

Features

- · Dual channel device
- Wide input voltage (up to 58 V) and output voltage range (up to 70 V)
- Switching frequency range from 100 kHz to 500 kHz and 2.2 MHz
- · EMC optimized device
- Analog output adjustment (analog dimming)
- Overvoltage, Short to ground, open feedback and overtemperature diagnostic output
- NMOS gate driver for adaptive output discharge
- LED current accuracy ±3.5% (no analog dimming applied)

Potential applications

· LED driver for: front light module, animated light functions, pixelated adaptive driving beam

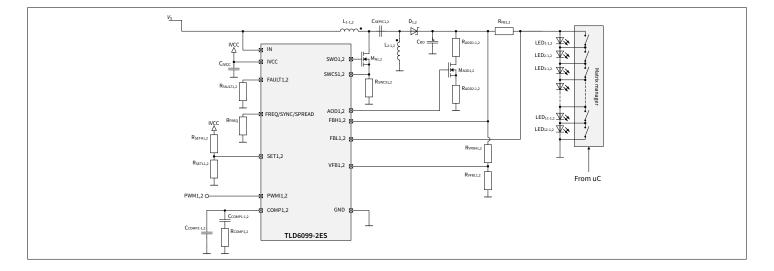
Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

TLD6099-2ES is a dual channel multi-topology DC-DC controller designed for LED applications with built-in protection features to implement a compact LED driver.

The output current generated by the two channels are independent and they are regulated by means of a peak current control loop. An internal slope compensation is used to avoid sub-harmonic oscillation at high duty cycle (e.g. higher than 50%).


The current accuracy is better than 3.5% (with no analog dimming applied) over the operating temperature range. The current sense amplifiers provide flexibility on the topology choice needed to supply LED strings with more than 20 white LEDs (up to 70 V at output).

The switching frequency can be adjusted from 100 kHz to 500 kHz or fixed to 2.2 MHz by using an external resistor. A synchronization with an external clock is also possible. The device incorporates even a spread spectrum modulator to achieve easy fulfilment of electromagnetic emission standards.

Each channel of TLD6099-2ES can drive an external NMOS to discharge the output capacitance fast. This feature helps to manage fast load variations due to light function exchange scenario. Typical user cases are switching from low beam to high beam or driving adaptive driving beam with matrix manager.

Each channel features two dimming sources:

- The analog output adjustment reduces the output current by adjusting the reference voltage
- The digital dimming reduces the LED brightness by modulating the output current

Datasheet

Description

Product type	Package	Marking
TLD6099-2ES	TSDSO-24	TLD6099

Datasheet

Table of contents

	Table of contents
1	Block diagram
2	Pin configuration
3.1 3.2 3.3	General product characteristics 9 Absolute maximum ratings 9 Functional range 11 Thermal resistance 11
4	Switching regulator
4.1 4.2	Soft start
5 5.1 5.2	Linear regulator 18 Undervoltage protection for the external switching MOSFET 18 Electrical characteristics 19
6	Switching frequency setup and synchronization
6.1	Switching frequency setup with external resistor
6.1.1	Electrical characteristics
6.1.2	Spread Spectrum
6.1.2.1 6.2	Electrical characteristics 23 Synchronization with external clock (low frequency mode) 24
6.2.1	Electrical characteristics
6.3	Synchronization with external clock (high frequency range)
7	Analog output adjustment
7.1	Electrical characteristics
8	Dimming functions
8.1	Digital PWM dimming
8.1.1	Electrical characteristics
9	Adaptive output discharge
9.1	Electrical characteristics
10	Protections and fault management
10.1	Electrical characteristics
10.2	Short to ground
10.2.1	Electrical characteristics
10.3	Output voltage regulation
10.3.1	Electrical characteristics
10.4	Overvoltage on FBH pin
10.4.1	Electrical characteristics
10.5	Overtemperature

3

Datasheet

Table of contents

10.5.1	Electrical characteristics	35
11	Application information	36
12	Package information	37
13	Revision history	38
13.1	Revision history	38
	Disclaimer	39

1 Block diagram

1 Block diagram

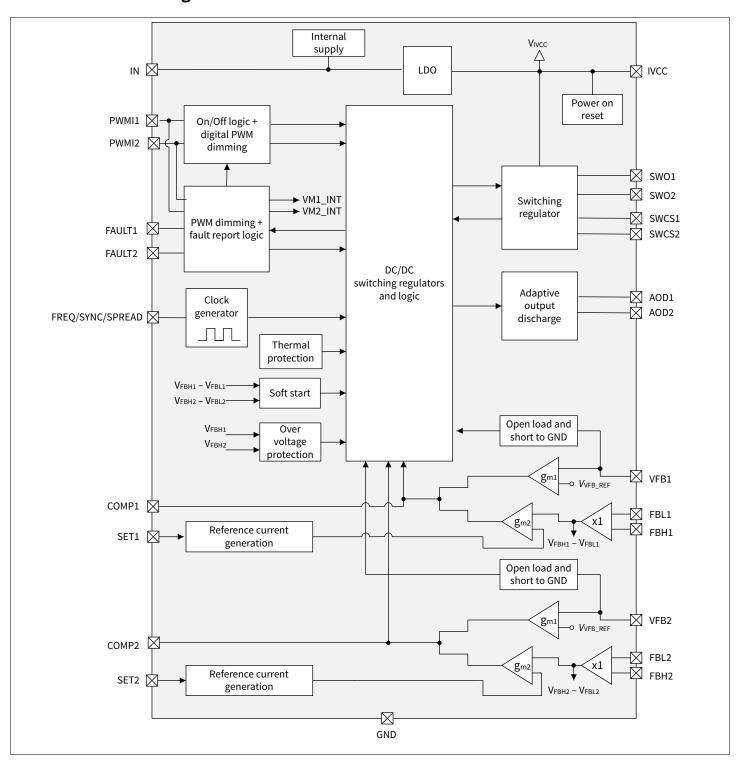


Figure 1 Block diagram

2 Pin configuration

2 Pin configuration

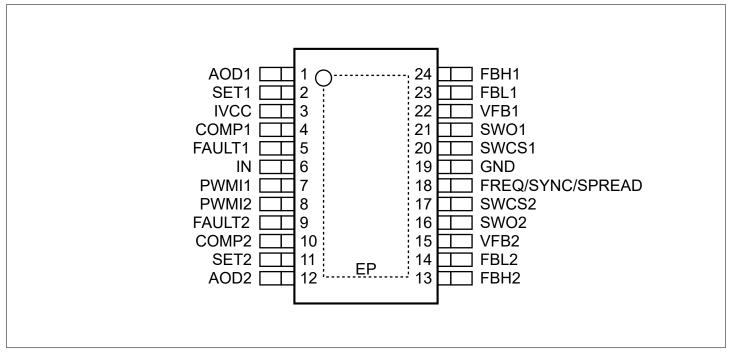


Figure 2 PG-TSDSO-24

Table 1 Pin configuration of PG-TSDSO-24

Name	Pos.	Description	Direction
AOD1	1	NMOS driver for adaptive output discharge	Output
		Channel 1	
		Connect to gate of external MOSFET	
		Pin must be left open if external MOSFET is not used	
SET1	2	Analog output adjustment	Input
		Channel 1	
		Load current adjustment pin	
		Pin must not be left open	
		If analog adjustment is not used, connect to IVCC pin	
IVCC	3	Internal linear voltage regulator	Output
		Used for internal biasing and gate drive	
		Bypass with external capacitor	
		Pin must not be left open	
COMP1	4	Compensation	Input
		Channel 1	
		Connect R and C network for stability	

6

(table continues...)

Datasheet

2 Pin configuration

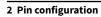


Table 1 (continued) Pin configuration of PG-TSDSO-24

Name	Pos.	Description	Direction
FAULT1	5	Fault	Output
		Channel 1	
		Faults are reported by raising the voltage on this pin	
		Pin must not be left open	
		Connect a pull-down resistor	
IN	6	Supply	Input
		Supply for internal biasing	
PWMI1	7	PWM adjustment	Input
		Channel 1	
		Digital input for PWM dimming	
		Pin must not be left open	
		Connect a pull-down resistor or to IVCC	
PWMI2	8	PWM adjustment	Input
		Channel 2	
		Digital input for PWM dimming	
		Pin must not be left open	
		Connect a pull-down resistor or to IVCC	
FAULT2	9	Fault	Output
		Channel 2	
		Faults are reported by raising the voltage on this pin	
		Pin must not be left open	
		Connect a pull-down resistor	
COMP2	10	Compensation	Input
		Channel 2	
		Connect R and C network for stability	
SET2	11	Analog output adjustment	Input
		Channel 2	
		Load current adjustment pin	
		Pin must not be left open	
		If analog adjustment is not used, connect to IVCC pin	
AOD2	12	NMOS driver for adaptive output discharge	Output
		Channel 2	
		Connect to gate of external MOSFET	
		Pin must be left open if external MOSFET is not used	
FBH2	13	Voltage feedback positive	Input
		Channel 2	
		Non inverting input (+)	

(table continues...)

Datasheet

Table 1 (continued) Pin configuration of PG-TSDSO-24

Name	Pos.	Description	Direction		
FBL2	14	Voltage feedback negative	Input		
		Channel 2			
		Inverting input (-)			
VFB2	15	Voltage loop reference	Input		
		Channel 2			
		Connect to resistive voltage divider to set the maximum voltage at			
CMOS	16	output and the short to ground threshold	0		
SWO2	16	Switch gate driver Channel 2	Output		
CMCCO	17	Connect to gate of external switching power n-channel MOSFET	lt		
SWCS2	17	Current sense/Power ground Channel 2	Input		
		Detects peak current through power switch			
		Power ground for gate driver of SWO2			
EDEO/CVNC/	10		l.a.ab		
FREQ/SYNC/ SPREAD	18	Frequency select or synchronization	Input		
0. 1.2.13		Connect external resistor to GND to set switching frequency Apply square waveform for synchronization			
CND	10	Ground	_		
GND					
SWCS1	20	Current sense/Power ground	Input		
		Channel 1			
		Detects peak current through power switch			
		Power ground for gate driver of SWO1			
SWO1	21	Switch gate driver	Output		
		Channel 1			
		Connect to gate of external switching power n-channel MOSFET			
VFB1	22	Voltage loop reference	Input		
		Channel 1			
		Connect to resistive voltage divider to set the maximum voltage at output and the short to ground threshold			
FBL1	23	Voltage feedback negative	Input		
, DEI	25	Channel 1	Прис		
		Inverting input (-)			
FBH1	24	Voltage feedback positive	Input		
		Channel 1			
		Non inverting input (+)			
Exposed pad	EP	Exposed pad	_		
l la e. e.		Used only for heat dissipation			
		Connect to pin 19 (GND)			

Datasheet

3 General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 2 Absolute maximum ratings

 $T_J = -40$ °C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Power supply input voltage	V _{IN}	-0.3	_	60	V	1)	PRQ-89
Voltage at pin SET1, SET2	V _{SET1,2}	-0.3	-	5.5	V	1)	PRQ-92
Voltage at pin PWMI1, PWMI2	V _{DC/PWMI1,2}	-0.3	_	60	V	1)	PRQ-95
Voltage at pin FBH1, FBH2	V _{FBH1,2}	-1	_	75	V	1)	PRQ-97
Voltage at pin FBL1, FBL2	V _{FBL1,2}	-1	_	75	V	1)	PRQ-99
Differential input voltage	V _{REF1,2(MAX)}	-75	-	75	V	1) $V_{\text{REF1,2(MAX)}} = V_{\text{FBH1,2}} - V_{\text{FBL1,2}}$ Differential signal (not referred to ground)	PRQ-101
Current at pin FBH1, FBH2, FBL1, FBL2	/ _{FBH1,2} / _{FBL1,2}	-7.5	-	7.5	mA	1) V _{REF1,2} =150 mV	PRQ-103
Voltage at pin VFB1, VFB2	V _{FB1,2}	-0.3	_	5.5	V	1)	PRQ-106
Voltage at pin SWCS1, SWCS2	V _{SWCS1,2}	-0.3	_	0.3	V	1)	PRQ-109
Voltage at pin SWO1, SWO2	V _{SWO1,2}	-0.3	_	5.5	V	1)	PRQ-111
Voltage at pin FAULT1	V _{FAULT1}	-0.3	_	5.5	V	1)	PRQ-113
Voltage at pin FAULT2	V _{FAULT2}	-0.3	_	5.5	V	1)	PRQ-115
Voltage at pin COMP1, COMP2	V _{COMP1,2}	-0.3	-	5.5	V	1)	PRQ-118
Voltage at pin FREQ/ SYNC/SPREAD	V _{FREQ/SYNC}	-0.3	_	5.5	V	1)	PRQ-119
Voltage at pin AOD1, AOD2	V _{AOD1,2}	-0.3	_	5.5	V	1)	PRQ-122

(table continues...)

Datasheet

3 General product characteristics

Table 2 (continued) Absolute maximum ratings

 $T_J = -40$ °C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Voltage at pin IVCC	V _{IVCC}	-0.3	_	5.5	V	1)	PRQ-125
Temperature					<u>'</u>		
Junction temperature	TJ	-40	_	150	°C	1)	PRQ-126
Storage temperature	$T_{\rm stg}$	-40	_	150	°C	1)	PRQ-127
ESD susceptibility		<u> </u>	'				
ESD susceptibility	V _{ESD_HBM}	-2	_	2	kV	HBM: ESD susceptibility, Human Body Model "HBM" according to AEC Q100-002	PRQ-128
ESD susceptibility inner pins	V _{ESD_CDM}	-0.5	-	0.5	kV	CDM: ESD susceptibility, Charged Device Model "CDM" according to AEC Q100-011	PRQ-129
ESD susceptibility corner pins	V _{ESD_CDM_CR}	-0.75	-	0.75	kV	CDM: ESD susceptibility, Charged Device Model "CDM" according to AEC Q100-011	PRQ-130

¹⁾ Not subject to production test, specified by design

Notes:

- 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for repetitive operation

Datasheet

3 General product characteristics

3.2 Functional range

Table 3 Functional range

 $T_J = -40$ °C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Extended power supply input voltage range	V _{IN_EXT}	4.5	-	58	V	1) Parameter deviations possible	PRQ-131
Power supply input voltage operating range	V _{IN_OP}	8	-	36	V	-	PRQ-132
Operating voltage at pin FBH1, FBH2	V _{FBH1,2_OP}	2.7	-	70	V	-	PRQ-135
Operating voltage at pin FBL1, FBL2	V _{FBL1,2_OP}	2.55	_	70	V	-	PRQ-136
Switching frequency adjustment range	$f_{\sf SWO}$	100	_	500	kHz	-	PRQ-137
Synchronization low frequency capture range	f _{FREQ/SYNC/} SPREAD(LF)	100	-	500	kHz	-	PRQ-138
Synchronization high frequency capture range	f _{FREQ/SYNC/} SPREAD(HF)	2	_	2.4	MHz	-	PRQ-139

¹⁾ Not subject to production test, specified by design

Note:

Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table

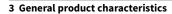

3.3 Thermal resistance

Table 4 Thermal resistance

Parameter	Symbol		Values			Note or condition	P-Number
		Min.	Тур.	Max.			
Junction to case	R _{thJC}	-	22.3	_	K/W	1) 2)	PRQ-143
Junction to ambient	R _{thJA}	-	52.7	-	K/W	1) 3) 2s2p	PRQ-145
Junction to ambient	R_{thJA}	-	71.2	-	K/W	1) 3) 1s0p + 600 mm ²	PRQ-147

(table continues...)

Datasheet

Table 4 (continued) Thermal resistance

Parameter	Symbol		Values			Note or condition	P-Number
		Min.	Тур.	Max.			
Junction to ambient	R_{thJA}	_	80.4	_	K/W	1)	PRQ-149
						³⁾ 1s0p + 300 mm ²	

- 1) Not subject to production test, specified by design
- 2) Specified R_{thJC} value is simulated at natural convection on a cold plate setup (all pins and exposed pads are fixed to ambient temperature) T_A = 25°C dissipates 1 W
- 3) Specified R_{thJA} value is according JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board. The device was simulated on 76.2 x 114.3 x 1.5 mm board. The 2s2p board has 2 outer copper layers (2 x 70 μ m Cu) and 2 inner copper layer (2 x 35 μ m Cu). A thermal via (diameter = 0.3 mm and 25 μ m plating) array was applied under the exposed pad and connected the top layer and the inner layers to bottom layers of JEDEC PCB. T_A = 25°C; IC dissipates 1 W

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For further information visit https://www.jedec.org

Datasheet

4 Switching regulator

4 Switching regulator

The TLD6099-2ES implements a dual channel controller suitable for Boost-to-ground, Boost-to-battery, Buck-to-battery, SEPIC and Flyback configurations. The two channels work independently.

Each channel has two distinct control loops:

- A current control loop
- A voltage control loop

Each channel regulates the output current as long as the feedback voltage on VFB1,2 pin is below the VFB1,2 voltage mode ON threshold ($V_{VFB1,2_VM(ON)}$). The voltage control loop takes over and regulates the output voltage once the VFB1,2 reference voltage ($V_{VFB1,2_REF}$) is reached.

The controller generates two independent PWM signals by sensing the inductor peak currents and the output of the internal error amplifiers. The control signals are applied to the internal gate drivers connected to SWO1,2 pin to drive the external n-channel MOSFETs.

4.1 Soft start

The soft start routine has 2 functionalities:

- Limiting the input current and output overshoot
- Guaranteeing that the system output reaches the target value in a reasonable time even when being operated in PWM dimming with low duty cycles

Each channel performs its own soft start routine independently.

The first rising edge on PWMI1,2 pin enables the soft start routine.

It is then performed in the following cases:

- At start-up
- After an overvoltage on FBH1,2 pin
- After an overtemperature fault
- After an undervoltage on IVCC pin

The soft start is applied after a short to ground fault and retriggered every t_{FAULT} in case of continuous presence of the fault.

The operation of the soft start is conditioned by the analog output adjustment.

During the soft start, the switching regulator adjusts the PWM signal to make the voltage between FBH1,2 and FBL1,2 evolve from 0 to $V_{\text{REF}(100\%)}$ in t_{SS} time. The evolution is performed in 15 steps if the analog adjustment is not applied, otherwise the intended steady-state is reached before the soft start ends.

An ON time extension of the PWM dimming pulses is applied to ensure a reasonable power-up time when a low duty cycle dimming is applied.

4 Switching regulator

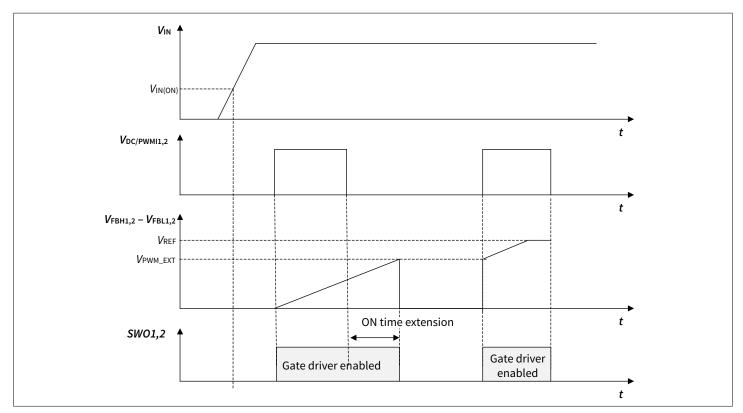


Figure 3 Soft start timing diagram (the linear waveform of V_{VFBH}-V_{VFBL} is an example of possible scenario)

The ON time extension is triggered if:

- The applied PWM dimming signal has an ON time shorter than $t_{\rm SS}$ during the soft start and
- The voltage across FBH1,2 and FBL1,2 is lower than the reference voltage during PWM extension $V_{\text{PWM_EXT}}$ at the end of the ON time of the PWM signal

The ON time extension persists as long as the voltage across FBH1,2 and FBL1,2 reaches V_{PWM EXT.}

The $V_{\text{PWM_EXT}}$ is limited by the analog output adjustment down to a minimum reference voltage during ON time extension $V_{\text{PWM_MIN.}}$

For the first 3 steps of the V_{REF} signal, the V_{PWM} EXT is higher than V_{REF} .

If the reference voltage across FBH1,2 and FBL1,2 adjusted by analog adjustment feature is lower than the $V_{\text{PWM_MIN}}$ the ON time extension ends after t_{SS} .

14

4 Switching regulator

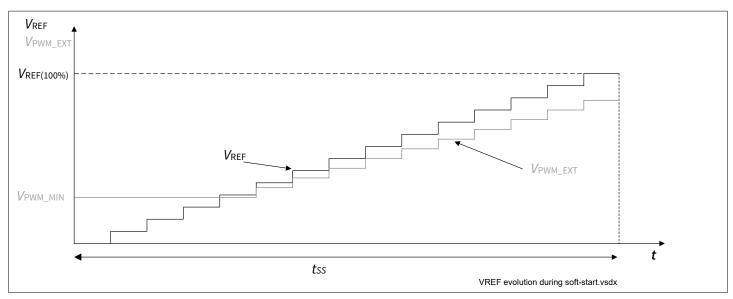


Figure 4 V_{REF} and $V_{\text{PWM_EXT}}$ waveforms during the soft start routine without analog output adjustment

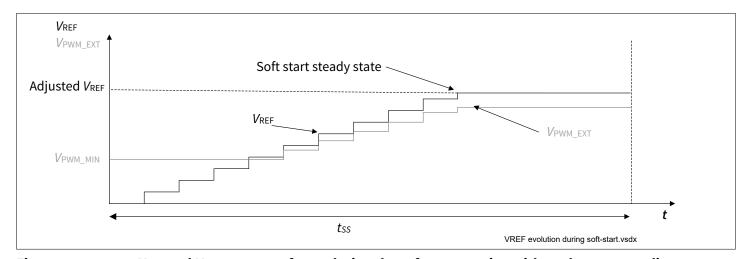


Figure 5 V_{REF} and V_{PWM} EXT waveforms during the soft start routine with analog output adjustment

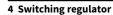
If the ON time extension ends before t_{SS} elapsed, the ON time extension is retriggered in the following PWM cycle, in case the voltage between FBH1,2 and FBL1,2 is once again lower than V_{PWM} EXT.

When the ON time extension ends, the remaining part of the soft start is allowed to evolve during the following ON time of the PWM dimming signal. In this case the actual duration of soft start could be longer than t_{SS} .

Datasheet

4 Switching regulator

4.2 Electrical characteristics


Table 5 Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or condition	P-Numbe
		Min.	Тур.	Max.			
Regulator		'					
VFB1,2 reference voltages (voltage loop)	V _{VFB1,2_REF}	1.568	1.6	1.632	V	-	PRQ-172
Current loop reference voltages	V _{REF1,2(100%)}	144.75	150	155.25	mV	Differential signal (not referred to ground) $V_{\text{REF1,2}} = V_{\text{FBH1,2}} - V_{\text{FBL1,2}};$ $V_{\text{SET1,2}} = 5V$	PRQ-174
Current loop reference voltages	V _{REF1,2(40%)}	57	60	63	mV	Differential signal (not referred to ground) V _{SET1,2} = 940 mV	PRQ-176
Current loop reference voltages	V _{REF1,2(0%)}	-	_	10	mV	Differential signal (not referred to ground) V _{SET1,2} = 100 mV	PRQ-178
Transconductance error amplifier voltage loop	g _{m1}	_	0.95	_	mS	1)	PRQ-179
Transconductance error amplifier current loop	g_{m2}	-	1.6	-	mS	1)	PRQ-180
Switch current limit thresholds	V _{SWCS1,2_TH}	80	100	120	mV	-	PRQ-182
Maximum duty cycle in adjust. freq. mode	D _{MAX}	91	_	_	%	$R_{\text{FREQ/SYNC/}}$ SPREAD = 27 k Ω	PRQ-183
Maximum duty cycle in low frequency sync mode	$D_{MAX(LF)}$	88	-	-	%	f _{SW} = 500 kHz	PRQ-184
Maximum duty cycle in high frequency sync mode	D _{MAX(HF)}	85	_	-	%	f _{SW} = 2.2 MHz	PRQ-185
Soft start time	t_{SS}	1.8	2	2.2	ms	1)	PRQ-186
Reference voltage during PWM extension	V _{PWM_EXT}	-	0.8* V _{REF1,2}	_	V	$V_{\text{PWM_EXT}} > V_{\text{PWM_MIN}}$	PRQ-187
Minimum reference voltage during PWM extension	V _{PWM_MIN}	_	31.5	_	mV	1)	PRQ-188
Input current at pin FBH1, FBH2	I _{FBH1,2}	-	120	160	μΑ	$V_{\text{FBH}_{1,2}} - V_{\text{FBL}_{1,2}} = 0.15 \text{ V}$ $V_{\text{FBH}_{1,2}} = 60 \text{ V}$	PRQ-194

(table continues...)

Datasheet

Table 5 (continued) Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Input current at FBL1, FBL2	I _{FBL1,2}	-	50	70	μΑ	$V_{\text{FBH}1,2} - V_{\text{FBL}1,2} = 0.15 \text{ V}$ $V_{\text{FBL}1,2} = 60 \text{ V}$	PRQ-196
Power supply undervoltage shutdown	V _{IN(OFF)}	2.5	_	4.5	V	V _{IN} decreasing	PRQ-201
Power supply minimum startup voltage	V _{IN(ON)}	-	_	5.5	V	V _{IN} increasing	PRQ-202
Power supply current consumption	I _{IN}	-	8	12	mA	$V_{\text{PWMI1,2}} = 0 \text{ V}$ $V_{\text{SET1,2}} = V_{\text{IVCC}}$ $R_{\text{FREQ/SYNC/SPREAD}} = 33 \text{ k}\Omega$ $R_{\text{FAULT1,2}} = 57 \text{ k}\Omega$ no faults detected	PRQ-204
Gate driver for external	switch						
Gate drivers peak output current	I _{SWO1,2}	1	-	-	A	V _{SWO1,2} increasing 1 V to 4 V Current flows out of pin	PRQ-206
Gate drivers peak output current	I _{SWO1,2}	1	-	-	A	V _{SWO1,2} decreasing 4 V to 1 V	PRQ-208
Gate drivers output rise time	t _{R_SWO1,2}	-	-	20	ns	1) $C_{L_SWO1,2} = 3.3 \text{ nF}$ $V_{SWO1,2} \text{ increasing } 1 \text{ V to}$ 4 V	PRQ-210
Gate drivers output fall time	t _{F_SWO1,2}	-	-	20	ns	1) C _{L_SWO1,2} = 3.3 nF V _{SWO1,2} decreasing 4 V to 1 V	PRQ-212
Gate driver high side resistance	R _{SWO_HS}	-	1	3	Ω	1) I _{SWO} = -10 mA	PRQ-213
Gate driver low side resistance	R _{SWO_LS}	-	1	3	Ω	1) / _{SWO} = 10 mA	PRQ-214

17

¹⁾ Not subject to production test, specified by design

5 Linear regulator

5 Linear regulator

The device incorporates a linear regulator to generate a 5 V output used to supply the internal gate drivers and, through IVCC pin, other auxiliary devices on the PCB (for example a microcontroller and resistor dividers).

The maximum output current of the linear regulator is limited to the IVCC output current limit I_{VCC}.

If the load on IVCC (gate drivers plus connected devices on PCB) draws more than I_{IVCC} the linear regulator output voltage decreases.

The linear regulator starts to deliver current to IVCC pin when the input voltage V_{IN} goes above the power supply minimum start up voltage V_{IN} (ON) for a time longer than IVCC start time t_{ST} .

A low ESR capacitor has to be connected from IVCC to ground (C_{IVCC} in the figure) to stabilize the output voltage of the linear regulator.

The ESR of the capacitor C_{IVCC} has to be lower than IVCC buffer capacitor ESR $R_{\text{IVCC}(ESR)}$.

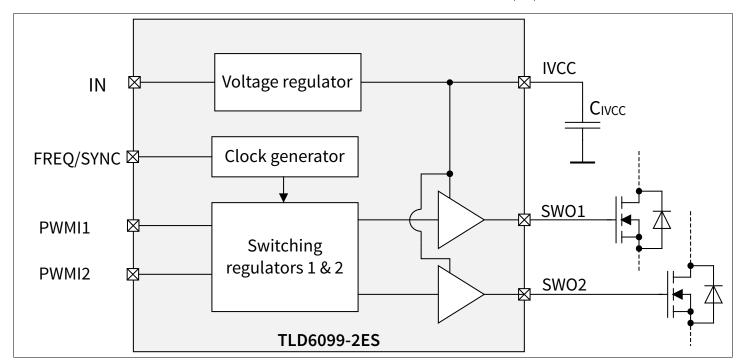


Figure 6 Block diagram of the linear regulator

5.1 Undervoltage protection for the external switching MOSFET

During the ON time of the switching PWM signal, the gate driver has to bias the switching NMOS in deep ohmic region to avoid the overheating of the MOSFET themselves. This is ensured by choosing a logic level MOSFET with a maximum threshold voltage lower than IVCC undervoltage switch-off threshold V_{IVCC} TH D.

TLD6099-2ES has an integrated undervoltage reset threshold circuit to disable the gate driver if the V_{IVCC} drops below the V_{IVCC} The gate driver are then enabled again when the V_{IVCC} goes above the IVCC undervoltage switch-on threshold V_{IVCC} The parameter of the respective to the switch of the same properties of the switch of the s

5 Linear regulator

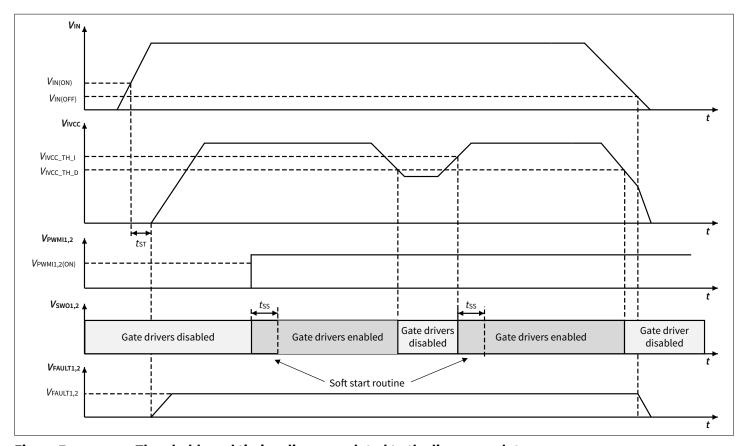


Figure 7 Thresholds and timing diagram related to the linear regulator

5.2 Electrical characteristics

Table 6 Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
IVCC output voltage	V _{IVCC}	4.85	5	5.15	V	$8 \text{ V} \le V_{\text{IN}} \le 36 \text{ V}; 0.1 \text{ mA} \le I_{\text{IVCC}} \le 40 \text{ mA}$	PRQ-222
IVCC output current limit	I _{IVCC}	51	-	100	mA	$8 \text{ V} < V_{\text{IN}} < 13.5 \text{ V}; V_{\text{IVCC}} < 4.5 \text{ V}; Current flows out of pin}$	PRQ-223
IVCC dropout voltage	V _{IVCC_DV}	-	_	0.5	٧	$V_{IN} = 5 \text{ V}; I_{IVCC} < 20 \text{ mA}$	PRQ-224
IVCC start time	t _{ST}	-	-	300	μs	1) V _{IN} slew rate higher than 1 V/10 μs	PRQ-225
IVCC buffer capacitor	C _{IVCC}	1	4.7	10	μF	1)	PRQ-226
IVCC buffer capacitor ESR	R _{IVCC(ESR)}	_	-	0.2	Ω	Maximum value given for regulator stability	PRQ-227

Datasheet

5 Linear regulator

Table 6 (continued) Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values			Note or condition	P-Number
		Min.	Тур.	Max.			
IVCC undervoltage switch-off threshold	V _{IVCC_TH_D}	3.6	-	4.0	V	V _{IVCC} decreasing	PRQ-228
IVCC undervoltage switch-on threshold	V _{IVCC_TH_I}	_	_	4.5	V	V _{IVCC} increasing	PRQ-229

¹⁾ Not subject to production test, specified by design

 $\textbf{Note:} \qquad \textit{Select external switching MOSFET with worst case threshold voltage } V_{\mathsf{GS(th)}} \\ \textit{lower than minimum } V_{\mathsf{IVCC_TH_D}} \\ \\ \textit{Note:} \qquad \textit{Select external switching MOSFET with worst case threshold voltage } V_{\mathsf{GS(th)}} \\ \textit{lower than minimum } V_{\mathsf{IVCC_TH_D}} \\ \textit{Note:} \\ \textit{Note:} \\ \textit{Select external switching MOSFET with worst case threshold voltage } V_{\mathsf{GS(th)}} \\ \textit{Note:} \\ \textit{N$

6 Switching frequency setup and synchronization

The DC-DC switching frequency is adjusted by a resistor placed from FREQ/SYNC/SPREAD pin to ground or by providing a digital clock to this pin. The device incorporates also a spread spectrum modulator to reduce the design effort to fulfill the EMI compliance.

If an external clock is provided, the device accepts a digital clock in these two working windows:

- Synchronization low frequency capture range $f_{FREO/SYNC/SPREAD(LF)}$ (low frequency synchronization mode)
- Synchronization high frequency capture range $f_{FREO/SYNC/SPREAD(HF)}$ (high frequency synchronization mode)

Outside these ranges, the device does not recognize a valid clock and then the behavior of the regulator can be out of specification.

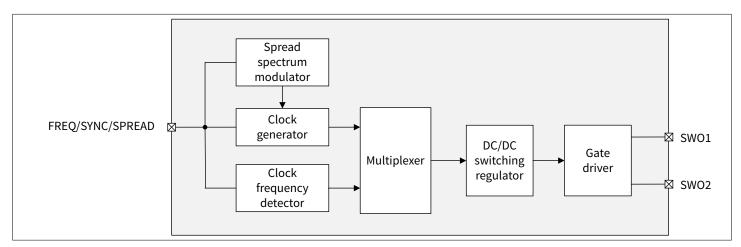


Figure 8 Diagram of switching frequency adjustment and synchronization blocks

To limit the input current spikes and then to relax the input filter requirements, SWO2 is in phase opposition to SWO1. This means SWO2 is activated with a $1/(2*f_{SWO})$ delay respect to SWO1.

6.1 Switching frequency setup with external resistor

The resistor placed on FREQ/SYNC/SPREAD pin adjusts the frequency of the DC-DC and enables or disables the spread spectrum modulator.

The resistor placed between FREQ/SYNC/SPREAD pin and ground adjusts switching frequency of the regulator as follows:

- If the bias resistor is in the R_{FREQ_SpreadSpectrum(ON)} range the spread spectrum is activated and the switching frequency is adjusted in f_{SWO} range
- If the bias resistor is in the R_{FREQ_SpreadSpectrum(OFF)} range the spread spectrum is deactivated and the switching frequency is adjusted in f_{SWO} range
- If the resistor is below $R_{\sf FREQ_HF(ON)}$ the spread spectrum is deactivated and the switching frequency is fixed at $f_{\sf SWO_HS}$

Values out of these resistor sets are not allowed.

The relationship between the biasing resistor and switching frequency with spread spectrum activated is

$$f_{SW} = \frac{1}{\left(1.11 \cdot 10^{-9} \cdot R_{FREQ/SYNC/SPREAD}\right)} \tag{1}$$

The relationship between the biasing resistor and the switching frequency with the spread spectrum not active is

$$f_{SW} = \frac{1}{\left(1.11 \cdot 10^{-10} \cdot R_{FREQ/SYNC/SPREAD}\right)} \tag{2}$$

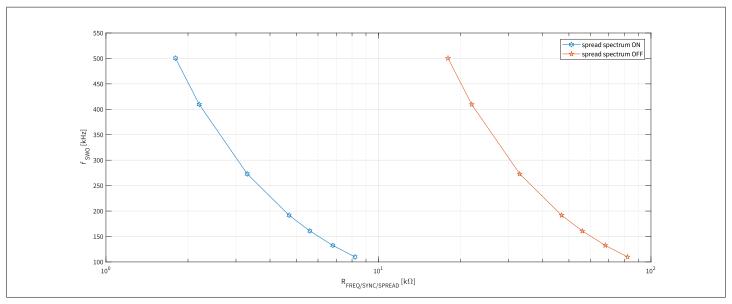


Figure 9 Switching frequency versus $R_{\text{FREQ/SYNC/SPREAD}}$

6.1.1 Electrical characteristics

Table 7 Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Switching frequency	f _{SWO_SSM(OFF)}	288	333	378	kHz	$R_{\text{FREQ/SYNC/SPREAD}} = 27 \text{ k}\Omega$	PRQ-238
Switching frequency	f_{SWO_HF}	2	2.2	2.4	MHz	$R_{\text{FREQ/SYNC/SPREAD}} = 100\Omega$	PRQ-446
FREQ/SYNC/SPREAD output current	/FREQ/SYNC/ SPREAD	-	-	3	mA	V _{FREQ/SYNC/SPREAD} = 0 V Current flowing out of pin	PRQ-239
FREQ/SYNC/SPREAD output voltage	V _{FREQ/SYNC/} SPREAD_SSM(OFF)	0.72	0.8	0.88	V	$R_{\text{FREQ/SYNC/SPREAD}} = 27 \text{ k}\Omega$	PRQ-240
Biasing resistor FREQ/ SYNC/SPREAD spread spectrum ON	R _{FREQ_} SpreadSpe ctrum(ON)	1.8	-	9	kΩ	-	PRQ-443
Biasing resistor FREQ/ SYNC/SPREAD spread spectrum OFF	R _{FREQ_} SpreadSpe ctrum(OFF)	18	-	90	kΩ	-	PRQ-444
Biasing resistor FREQ/ SYNC/SPREAD/ high frequency	R _{FREQ_HF(ON)}	_	_	100	Ω	-	PRQ-445

Spread Spectrum 6.1.2

The spread spectrum modulation technique significantly reduces the electromagnetic harmonics emission at the lower frequency range of the spectrum (f < 30 MHz).

This technique is enabled by changing the switching frequency over the time. The final result is the movement over a broad band of the energy associated with the peaks of the electromagnetic harmonics emission.

The switching frequency is modulated with a triangular shape digitalized in 7 steps equally distributed over the entire frequency span (2 times the frequency deviation f_{DEV}).

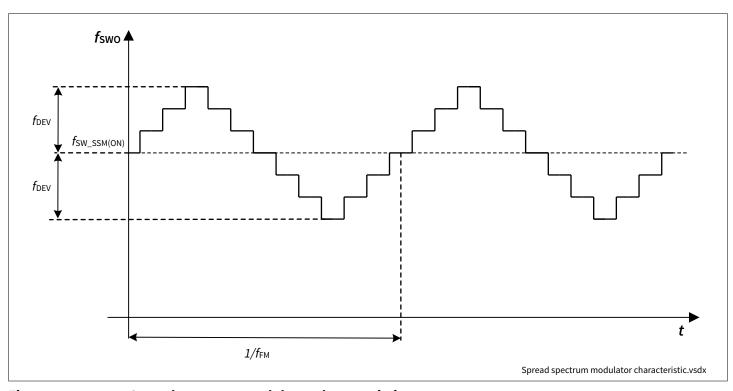


Figure 10 Spread spectrum modulator characteristic

6.1.2.1 **Electrical characteristics**

Electrical characteristics Table 8

 V_{IN} = 8 V to 36 V; T_{IJ} = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Average switching frequency	f _{SWO_SSM(ON)}	288	333	378	kHz	1) $R_{\text{FREQ/SYNC/SPREAD}} = 2.7 \text{ k}\Omega$	PRQ-243
Modulation frequency	f_{FM}	6.75	7.5	8.25	kHz	1) 1.8 $k\Omega \le R_{FREQ/SYNC/SPREAD} \le 9 k\Omega$	PRQ-244
Frequency deviation	f_{DEV}	0.08* f _{SWO}	0.10* f _{SWO}	-	kHz	1) $1.8 \text{ k}\Omega \leq R_{\text{FREQ/SYNC/}}$ $\text{SPREAD} \leq 9 \text{ k}\Omega$	PRQ-245

(table continues...)

Table 8 (continued) Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or condition	P-Number	
		Min.	Тур.	Max.			
FREQ/SYNC/SPREAD output voltage	V _{FREQ/SYNC/} SPREAD_SSM(ON)	0.72	0.8	0.88	V	$R_{\text{FREQ/SYNC/SPREAD}} = 2.7 \text{ k}\Omega$	PRQ-246

¹⁾ Not subject to production test, specified by design

6.2 Synchronization with external clock (low frequency mode)

The switching frequency is synchronized with an external clock source applied on FREQ/SYNC/SPREAD pin if the frequency is in the synchronization low frequency capture range $f_{\text{FREQ/SYNC/SPREAD(LF)}}$ and the duty cycle is in the synchronization input duty cycle range $DC_{\text{FREO/SYNC/SPREAD}}$.

The device detects the external clock source if the voltage on FREQ/SYNC/SPREAD exceeds the two thresholds:

- The synchronization input high voltage V_{FREO/SYNC/SPREAD(H)} during the positive pulse,
- The synchronization input low voltage $V_{\mathsf{FREQ/SYNC/SPREAD(L)}}$ during the negative pulse.

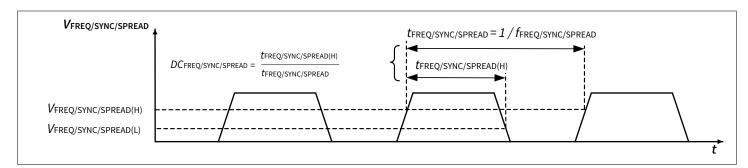


Figure 11 Timing diagram when synchronization mode is enabled

6.2.1 Electrical characteristics

Table 9 Electrical characteristics

 V_{IN} = 8 V to 36 V; T_{J} = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter Symbol		Values			Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Synchronization input high voltage	V _{FREQ/SYNC/} SPREAD(H)	3.0	_	-	V	-	PRQ-250
Synchronization input low voltage	V _{FREQ/SYNC/} SPREAD(L)	-	-	0.8	V	-	PRQ-251
Synchronization input duty cycle range	DC _{FREQ/SYNC/} SPREAD	40	_	60	%	1)	PRQ-252

¹⁾ Not subject to production test, specified by design

Datasheet

6 Switching frequency setup and synchronization

6.3 Synchronization with external clock (high frequency range)

High switching frequency enables a system cost down due to reduced value for the reactive components.

The high frequency synchronization is enabled if the input clock is in the synchronization high frequency capture range $f_{\text{FREQ/SYNC/SPREAD(HF)}}$.

Voltage threshold levels on FREQ/SYNC/SPREAD pin are the same as in the low frequency synchronization mode.

7 Analog output adjustment

7 Analog output adjustment

Each channel can adjust the reference voltage $V_{\text{REF1,2}}$ across FBH1,2 and FBL1,2 pins (thus adjusting the output currents) by monitoring the analog voltage on the respective SET1,2 pin ($V_{\text{SET1,2}}$).

The analog output adjustment acts independently channel by channel without any relations between the channels.

The SWO1,2 NMOS gate driver is disabled if the voltage applied on the SET1,2 pin is lower than $V_{\text{SET1,2(NOSW)}}$.

The SET1,2 pin is connected to a voltage higher than $V_{\text{SET1,2(100\%)}}$ (e.g. connecting SET1,2 pin to IVCC pin) to exclude the output current adjustment feature.

The voltage on SET1,2 pins influences the voltage reference of the corresponding channel following the behavior depicted in the diagram below.

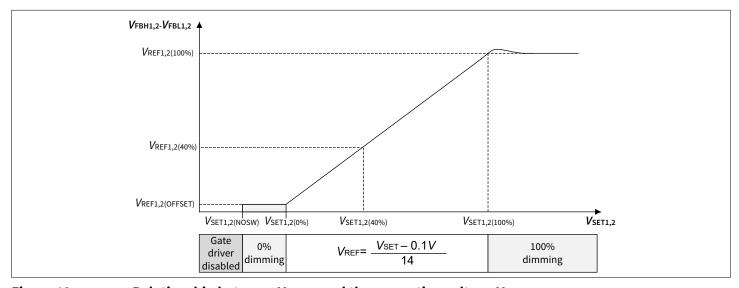


Figure 12 Relationship between $V_{SET1,2}$ and the respective voltage $V_{REF1,2}$

The SET pin can also be wired to an external thermistor (usually mounted on the LED module) to perform a thermal protection.

7.1 Electrical characteristics

Table 10 Electrical characteristics

 V_{IN} = 8 V to 36 V; T_{J} = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
SET1 SET2 input voltage 100%	V _{SET1,2(100%)}	-	2.2	_	V	1)	PRQ-260
SET1 SET2 input voltage 40%	V _{SET1,2(40%)}	-	940	-	mV	1)	PRQ-262
SET1 SET2 input voltage 0%	V _{SET1,2(0%)}	-	100	-	mV	1)	PRQ-265
SET1 SET2 input voltage no switching activity	V _{SET1,2(NOSW)}	_	-	50	mV	-	PRQ-266

¹⁾ Not subject to production test, specified by design

Datasheet

8 Dimming functions

8 Dimming functions

The TLD6099-2ES offers two dimming inputs (one for each channel) for pulse width modulating (PWM) the output current.

This modulation is beneficial to reduce the average current at output (and then the brightness of the LEDs), without showing color shift on the light produced by the LEDs.

This feature is implemented on both channels and it acts independently channel by channel without any relation between channels.

8.1 Digital PWM dimming

Each channel of the TLD6099-2ES has a dedicated input pin to modulate the average current in a LED string with a digital pattern.

Each channel recognizes a digital PWM dimming signal on PWMI1,2 pin if:

- The minimum voltage on PWMI1,2 pin is lower than V_{PWMI1,2(OFF)}
- The maximum voltage on PWMI1,2 pin is higher than V_{PWMI1,2(ON)}
- The maximum frequency on PWMI1,2 is less than 1 kHz
- · No faults are detected

If a valid pattern is recognized and the V_{PWMI} is higher than $V_{\text{PWMI1,2(ON)}}$ the NMOS gate driver is enabled, else the NMOS gate driver is disabled. When the NMOS gate driver is disabled the voltage at COMP pin is kept stable.

8.1.1 Electrical characteristics

Table 11 Electrical Characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
PWMI1, PWMI2 input voltage high threshold	V _{PWMI1,2(ON)}	2.0	-	-	V	-	PRQ-290
PWMI1, PWMI2 input voltage low threshold	V _{PWMI1,2(OFF)}	-	_	0.8	V	-	PRQ-292
PWMI1 PWMI2 input current	I _{PWMI1,2}	-	_	200	μΑ	$V_{\text{PWMI1,2}} = V_{\text{IN}}$	PRQ-294
PWMI1 PWMI2 input current	I _{PWMI1,2}	-	-	1	μΑ	V _{PWMI1,2} = 0.8 V	PRQ-296
PWMI1, PWMI2 minimum ON time	t _{PWMI1,2(ON)}	6	-	-	μs	-	PRQ-298

9 Adaptive output discharge

9 Adaptive output discharge

Load variation could generate current spikes that reduce the LED reliability. TLD6099-2ES protects the load by enabling the adaptive output discharge (AOD) feature.

The AOD drives a NMOS in parallel to the output capacitance to quickly adjust the output voltage when the load has a reduced number of LEDs in series.

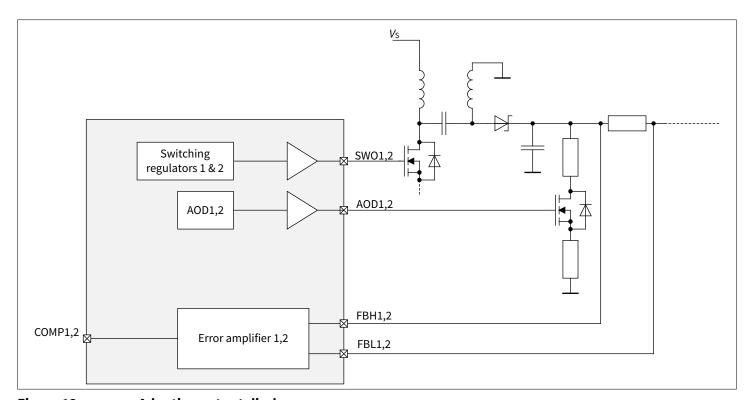


Figure 13 Adaptive output discharge

The adaptive output discharge feature turns ON the external AOD NMOS when the voltage across FBH1,2 and FBL1,2 exceeds $V_{\text{REF1,2}}$ by $V_{\text{AOD ON}}$ for a time longer than $t_{\text{AOD ON}}$.

The external AOD NMOS is turned off when the voltage across FBH1,2 and FBL1,2 goes lower than ($V_{\text{REF1,2}} + V_{\text{AOD_ON}} - V_{\text{AOD_HYS}}$).

The adaptive output discharge activation threshold is modulated by the analog output adjustment (analog dimming) down to a minimum reference voltage $V_{AOD-ON(MIN)}$.

9 Adaptive output discharge

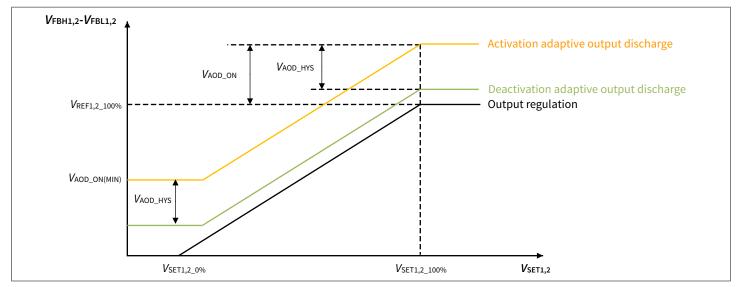


Figure 14 AOD activation as function of V_{SET}

During the soft-start routine the adaptive output discharge feature is enabled.

Electrical characteristics 9.1

Table 12 **Electrical characteristics**

Parameter	Symbol		Values			Note or condition	P-Number
		Min.	Тур.	Max.			
Activation adaptive output discharge	V _{AOD_ON}	15	22.5	30	mV	$V_{\text{FBH}1,2}$ = 60 V Voltage $V_{\text{FBH}1,2}$ - $V_{\text{FBL}1,2}$ increasing	PRQ-430
Hysteresis adaptive output discharge	V _{AOD_HYS}	10	15	_	mV	$V_{\text{FBH1,2}}$ = 60 V Voltage $V_{\text{FBH1,2}}$ - $V_{\text{FBL1,2}}$ decreasing	PRQ-431
Activation time	t_{AOD_ON}		_	200	ns	1)	PRQ-432
Minimum activation adaptive output discharge	V _{AOD_ON(MIN)}	50	62.5		mV	$V_{\text{FBH1,2}} = 60 \text{ V}$ $V_{\text{Oltage } V_{\text{FBH1,2}} - V_{\text{FBL1,2}}$ increasing	PRQ-436
Gate driver for external	switch						
Gate drivers peak output current	I _{AOD1,2}	150	-	-	mA	1) VAOD1,2 increasing 1 V to 4 V Current flows out of pin	PRQ-440
Gate drivers peak output current (table continues)	I _{AOD1,2}	150			mA	V _{AOD1,2} decreasing 4 V to 1 V	PRQ-449

Datasheet

9 Adaptive output discharge

Table 12 (continued) Electrical characteristics

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Gate drivers output rise time	$t_{\mathrm{R_AOD1,2}}$	-	-	100	ns	1) C _{L_AOD1,2} = 3.3 nF VAOD1,2 increasing 1 V to 4 V	PRQ-441
Gate drivers output fall time	t _{F_AOD1,2}	-	-	100	ns	1) C _{L_AOD1,2} = 3.3 nF V _{AOD1,2} decreasing 4 V to 1 V	PRQ-442

 $^{{\}it 1)} \qquad {\it Not subject to production test, specified by design}$

Datasheet

10 Protections and fault management

10 Protections and fault management

The fault conditions are identified by checking the status of IVCC and FAULT1,2 pins. The faults on the two channels are independently managed and reported.

Each channel of the device disables the gate drivers and reports a fault on its FAULT1.2 pin if it detects:

- · Short to ground
- Overtemperature
- Overvoltage on FBH1,2 pin

The faults are reported by raising the voltage on the respective FAULT1,2 pin to $V_{\text{FAULT1,2(FAULT)}}$.

The status of FAULT pin can be monitored by a microcontroller. In this case a series resistor $R_{\text{FAULT-uC}}$ has to be used between FAULT and the input pin of the microcontroller.

The fault pin is driven by an open drain structure. The maximum output current is I_{FAULT1,2(HIGH)}.

10.1 Electrical characteristics

Table 13 Electrical characteristics

 V_{IN} = 8 V to 36 V; T_{J} = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values		Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
FAULT1,2 output voltage with fault	V _{FAULT1,2(HIGH)}	4	_	_	V	1)	PRQ-336
FAULT1,2 output current with fault	I _{FAULT1,2(HIGH)}	-	-	6.5	mA	V _{FAULT} = 0 V Fault detected	PRQ-448
Fault period	t _{FAULT}	9	10	11	ms	1)	PRQ-337
Series resistance on FAULT pin	R _{FAULT-uC}	10	_	_	kΩ	1)	PRQ-451

¹⁾ Not subject to production test, specify by design

10.2 Short to ground

The short to ground detection feature protects each channel from an excess of current during a short circuit.

Each channel detects this fault if the voltage of VFB1,2 pin is lower than short to ground voltage threshold $V_{\text{FB1,2_S2G}}$ for a time longer than short to ground reaction time $t_{\text{S2G_RT}}$. After a fault time with short to ground t_{S2G} a soft start routine is triggered. The fault is released if the voltage on VFB1,2 pin is higher than ($V_{\text{FB1,2_S2G}} + V_{\text{FB1,2_S2G_HYST}}$) at the end of the soft start.

During soft-start routine, the short to ground detection is disabled and no faults are reported on FAULT1,2 pin.

The reaction to short to ground is:

- 1. The voltage on FAULT1,2 pin is raised to $V_{\text{FAULT1,2(HIGH)}}$ for t_{S2G} time
- 2. After a t_{S2G} time the soft-start routine is performed
- **3.** At the end of soft-start routine, the check on the voltage $V_{VEB1,2}$ is redone

If the fault is still present, the procedure is repeated, otherwise the channel restarts.

10 Protections and fault management

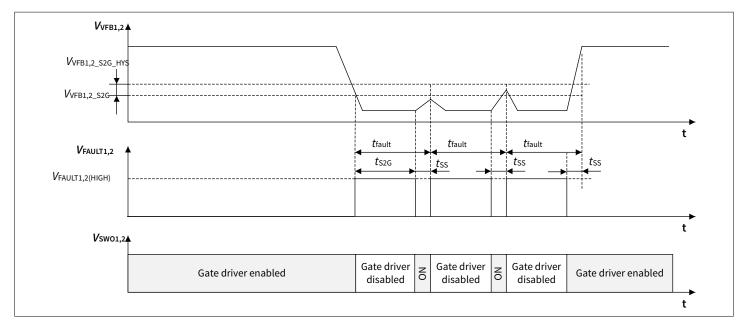


Figure 15 Timing diagram during short to ground detection

The faults are not detected when the voltage on PWMI1,2 pin is lower than $V_{\text{PWMI1,2(OFF)}}$.

10.2.1 Electrical characteristics

Table 14 Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Fault time with short to ground	t _{S2G}	7.2	8	8.8	ms	1)	PRQ-348
Short to ground reaction time	t _{S2G_RT}	4	_	20	μs	-	PRQ-349
Short to ground voltage threshold	V _{FB1,2_S2G}	93	100	107	mV	Voltage decreasing	PRQ-350
Short to ground voltage hysteresis	V _{FB1,2_S2G_HYST}	_	5	10	mV	1)	PRQ-351

¹⁾ Not subject to production test, specified by design

10.3 Output voltage regulation

Each channel implements an overvoltage protection by regulating the output voltage using the internal voltage loop.

The voltage loop is taking over the regulation when the voltage on VFB1,2 pin goes higher than $V_{\text{FB1,2_VM(ON)}}$. At this time the voltage on FAULT1,2 pin is raised to $V_{\text{FAULT1,2(HIGH)}}$.

The channel also reports no faults at FAULT1,2 pin when the voltage on VFB1,2 pin goes below $V_{\text{FB1,2_VM(OFF)}}$ to highlight the voltage loop is ineffective.

The reporting on FAULT1,2 pin is not active if the voltage on PWMI1,2 pin is lower than V_{PWMI1,2(OFF)}.

10 Protections and fault management

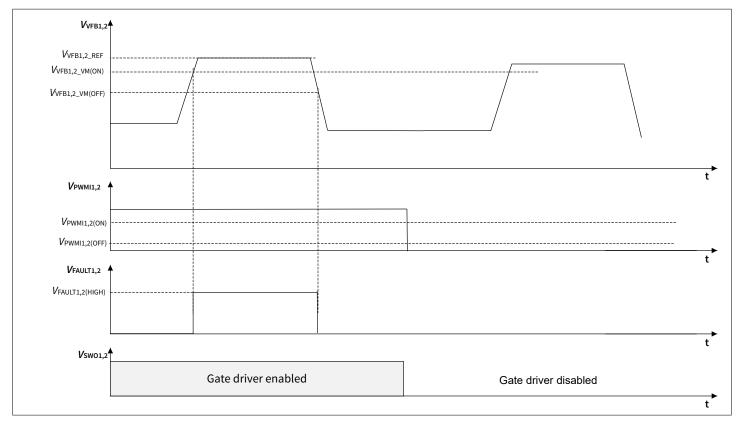


Figure 16 Timing diagram in voltage regulation

10.3.1 Electrical characteristics

Table 15 Electrical characteristics

 V_{IN} = 8 V to 36 V; T_{J} = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
VFB1, VFB2 overvoltage threshold	V _{VFB1,2_OV}	1.568	1.6	1.632	V	Voltage increasing	PRQ-361
VFB1, VFB2 input current	I _{VFB1,2}	-1	-0.1	1	μΑ	V _{FB1,2} = 1.6 V	PRQ-363
VFB1, VFB2 voltage mode ON thresholds	V _{VFB1,2_VM(ON)}	1.45	1.5	1.55	V	Voltage increasing	PRQ-366
VFB1, VFB2 voltage mode OFF threshold	V _{VFB1,2_VM(OFF)}	1.3	1.35	1.4	V	Voltage decreasing	PRQ-368

10.4 Overvoltage on FBH pin

The channels have a feature to protect FBH1,2 pin from a voltage higher than the maximum absolute rating. Each channel reacts to the fault by:

Disabling the respective SWO NMOS gate driver

10 Protections and fault management

- Raising the voltage of respective FAULTn pin to V_{FAULT1,2(HIGH)}
- After t_{FAULT} period, the device checks if the voltage on FBH pin is still higher than $V_{\text{FBH1,2(L)}}$

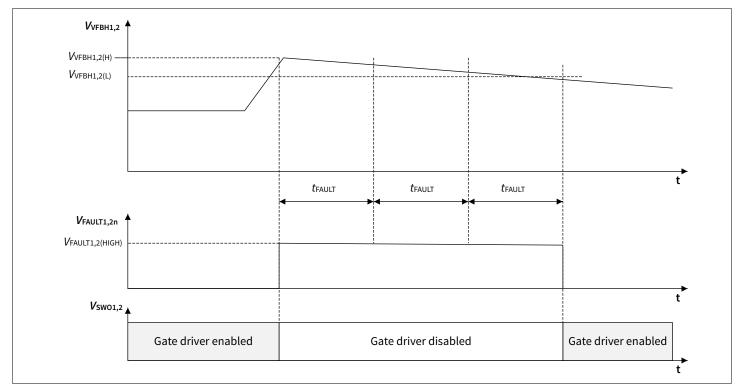


Figure 17 Timing diagram during overvoltage on FBH pin

When the fault disappears, the channel restarts with soft-start routine and no fault reported on FAULT1,2 pin. If the fault appears during the soft-start routine, it interrupts the soft-start for a t_{FAULT} time and then the routine restarts.

The fault is detected even when the voltage on PWMI1,2 pin is lower than V_{PWMI1,2(OFF)}.

10.4.1 Electrical characteristics

Table 16 Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol		Values			Note or condition	P-Number
		Min.	Тур.	Max.			
FBH1 FBH2 overvoltage upper threshold	V _{FBH1,2(H)}	72	_	75	V	V _{FBH1,2} increasing	PRQ-381
FBH1 FBH2 overvoltage lower threshold	V _{FBH1,2(L)}	65	_	_	V	V _{FBH1,2} decreasing	PRQ-383

10.5 Overtemperature

Thermal shutdown is an internal feature designed to prevent the device destruction and it is not intended for continuous use in normal operation.

If the junction temperature reaches the overtemperature shutdown $T_{J(SD)}$, the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator.

Datasheet

10 Protections and fault management

The junction temperature is checked each t_{FAULT} period, and when it is cooled down to $(T_{\text{J(SD)}}-T_{\text{J(SD_HYS)}})$ the device will automatically restart with a soft-start.

The thermal shutdown operates on both the channels.

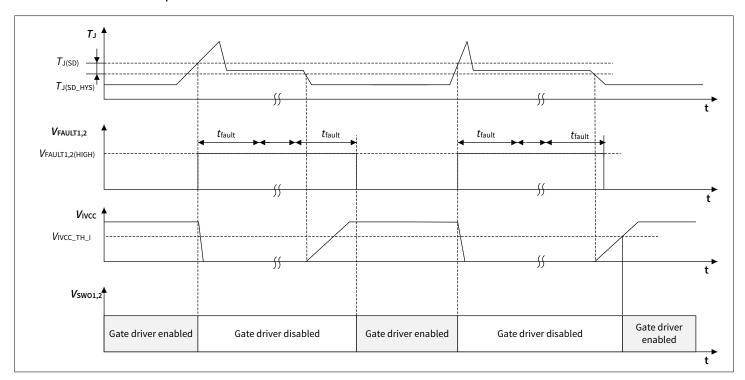


Figure 18 Timing diagram during overtemperature protection

10.5.1 Electrical characteristics

Table 17 Electrical characteristics

 $V_{\rm IN}$ = 8 V to 36 V; $T_{\rm J}$ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or condition	P-Number
		Min.	Тур.	Max.			
Overtemperature shutdown	$T_{J(SD)}$	160	175	190	°C	1)	PRQ-408
Overtemperature shutdown hysteresis	$T_{J(SD_HYS)}$	-	10	_	°C	1)	PRQ-409

¹⁾ Not subject to production test, specified by design

11 Application information

11 Application information

Note:

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

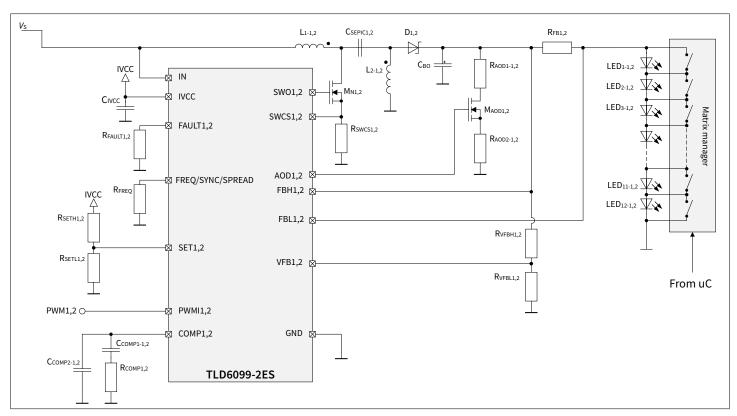


Figure 19 Application diagram

12 Package information

12 Package information

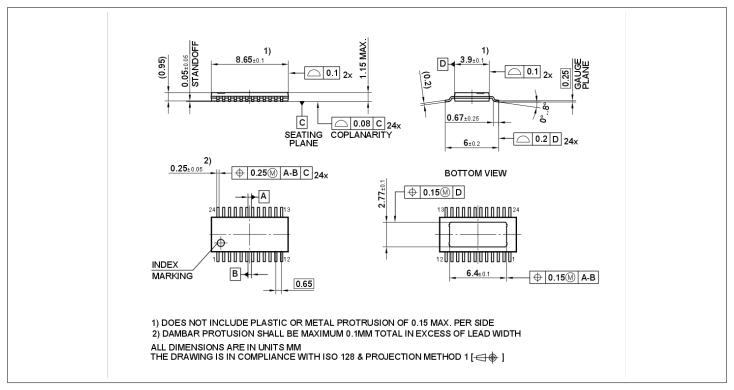


Figure 20 Package dimensions PG-TSDSO-24

Note:

Green product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

37

Further information on packages www.infineon.com/packages

Datasheet

13 Revision history

13 Revision history

13.1 Revision history

Document version	Date of release	Description of changes
Rev. 1.11	2024-09-17	Changed severity level
Rev. 1.10	2024-07-22	 Parameter update in PRQ-135 and PRQ-136
Rev. 1.00	2024-07-10	Initial document release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-09-17 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-yke1709888981843

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.