parameter	Symbol	ool Limit Values			Unit	Notes
		Min.	Тур.	Max.		
Thermal resistance Junction ambient	R _{thJA}	-	-	200	K/W	Junction to air ¹⁾ for PG-TSOP-6-6-5
Thermal resistance Junction lead	R _{thJL}	-	-	100	K/W	Junction to lead for PG-TSOP-6-6-5
Moisture Sensitivity Level MSL		1	1	1	1	260°C ²⁾

¹⁾ according to Jedec JESD51-7

5.2 Package Outlines

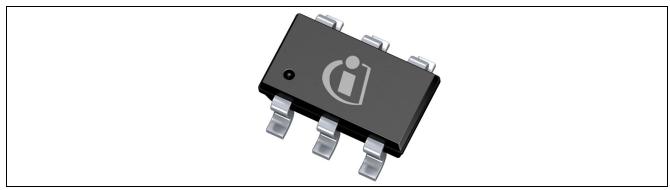


Figure 9 Image of TLE493D-A1B6 in TSOP6

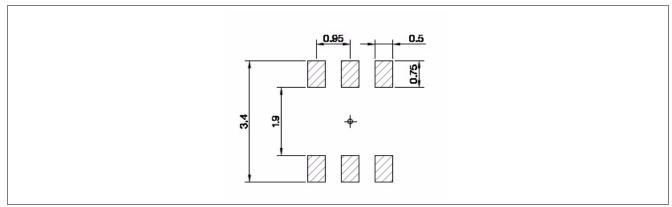


Figure 10 Footprint for PG-TSOP6-6-5 and PG-TSOP6-6-8 (all dimensions in mm)

²⁾ suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020D.1 (March 2008)

Package Information

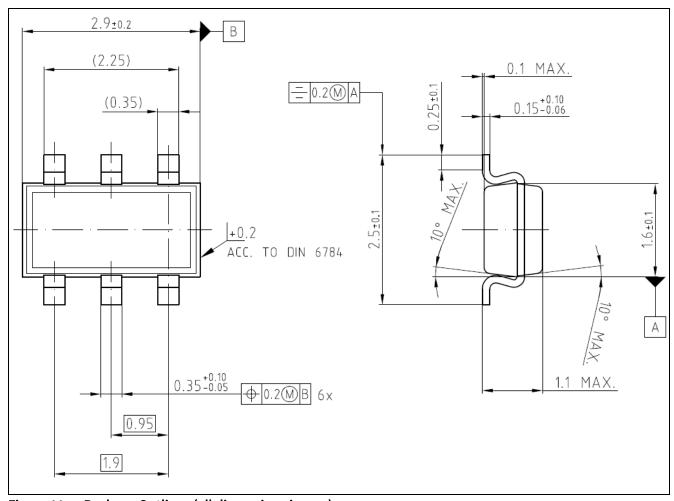


Figure 11 Package Outlines (all dimensions in mm)

Package Information

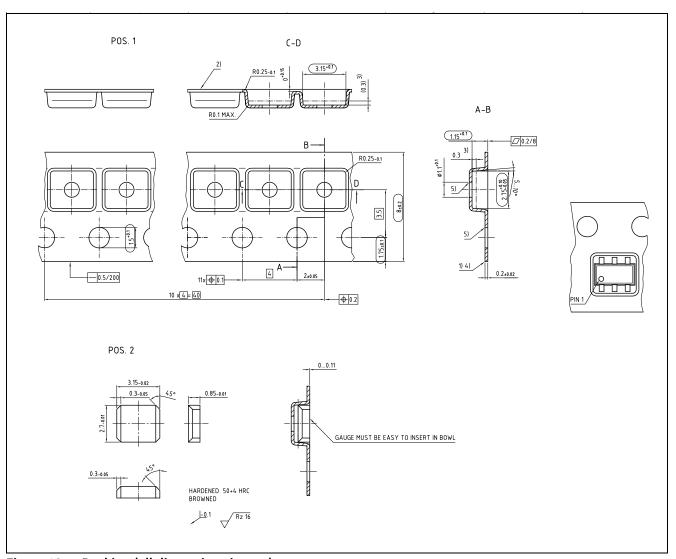


Figure 12 Packing (all dimensions in mm)

Further Information about the package can be found here:

http://www.infineon.com/cms/packages/SMD_-_Surface_Mounted_Devices/TSOP/TSOP6.html

Revision History

6 Revision History

Revision	Date	Changes					
Rev. 1.2	2019-04-09	lote on Page 12 updated.					
Rev. 1.1	2017-11-07	Chapter 1.2 editorial changes. Figure 5 updated. Table 8 Offset drift updated.					
Rev. 1.0	2017-02-10	Initial version					

Trademarks of Infineon Technologies AG

AURIX™, C166™, Canpak™, CIPOS™, CIPURSE™, CoolMos™, Coolset™, Corecontrol™, Crossave™, Dave™, Di-Pol™, EasyPim™, Econobridge™, Econodual™, Econopim™, Econopak™, Eicedriver™, eupec™, FCOs™, Hitfet™, Hybridpack™, I²rf™, Isoface™, Isopack™, Litix™, Mipaq™, Modstack™, my-d™, Novalithic™, Optimos™, Origat™, Powercode™, Primarion™, Primarokk™, Primarokk™, Pro-Silt™, Profet™, Rasic™, Reversave™, Satric™, Sieget™, Sindrion™, Sipmos™, Smartlewis™, Spoc™, Solid Flash™, Tempfet™, thinq!™, Trenchstop™, Tricore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

www.infineon.com

Edition 2019-04-09 Published by Infineon Technologies AG 81726 Munich, Germany

© 2014 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.