OPTIREG™ Linear TLE4270-2
5-V low drop fixed voltage regulator

Features
- Output voltage tolerance ≤ ±2%
- 650 mA output current capability
- Low-drop voltage
- Reset functionality
- Adjustable reset time
- Suitable for use in automotive electronics
- Integrated overtemperature protection
- Reverse polarity protection
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (< 400 ms)
- Short-circuit proof
- Wide temperature range
- ESD protection: ±2 kV HBM \(^1\)
- Green Product (RoHS compliant)

Potential applications
General automotive applications.

Product validation
Qualified for automotive applications. Product validation according to AEC-Q100.

Description
The OPTIREG™ Linear TLE4270-2 is a 5-V low drop fixed-voltage regulator. The maximum input voltage is 42 V (65 V, ≤ 400 ms). Up to an input voltage of 26 V and for an output current up to 650 mA it regulates the output voltage within a 2% accuracy. The short circuit protection limits the output current of more than 650 mA. The device incorporates overvoltage protection and a temperature protection which turns off the device at high temperatures.

\(^1\) ESD susceptibility, Human Body Model (HBM) according to EIA/JESD 22-A114B.
OPTIREG™ Linear TLE4270-2
5-V low drop fixed voltage regulator

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLE4270-2G</td>
<td>P-TO263-5</td>
<td>4270-2G</td>
</tr>
<tr>
<td>TLE4270-2D</td>
<td>P-TO252-5</td>
<td>4270-2D</td>
</tr>
</tbody>
</table>
Table of contents

Features ... 1
Potential applications .. 1
Product validation .. 1
Description ... 1
Table of contents ... 3
1 Block diagram ... 4
2 Pin configuration .. 5
2.1 Pin assignment ... 5
2.2 Pin definitions and functions 5
3 General product characteristics 6
3.1 Absolute maximum ratings 6
3.2 Functional range ... 6
3.3 Thermal resistance ... 7
4 Functional description ... 8
4.1 Circuit description .. 8
4.2 Electrical characteristics ... 8
4.3 Typical performance graphs 10
5 Application information ... 13
5.1 Design notes for external components 13
5.2 Reset circuitry ... 14
5.3 Reset timing .. 14
6 Package information .. 15
7 Revision history ... 16
1 Block diagram

Figure 1 Block diagram
OPTIREG™ Linear TLE4270-2
5-V low drop fixed voltage regulator

Pin configuration

2 Pin configuration

2.1 Pin assignment

Pin Symbol Function
1 I Input; block to ground directly at the IC with a ceramic capacitor.
2 RO Reset output; the open collector output is connected to the 5-V output via an integrated resistor of 30 kΩ.
3 GND Ground; internally connected to heatsink.
4 D Reset delay; connect a capacitor to ground for delay time adjustment.
5 Q 5-V output; block to ground with 22 µF capacitor, ESR < 3 Ω.
3 General product characteristics

3.1 Absolute maximum ratings

Table 1 Absolute maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Input I</td>
<td>V_I</td>
<td>-42</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>Voltage</td>
<td>V_I</td>
<td>-</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>I_I</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reset output RO</td>
<td>V_{RO}</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>I_{RO}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reset delay D</td>
<td>V_D</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>I_D</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Output Q</td>
<td>V_Q</td>
<td>-1.0</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>I_Q</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ground GND</td>
<td>I_{GND}</td>
<td>-0.5</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Temperatures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>-</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>-50</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

3.2 Functional range

Table 2 Functional range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_I</td>
<td>6</td>
<td>42</td>
<td>V</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>-40</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
OPTIREG™ Linear TLE4270-2
5-V low drop fixed voltage regulator

General product characteristics

3.3 Thermal resistance

Table 3 Thermal resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction ambient</td>
<td>$R_{th,JA}$</td>
<td>–</td>
<td>–</td>
<td>65</td>
<td>K/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>–</td>
<td>79</td>
<td>K/W</td>
</tr>
<tr>
<td>Junction case</td>
<td>$R_{th,JC}$</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>K/W</td>
</tr>
</tbody>
</table>

1) Mounted on PCB, 80 x 80 x 1.5 mm\(^3\); 35 µ Cu; 5 µ Sn; footprint only; zero airflow.
4 Functional description

4.1 Circuit description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of a series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element.

The IC also incorporates a number of internal circuits for protection against:
- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

4.2 Electrical characteristics

Table 4 Electrical characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_Q</td>
<td>4.90</td>
<td>5.00</td>
<td>5.10</td>
<td>V_4.0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_Q</td>
<td>4.90</td>
<td>5.00</td>
<td>5.10</td>
<td>V_4.0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current limiting</td>
<td>$I_{Q_{\text{max}}}$</td>
<td>650</td>
<td>850</td>
<td>–</td>
<td>V_Q = 0 V</td>
</tr>
<tr>
<td>Current consumption $I_q = I_t - I_Q$</td>
<td>I_q</td>
<td>–</td>
<td>1</td>
<td>1.5 mA</td>
<td>$I_Q = 5 \text{ mA}$</td>
</tr>
<tr>
<td></td>
<td>I_q</td>
<td>–</td>
<td>55</td>
<td>75 mA</td>
<td>$I_Q = 550 \text{ mA}$</td>
</tr>
<tr>
<td></td>
<td>I_q</td>
<td>–</td>
<td>70</td>
<td>90 mA</td>
<td>$I_Q = 550 \text{ mA}; V_I = 5 \text{ V}$</td>
</tr>
<tr>
<td>Drop voltage</td>
<td>V_{DR}</td>
<td>–</td>
<td>350</td>
<td>700 mV</td>
<td>$I_Q = 550 \text{ mA}^1$</td>
</tr>
<tr>
<td>Load regulation</td>
<td>$\Delta V_{Q_{\text{Lo}}}$</td>
<td>–</td>
<td>25</td>
<td>50 mV</td>
<td>$I_Q = 5 \text{ to } 550 \text{ mA}; V_I = 6 \text{ V}$</td>
</tr>
<tr>
<td>Line regulation</td>
<td>$\Delta V_{Q_{\text{Li}}}$</td>
<td>–</td>
<td>12</td>
<td>25 mV</td>
<td>$V_I = 6 \text{ to } 26 \text{ V}$</td>
</tr>
<tr>
<td>Power supply ripple rejection</td>
<td>$PSRR$</td>
<td>–</td>
<td>54</td>
<td>– dB</td>
<td>$I_f = 100 \text{ Hz}$; $V_f = 0.5 \text{ Vpp}$</td>
</tr>
</tbody>
</table>

Reset generator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Switching threshold</td>
<td>V_{RT}</td>
<td>4.5</td>
<td>4.65</td>
<td>4.8 V</td>
<td>–</td>
</tr>
<tr>
<td>Reset high voltage</td>
<td>V_{ROH}</td>
<td>4.5</td>
<td>–</td>
<td>– V</td>
<td>–</td>
</tr>
<tr>
<td>Reset low voltage</td>
<td>V_{ROL}</td>
<td>–</td>
<td>60</td>
<td>– mV</td>
<td>$R_{\text{int}} = 30 \text{ k}\Omega^2$; $1.0 \text{ V} \leq V_Q \leq 4.5 \text{ V}$</td>
</tr>
<tr>
<td></td>
<td>V_{ROL}</td>
<td>–</td>
<td>200</td>
<td>400 mV</td>
<td>$I_R = 3 \text{ mA}, V_Q = 4.4 \text{ V}$</td>
</tr>
<tr>
<td>Reset pull-up</td>
<td>R_{int}</td>
<td>18</td>
<td>30</td>
<td>46 kΩ</td>
<td>Internally connected to Q</td>
</tr>
</tbody>
</table>
Functional description

Table 4 Electrical characteristics (cont’d)

$V_I = 13.5\, \text{V}; \, T_j = -40\text{ to } 125^\circ\text{C} \text{ (unless otherwise specified)}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge current</td>
<td>$I_{D,c}$</td>
<td>8</td>
<td>14</td>
<td>25 µA</td>
<td>$V_D = 1.0, \text{V}$</td>
</tr>
<tr>
<td>Upper reset timing threshold</td>
<td>V_{DU}</td>
<td>1.4</td>
<td>1.8</td>
<td>2.3 V</td>
<td></td>
</tr>
<tr>
<td>Lower reset timing threshold</td>
<td>V_{DL}</td>
<td>0.2</td>
<td>0.45</td>
<td>0.8 V</td>
<td>$V_Q < V_{RT}$</td>
</tr>
<tr>
<td>Delay time</td>
<td>t_{rd}</td>
<td>–</td>
<td>13</td>
<td>– ms</td>
<td>$C_D = 100, \text{nF}$</td>
</tr>
<tr>
<td>Reset reaction time</td>
<td>t_{rr}</td>
<td>–</td>
<td>–</td>
<td>3 µs</td>
<td>$C_D = 100, \text{nF}$</td>
</tr>
</tbody>
</table>

Overvoltage protection

| Turn-off voltage | $V_{I, ov}$ | 42 | 44 | 46 V | – | P_4.0.21 |

1) Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input).

2) Reset peak is always lower than 1.0 V.
4.3 Typical performance graphs

Typical performance characteristics

Output voltage V_Q vs. junction temperature T_j

![Graph showing V_Q vs. T_j with $V_i = 13.5$ V at $T_j = 160^\circ$C.]

Output voltage V_Q vs. input voltage V_i

![Graph showing V_Q vs. V_i with $R_L = 25$ Ω.]

Output current I_Q vs. junction temperature T_j

![Graph showing I_Q vs. T_j with I_Q_{max} from 0 to 1200 mA at $T_j = 160^\circ$C].

Output current I_Q vs. input voltage V_i

![Graph showing I_Q vs. V_i with $T_j = 125^\circ$C and 25°C.]}
OPTIREG™ Linear TLE4270-2
5-V low drop fixed voltage regulator

Functional description

Current consumption I_q vs. output current I_Q

![Graph showing I_q vs. I_Q](image1)

Current consumption I_q vs. output current I_Q

![Graph showing I_q vs. I_Q](image2)

Current consumption I_q vs. input voltage V_i

![Graph showing I_q vs. V_i](image3)

Drop voltage V_{DR} vs. output current I_Q

![Graph showing V_{DR} vs. I_Q](image4)
Functional description

Typical performance characteristics

Charge current $I_{D,c}$ vs. junction temperature T_j

![Graph showing $I_{D,c}$ vs. T_j]

$V_I = 13.5$ V
$V_D = 1$ V

Upper reset timing threshold V_{DU} vs. junction temperature T_j

![Graph showing V_{DU} vs. T_j]

$V_I = 13.5$ V
5 Application information

The IC regulates an input voltage in the range of $V_i = 5.5\,\text{V}$ to $36\,\text{V}$ to $V_{Q,\text{nom}} = 5.0\,\text{V}$. Up to $26\,\text{V}$ it produces a regulated output current of more than $650\,\text{mA}$. Above $26\,\text{V}$ the save-operating-area protection allows operation up to $36\,\text{V}$ with a regulated output current of more than $300\,\text{mA}$. Overvoltage protection limits operation at $42\,\text{V}$. The overvoltage protection hysteresis restores operation if the input voltage has dropped below $36\,\text{V}$. A reset signal is generated for an output voltage of $V_Q < 4.5\,\text{V}$. The delay for power-on reset can be set externally with a capacitor.

![Test circuit](image1)

Figure 3 Test circuit

![Application circuit](image2)

Figure 4 Application circuit

5.1 Design notes for external components

An input capacitor C_i is necessary for compensation of line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. $1\,\Omega$ in series with C_i. An output capacitor C_Q is necessary for the stability of the regulating circuit. Stability is guaranteed at values of $C_Q \geq 22\,\mu\text{F}$ and an ESR of $< 3\,\Omega$.
5.2 Reset circuitry

If the output voltage decreases below 4.5 V, an external capacitor \(C_D \) on pin 4 (D) will be discharged by the reset generator. If the voltage on this capacitor drops below \(V_{DL} \), a reset signal is generated on pin 2 (RO), i.e. reset output is set low. If the output voltage rises above the reset threshold, \(C_D \) will be charged with constant current. After the power-on-reset time the voltage on the capacitor reaches \(V_{DU} \) and the reset output will be set high again. The value of the power-on-reset time can be set within a wide range depending of the capacitance of \(C_D \).

5.3 Reset timing

The power-on reset delay time is defined by the charging time of an external capacitor \(C_D \) which can be calculated as follows:

\[
C_D = \frac{\Delta t \times I_{D,c}}{\Delta V}
\]

(5.1)

Definitions:

- \(C_D \) = delay capacitors
- \(\Delta t \) = reset delay time \(t_{rd} \)
- \(I_{D,c} \) = charge current, typical 14 µA
- \(\Delta V = V_{DU} \), typical 1.8 V

\(V_{DU} \) = upper reset timing threshold at \(C_D \) for reset delay time

\[
t_{rd} = \Delta V \times C_D / I_{D,c}
\]

(5.2)

The reset reaction time \(t_{rr} \) is the time it takes the voltage regulator to set the reset out LOW after the output voltage has dropped below the reset threshold. It is typically 1 µs for delay capacitor of 47 nF. For other values for \(C_D \) the reaction time can be estimated using the following equation:

\[
t_{rr} \approx 20 \text{ s/F} \times C_D
\]

(5.3)

Figure 5 Reset time response
OPTIREG™ Linear TLE4270-2
5-V low drop fixed voltage regulator

Package information

6 Package information

Figure 6 P-TO263-5 (plastic transistor single outline)\(^1\)

Figure 7 P-TO252-5 (plastic transistor single outline)\(^1\)

Green product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages
https://www.infineon.com/packages

1) Dimensions in mm.
Revision history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>2020-02-25</td>
<td>Editorial changes, including rearranged content.</td>
</tr>
<tr>
<td>1.8</td>
<td>2007-11-09</td>
<td>Page 1: Changed ESD specification from “>4000V” to “±2 kV HBM” according to PCN No. 2007-08</td>
</tr>
</tbody>
</table>
| 1.7 | 2007-03-20 | Initial version of RoHS-compliant derivate of TLE 4270. Change of product name to TLE4270-2 due to modified chip layout and size.
Page 1: AEC certified statement added
Page 1 and **Page 15:** RoHS compliance statement and Green product feature added
Page 1 and **Page 15:** Package changed to RoHS compliant version
Legal Disclaimer updated |
IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.