OPTIREG™ Linear TLE4263-2ES

5 V low drop voltage regulator

Features
• Output voltage tolerance ≤ ±2%
• 180 mA output current capability
• Low-drop voltage
• Very low standby current consumption
• Overtemperature protection
• Reverse polarity protection
• Short-circuit proof
• Adjustable reset threshold
• watchdog for monitoring microprocessor
• Power-on and undervoltage reset with programmable delay time
• Reset low down to $V_0 = 1V$
• Wide temperature range
• Exposed pad package with excellent thermal behavior
• Suitable for use in automotive electronics
• Green Product (RoHS compliant)

Potential applications
General automotive applications.

Product validation
Qualified for automotive applications. Product validation according to AEC-Q100/101.

Description
The OPTIREG™ Linear TLE4263-2ES is a monolithic integrated very low dropout voltage regulator in a SMD package PG-DSO-8 exposed pad, especially designed for automotive applications. An input voltage up to 45 V is regulated to an output voltage of 5.0 V. The component is able to drive loads up to 180 mA. The IC is short-circuit proof by the implemented current limitation and has an integrated overtemperature shutdown. It additionally provides features like power-on and undervoltage reset with adjustable reset threshold, a watchdog circuit for monitoring a connected microcontroller and an inhibit input for enabling or disabling the component.
The reset output RO is set to “low” in case the output voltage falls below the reset switching threshold $V_{Q,rt}$. This threshold can be decreased down to 3.5 V by an external resistor divider. The power-on reset delay time can be programmed by the external delay capacitor C_D.

The watchdog circuit provides a monitoring function for microcontrollers: At missing pulses on the watchdog’s input W the reset output RO is set to “low”. The trigger time for the watchdog pulses can be set by the external capacitor C_D.

The IC can be switched off by the inhibit input, reducing the current consumption to typically 0 mA.

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLE4263-2ES</td>
<td>PG-DSO-8 exposed pad</td>
<td>4263-2</td>
</tr>
</tbody>
</table>
Table of contents

- **Features** ... 1
- **Potential applications** .. 1
- **Product validation** .. 1
- **Description** ... 1
- **Table of contents** ... 3

1. **Block diagram** ... 4
2. **Pin configuration** ... 5
3. **General product characteristics** 6
 - 3.1 Absolute maximum ratings 6
 - 3.2 Functional range .. 7
 - 3.3 Thermal resistance ... 7
4. **Functional description** .. 8
 - 4.1 Choosing external components 8
 - 4.2 Electrical characteristics 8
 - 4.3 Typical performance characteristics 10
5. **Application information** .. 14
 - 5.1 Reset ... 15
 - 5.2 Power-On Reset Delay Time 15
 - 5.3 Reset adjust function ... 16
 - 5.4 Watchdog ... 16
6. **Package information** ... 18
7. **Revision history** .. 19
1 Block diagram

Figure 1 Block diagram
OPTIREG™ Linear TLE4263-2ES
5 V low drop voltage regulator

Pin configuration

2 Pin configuration

Table 1 Pin definition and functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
</table>
| 1 | I | Input
for compensating line influences, a capacitor to GND close to the IC terminals is recommended |
| 2 | INH | Inhibit
enables/disables the device;
connect to I if the this function is not needed |
| 3 | RO | Reset Output
open-collector output connected to the output via an internal 30kΩ pull-up resistor;
leave open if the this function is not needed |
| 4 | GND | Ground |
| 5 | D | Reset Delay Timing
connect a ceramic capacitor to GND for adjusting the reset delay time / watchdog trigger time;
leave open if this function is not needed |
| 6 | RADJ | Reset Threshold Adjust
connect an external voltage divider to adjust the reset switching threshold;
connect to GND for using internal threshold |
| 7 | W | Watchdog
rising edge triggered input for monitoring a microcontroller;
connect to GND if this function is not needed |
| 8 | Q | Output
block to ground with a capacitor close to the IC terminals with a capacitance value $C \geq 22 \, \mu F$, $ESR \leq 3 \, \Omega$ |
| PAD | – | Exposed Pad
attach the exposed pad on package bottom to the heatsink area on circuit board;
connect to GND |
3 General product characteristics

3.1 Absolute maximum ratings

Table 2 Absolute maximum ratings\(^1\)

\(T_J = -40^\circ\text{C} \text{ to } +150^\circ\text{C}; \text{ all voltages with respect to ground (unless otherwise specified)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_I)</td>
<td>-42</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Input current</td>
<td>(I_I)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reset output RO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_{RO})</td>
<td>-0.3</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Input current</td>
<td>(I_{RO})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reset threshold RADJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_{RADJ})</td>
<td>-0.3</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Reset delay D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_D)</td>
<td>-0.3</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Current</td>
<td>(I_D)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Output Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_Q)</td>
<td>0.30</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Current</td>
<td>(I_Q)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inhibit INH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>(V_{INH})</td>
<td>-42</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Input current</td>
<td>(I_{INH})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Watchdog W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>(V_W)</td>
<td>-0.3</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Ground GND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>(I_{GND})</td>
<td>-0.5</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>(T_J)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td>-50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ESD susceptibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human body model (HBM)</td>
<td>Voltage</td>
<td>-</td>
<td>2 kV</td>
<td>-</td>
</tr>
<tr>
<td>Charged device model (CBM)</td>
<td>Voltage</td>
<td>-</td>
<td>1 kV</td>
<td>-</td>
</tr>
</tbody>
</table>

1) Not subject to production test, specified by design.
2) ESD HBM test according JEDEC JESD22-A114
3) ESD CDM test according AEC/ESDA ESD-STM5 3.1-1999
OPTIREG™ Linear TLE4263-2ES
5 V low drop voltage regulator

General product characteristics

Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.

3.2 Functional range

Table 3 Functional range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>V_i</td>
<td>5.5 – 45 V</td>
<td>V</td>
<td>1)</td>
<td>P_3.2.1</td>
</tr>
<tr>
<td>Junction temp</td>
<td>T_j</td>
<td>-40 – 150 °C</td>
<td>°C</td>
<td></td>
<td>P_3.2.2</td>
</tr>
</tbody>
</table>

1) Corresponds with characteristics of drop voltage, output current and power description (see diagrams).

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

3.3 Thermal resistance

Table 4 Thermal resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction to case</td>
<td>$R_{th,JC}$</td>
<td>– 10 –</td>
<td>K/W</td>
<td>1) measured to exposed pad</td>
<td>P_3.3.1</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>$R_{th,JA}$</td>
<td>– 45 –</td>
<td>K/W</td>
<td>2)</td>
<td>P_3.3.2</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>$R_{th,JA}$</td>
<td>– 153 –</td>
<td>K/W</td>
<td>footprint only 3)</td>
<td>P_3.3.3</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>$R_{th,JA}$</td>
<td>– 64 –</td>
<td>K/W</td>
<td>300 mm² heatsink area 2)</td>
<td>P_3.3.4</td>
</tr>
<tr>
<td>Junction to ambient</td>
<td>$R_{th,JA}$</td>
<td>– 55 –</td>
<td>K/W</td>
<td>600 mm² heatsink area 2)</td>
<td>P_3.3.5</td>
</tr>
</tbody>
</table>

1) Not subject to production test, specified by design
2) Specified $R_{th,JA}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
3) Specified $R_{th,JA}$ value is according to Jedec JESD 51-3 at natural convection on FR4 1s0p board; The product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 1 copper layer (1 × 70 µm Cu).
4 Functional description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The component also has a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

4.1 Choosing external components

The input capacitor C_I is necessary for compensation of line influences. Using a resistor of approx. 1Ω in series with C_I, the oscillating circuit consisting of input inductivity and input capacitance can be damped. The output capacitor is necessary for the stability of the regulating circuit. Stability is ensured at values $C_Q \geq 22 \mu F$ and an ESR of $\leq 3 \Omega$ within the operating temperature range. For small tolerances of the reset delay the spread of the capacitance of the delay capacitor and its temperature coefficient should be noted.

4.2 Electrical characteristics

Table 5 Electrical characteristics

$V_I = 13.5 \, V; \; V_{INH} > 3.6 \, V; \; T_J = -40^\circ C$ to $+150^\circ C$; (unless specified otherwise)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Normal Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_Q</td>
<td>4.90</td>
<td>5.00</td>
<td>5.10</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_Q</td>
<td>4.90</td>
<td>5.00</td>
<td>5.10</td>
<td>V</td>
</tr>
<tr>
<td>Output current limitation</td>
<td>$I_{Q,max}$</td>
<td>180</td>
<td>250</td>
<td>400</td>
<td>mA</td>
</tr>
<tr>
<td>Current consumption; $I_q = I_i - I_Q$</td>
<td>I_q</td>
<td>–</td>
<td>0</td>
<td>10</td>
<td>µA</td>
</tr>
<tr>
<td>Current consumption; $I_q = I_i - I_Q$</td>
<td>I_q</td>
<td>–</td>
<td>0.90</td>
<td>1.30</td>
<td>mA</td>
</tr>
<tr>
<td>Current consumption; $I_q = I_i - I_Q$</td>
<td>I_q</td>
<td>–</td>
<td>10</td>
<td>18</td>
<td>mA</td>
</tr>
<tr>
<td>Current consumption; $I_q = I_i - I_Q$</td>
<td>I_q</td>
<td>–</td>
<td>15</td>
<td>24</td>
<td>mA</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>V_{dr}</td>
<td>–</td>
<td>0.35</td>
<td>0.50</td>
<td>V</td>
</tr>
<tr>
<td>Load regulation</td>
<td>$\Delta V_{Q,lo}$</td>
<td>–</td>
<td>–</td>
<td>25</td>
<td>mV</td>
</tr>
</tbody>
</table>
OPTIREG™ Linear TLE4263-2ES
5 V low drop voltage regulator

Functional description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line regulation</td>
<td>$\Delta V_{Q,li}$</td>
<td>-</td>
<td>3</td>
<td>25</td>
<td>mV</td>
<td>$V_I = 6 \text{ V to } 28 \text{ V}; I_Q = 150 \text{ mA}$</td>
<td>P_4.2.10</td>
</tr>
<tr>
<td>Power supply ripple rejection</td>
<td>PSRR</td>
<td>-</td>
<td>54</td>
<td>-</td>
<td>dB</td>
<td>$2) f_r = 100 \text{ Hz}; V_I = 0.5 \text{ Vpp}$</td>
<td>P_4.2.11</td>
</tr>
</tbody>
</table>

Reset Generator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching threshold</td>
<td>$V_{Q,rt}$</td>
<td>4.5</td>
<td>4.65</td>
<td>4.8</td>
<td>V</td>
<td>$V_{RADJ} = 0 \text{ V}$</td>
<td>P_4.2.12</td>
</tr>
<tr>
<td>Reset adjust threshold</td>
<td>$V_{RADJ,th}$</td>
<td>1.26</td>
<td>1.36</td>
<td>1.44</td>
<td>V</td>
<td>$3.5V \leq V_Q < 5 \text{ V}$</td>
<td>P_4.2.13</td>
</tr>
<tr>
<td>Reset low voltage</td>
<td>$V_{RO,I}$</td>
<td>-</td>
<td>0.10</td>
<td>0.40</td>
<td>V</td>
<td>$I_{RO} < 1 \text{ mA}$</td>
<td>P_4.2.14</td>
</tr>
<tr>
<td>Saturation voltage</td>
<td>$V_{D,sat}$</td>
<td>-</td>
<td>50</td>
<td>110</td>
<td>mV</td>
<td>$V_Q < V_{R,th}$</td>
<td>P_4.2.15</td>
</tr>
<tr>
<td>Upper timing threshold</td>
<td>V_{DU}</td>
<td>1.40</td>
<td>1.70</td>
<td>2.20</td>
<td>V</td>
<td>-</td>
<td>P_4.2.16</td>
</tr>
<tr>
<td>Lower reset timing threshold</td>
<td>V_{DRL}</td>
<td>0.20</td>
<td>0.35</td>
<td>0.59</td>
<td>V</td>
<td>-</td>
<td>P_4.2.17</td>
</tr>
<tr>
<td>Charge current</td>
<td>$I_{D,ch}$</td>
<td>40</td>
<td>60</td>
<td>88</td>
<td>μA</td>
<td>-</td>
<td>P_4.2.18</td>
</tr>
<tr>
<td>Reset delay time</td>
<td>t_{rd}</td>
<td>1.3</td>
<td>2.8</td>
<td>4.1</td>
<td>ms</td>
<td>$C_D = 100 \text{ nF}$</td>
<td>P_4.2.19</td>
</tr>
<tr>
<td>Reset reaction time</td>
<td>t_{rr}</td>
<td>0.5</td>
<td>1.2</td>
<td>4.0</td>
<td>μs</td>
<td>$C_D = 100 \text{ nF}$</td>
<td>P_4.2.20</td>
</tr>
</tbody>
</table>

Watchdog

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge current</td>
<td>$I_{D,wd}$</td>
<td>4.40</td>
<td>6.25</td>
<td>9.40</td>
<td>μA</td>
<td>$V_D = 1.0 \text{ V}$</td>
<td>P_4.2.22</td>
</tr>
<tr>
<td>Upper timing threshold</td>
<td>V_{DU}</td>
<td>1.40</td>
<td>1.70</td>
<td>2.20</td>
<td>V</td>
<td>-</td>
<td>P_4.2.24</td>
</tr>
<tr>
<td>Lower timing threshold</td>
<td>V_{DWL}</td>
<td>0.20</td>
<td>0.35</td>
<td>0.55</td>
<td>V</td>
<td>-</td>
<td>P_4.2.25</td>
</tr>
<tr>
<td>Watchdog trigger time</td>
<td>$T_{WI,tr}$</td>
<td>16</td>
<td>22.5</td>
<td>27</td>
<td>ms</td>
<td>$C_D = 100 \text{ nF}$</td>
<td>P_4.2.26</td>
</tr>
<tr>
<td>Watchdog output low time</td>
<td>$T_{WD,I}$</td>
<td>1.0</td>
<td>2.10</td>
<td>3.50</td>
<td>ms</td>
<td>$C_D = 100 \text{ nF}$</td>
<td>P_4.2.27</td>
</tr>
<tr>
<td>Watchdog period</td>
<td>$T_{WD,p} = T_{WD,I} + T_{WI,tr}$</td>
<td>17</td>
<td>24.6</td>
<td>30.5</td>
<td>ms</td>
<td>$C_D = 100 \text{ nF}$</td>
<td>P_4.2.28</td>
</tr>
</tbody>
</table>

Inhibit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching voltage</td>
<td>$V_{INH,ON}$</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>IC turned on</td>
<td>P_4.2.29</td>
</tr>
<tr>
<td>Turn-OFF voltage</td>
<td>$V_{INH,OFF}$</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
<td>IC turned off</td>
<td>P_4.2.30</td>
</tr>
<tr>
<td>Input current</td>
<td>I_{INH}</td>
<td>5</td>
<td>10</td>
<td>27</td>
<td>μA</td>
<td>$V_{INH} = 5 \text{ V}$</td>
<td>P_4.2.31</td>
</tr>
</tbody>
</table>

1) Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 6 V input).
2) Not subject to production test, specified by design.

Note: The reset output is “low” within the range $V_Q = 1 \text{ V to } V_{Q,rt}$
OPTIREG™ Linear TLE4263-2ES
5 V low drop voltage regulator

Functional description

4.3 Typical performance characteristics

Drop voltage V_{DR} versus output current I_Q

Current consumption I_q versus output current I_Q

Current consumption I_q versus input voltage V_i

Output voltage V_Q versus input voltage V_i
OPTIREG™ Linear TLE4263-2ES
5 V low drop voltage regulator

Functional description

Output current I_Q versus input voltage V_I

Timing threshold voltage V_{DU} and V_{DRL} versus junction temperature

Reset switching threshold V_{RADJ} versus junction temperature T_J

Current consumption of inhibit I_{INH} versus junction temperature T_J
Functional description

Charge current and discharge current $I_{D,\text{ch}}$; $I_{D,\text{dis}}$ versus junction temperature T_J

Output voltage V_Q versus junction temperature T_J

![Charge current and discharge current graph](image1)

- $I_{D,\text{ch}}$ and $I_{D,\text{dis}}$ vs T_J

![Output voltage graph](image2)

- V_Q vs T_J with $V_I = 13.5\,\text{V}$ and $V_D = 1.5\,\text{V}$
OPTIREG™ Linear TLE4263-2ES
5 V low drop voltage regulator

Functional description

Undervoltage reset adjust threshold V_{RADJ} versus output voltage V_Q

Pulse time $T_{WI, tr}$ versus junction temperature T_J

Power supply ripple rejection $PSRR$ versus ripple frequency f_r

Output capacitor series resistor $ESR\ C_Q$ versus output current I_Q

V_{RADJ} versus V_Q

$T_{WI, tr}$ versus T_J

$PSRR$ versus f_r

$ESR\ C_Q$ versus I_Q

$V_{RADJ} = 1.6$ V

$T_{WI, tr} = 40$ ms

$PSRR = 80$ dB

$ESR\ C_Q = 0.1\ \Omega$

$V_{I} = 13.5$ V

$C_D = 100$ nF

$V_{ripple} = 1$ V

$I_Q = 1$ mA

$C_Q = 22\ \mu F$ tantalum

$T_{j} = -40...150$ °C

$V_{I} = 13.5$ V

$C_D = 100$ nF

$V_{ripple} = 1$ V

$I_Q = 10$ mA

$C_Q = 22\ \mu F$ tantalum

$T_{j} = 25$ °C

$I_Q = 100$ mA

$C_Q = 22\ \mu F$ tantalum

$T_{j} = -40...150$ °C

I Data Sheet

Rev. 1.1

2019-03-27
5 Application information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality condition or quality of the device.

![Application circuit diagram](AE500070_4263)

Figure 3 Application circuit

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
5.1 Reset

![Reset timing diagram](image)

Figure 4 Reset timing diagram

5.2 Power-On Reset Delay Time

If the application needs a power-on reset delay time t_{rd} different from the value given in “Reset Generator” on Page 9, the delay capacitor’s value can be derived from these specified values and the desired power-on delay time:

$$C_D = \frac{t_{rd,\, new}}{t_{rd}} \times 100\text{nF}$$ \hspace{1cm} (5.1)

with:
- C_D: capacitance of the delay capacitor to be chosen
- $t_{rd,\, new}$: desired power-on reset delay time
- t_{rd}: power-on reset delay time specified in this datasheet

For a precise calculation also take the delay capacitor’s tolerance into consideration.
5.3 Reset adjust function

The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting an external voltage divider (R_{ADJ1}, R_{ADJ2}) at pin RADJ. For selecting the default threshold connect pin RADJ to GND.

When dimensioning the voltage divider, take into consideration that there will be an additional current constantly flowing through the resistors.

With a voltage divider connected, the reset switching threshold $V_{RT,new}$ is calculated as follows:

$$V_{RT,new} = \frac{R_{ADJ1} + R_{ADJ2}}{R_{ADJ2}} \times V_{RADJ,th}$$

with

- $V_{RT,new}$: the desired new reset switching threshold
- R_{ADJ1}, R_{ADJ2}: resistors of the external voltage divider
- $V_{RADJ,th}$: reset adjust switching threshold given in “Reset Generator” on Page 9

5.4 Watchdog

![Figure 5 Timing of the Watchdog Function Reset](image-url)
Watchdog Timing

The period of the watchdog pulses has to be smaller than the minimum watchdog trigger time which is set by the external reset delay capacitor C_D. Use the following formula for dimensioning C_D:

$$C_D = \frac{T_{WI,tr,new}}{T_{WI,tr}} \times 100 \text{ nF}$$

(5.3)

with

- C_D: capacitance of the delay capacitor to be chosen
- $T_{WI,tr,new}$: desired watchdog trigger time
- $T_{WI,tr}$: watchdog trigger time specified in this data sheet
6 Package information

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages
https://www.infineon.com/packages

1) Dimension in mm
7 Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>2019-03-27</td>
<td>Updated layout and structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Editorial changes</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.