LITIX™ Power

TLD5045EJ - 700 mA High integration - DC/DC step-down converter

1 Overview

Description

The TLD5045EJ is a highly integrated smart LED buck controller with built in protection functions. The main function of this device is to drive single or multiple series connected LEDs efficiently from a voltage source (V_S) higher than the LED forward voltage by regulating a constant LED current (I_{LED}). The constant current regulation is especially beneficial for LED color accuracy and long LED lifetime. The built in freewheeling diode and switching transistor with current sense requires fewer external components and saves system costs. High flexibility is achieved by placing low power resistors to adjust output currents up to 700 mA and the regulator switching frequency (typ. 200 kHz). An integrated PWM dimming engine provides an LED dimming function by placing a simple RC network to GND. This feature is dedicated for decentralized light modules without microcontroller involvement. In addition to this, an integrated status pull-down transistor can be used to simulate a minimum current flow for decentralized modules to avoid a wrong open load detection by a high-side switch located in the body control module (BCM).

![Figure 1 - Simplified typical application](image-url)

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLD5045EJ</td>
<td>PG-DSO-8 EP</td>
<td>TLD5045</td>
</tr>
</tbody>
</table>

Datasheet

www.infineon.com
Potential applications

- Automotive LED driven exterior lighting: brake, tail, CHMSL, daytime running light, position light
- Automotive LED driven interior lighting: reading light, dome light, display backlighting

Features

- Constant current generation
- Wide input voltage range from 5 V to 40 V
- Peak current regulation
- Very low current consumption (< 2 µA) in sleep mode
- Integrated power transistor with low saturation voltage
- Integrated fast freewheeling diode
- Integrated load current sense resistor
- Integrated status pull-down transistor
- Overtemperature protection
- Switching frequency (typ. 200 kHz) adjustable via external RC network
- External PWM dimming input
- Integrated PWM dimming engine
- Analog dimming (output current adjustable via external low power resistor and possibility to connect PTC resistor for LED protection during overtemperature conditions)
- Stable switching frequency due to fix off-time concept with V_{REC} (supply voltage) feedforward
- Undervoltage and overvoltage shutdown with hysteresis
- Small thermally enhanced exposed heatslug SMD package
- Green product (RoHS) compliant

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100/101.
Table of Contents

1 Overview .. 1
2 Block diagram ... 4
3 Pin configuration .. 5
 3.1 Pin assignment .. 5
 3.2 Pin definitions and functions .. 5
4 General product characteristics ... 7
 4.1 Absolute maximum ratings .. 7
 4.2 Functional range .. 8
 4.3 Thermal resistance .. 8
5 General product characteristics ... 9
 5.1 General parameters ... 9
 5.2 Power supply monitoring .. 11
6 Enable, Dimming function and Thermal protection .. 12
 6.1 Description ... 12
 6.2 Electrical characteristics: Enable, Bias, Dimming function and Thermal protection ... 13
 6.2.1 PWM dimming with μC connected to TLD5045EJ PWMI pin 14
 6.2.2 Internal PWM dimming function .. 15
 6.3 Overtemperature protection of the device ... 16
7 Open load diagnosis ... 17
 7.1 Description ... 17
 7.2 Electrical characteristics: Open load diagnosis .. 17
 7.3 Open load diagnosis under different application conditions 18
 7.3.1 Light module application without μC ... 18
 7.4 Application with μC connected to TLD5045EJ IC .. 19
8 Application information ... 20
 8.1 Output peak current adjustment via R_{SET} .. 20
 8.2 Switching frequency determination .. 21
 8.3 TLD5045EJ in different LED applications .. 23
 8.3.1 TLD5045EJ in a Body Control Module (BCM) with μC Interface 23
 8.3.2 Decentralized Light Module application - DLM (Input configuration 1) 24
 8.3.3 Decentralized Light Module application - DLM (Input configuration 2) 25
 8.3.4 Decentralized Light Module application - DLM (Input configuration 3) 26
9 Package outlines .. 27
10 Revision history .. 28
2 Block diagram

The TLD5045EJ regulates the LED current by monitoring the load current (Peak current measurement) through the internal switch, cycle by cycle. When the current through the switch reaches the threshold I_{peak}, the switch is shut off and it is kept off for a time equal to t_{OFF}. Both I_{peak} and t_{OFF} can be fixed through few external components.

The peak current I_{peak} is fixed by a resistor connected to the SET pin while the t_{OFF} is fixed by RC network. As t_{OFF} is fixed and the duty cycle depends on VREC, the frequency depends on VREC as well. Refer to Chapter 8.2 for the evaluation of the switching frequency.

![Block diagram TLD5045EJ](image-url)
3 Pin configuration

3.1 Pin assignment

![Pin configuration TLD5045EJ](image)

Figure 3 Pin configuration TLD5045EJ

3.2 Pin definitions and functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
</table>
| 1 | VREC | Voltage recirculation output and internal supply input
This pin is the supply pin of the IC (see Figure 2). Furthermore the cathode of the integrated fast freewheeling diode is connected to this pin as well |
| 2 | ST | Status output
Open collector diagnostic output to indicate an open load failure
Refer to Chapter 7 for more details |
| 3 | EN | Enable input
Apply logic “high” signal to enable the device |
| 4 | SET | SET input
Connect a low power resistor to adjust the output current |
| 5 | PWMI | PWM input
PWM signal for dimming LEDs. Connect external R and C combination to achieve an auto
PWM-dimming function with defined frequency and duty cycle
1) internal PWM dimming function (external RC connected to GND)
2) external PWM dimming function (µC controls this pin)
Refer to Chapter 6 for more details |
| 6 | FREQ | FREQuency select input
Connect external resistor and capacitor to GND to set the off-time of the switching frequency |
| 7 | GND | Ground
Connect to system ground |
Pin definitions and functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
</table>
| 8 | SW | Integrated power-switch output
Collector of the integrated NPN-power transistor |
| EP | | Exposed pad
Connect to external heatspreading copper area with electrically GND (e.g. inner GND layer of the PCB via thermal vias) |
4 General product characteristics

4.1 Absolute maximum ratings

Table 2 Absolute maximum ratings

$T_J = -40°C$ to $+150°C$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREC (Pin 1) Recirculation and supply input</td>
<td>V_{REC}</td>
<td>-0.3 – 45 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.1</td>
</tr>
<tr>
<td>ST (Pin 2) Diagnostic status output voltage</td>
<td>V_{ST}</td>
<td>-0.3 – 45 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.2</td>
</tr>
<tr>
<td>ST (Pin 2) Diagnostic status current</td>
<td>I_{ST}</td>
<td>– 150 mA</td>
<td>–</td>
<td>–</td>
<td>P_4.1.3</td>
</tr>
<tr>
<td>EN (Pin 3) Enable input voltage</td>
<td>V_{EN}</td>
<td>-0.3 – 45 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.4</td>
</tr>
<tr>
<td>SET (Pin 4) Peak current adjust input voltage</td>
<td>V_{SET}</td>
<td>-0.3 – 6 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.5</td>
</tr>
<tr>
<td>PWMI (Pin 5) PWM input voltage</td>
<td>V_{PWMI}</td>
<td>-0.3 – 6 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.6</td>
</tr>
<tr>
<td>FREQ (Pin 6) Off-time adjustment Input</td>
<td>V_{FREQ}</td>
<td>-0.3 – 6 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.7</td>
</tr>
<tr>
<td>SW (Pin 8) Switch output</td>
<td>V_{SW}</td>
<td>-0.3 – 45 V</td>
<td>–</td>
<td>–</td>
<td>P_4.1.8</td>
</tr>
<tr>
<td>T_J Junction temperature</td>
<td>–</td>
<td>-40 – 150 °C</td>
<td>–</td>
<td>–</td>
<td>P_4.1.9</td>
</tr>
<tr>
<td>T_{STG} Storage temperature</td>
<td>–</td>
<td>-55 – 150 °C</td>
<td>–</td>
<td>–</td>
<td>P_4.1.10</td>
</tr>
</tbody>
</table>

ESD Susceptibility

1) Not subject to production test, specified by design.
2) ESD susceptibility HBM according to EIA/JESD 22-A 114B
3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as outside normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Functional range

Table 3 Functional range

$T_J = -40°C$ to $+150°C$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Extended supply voltage</td>
<td>V_{REC}</td>
<td>5</td>
<td>–</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Nominal supply voltage range</td>
<td>V_{REC}</td>
<td>8</td>
<td>–</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>Output current range</td>
<td>I_{OUT}</td>
<td>100</td>
<td>–</td>
<td>700</td>
<td>mA</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_{SW}</td>
<td>50</td>
<td>–</td>
<td>300</td>
<td>kHz</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td>-40</td>
<td>–</td>
<td>150</td>
<td>$°C$</td>
</tr>
</tbody>
</table>

1) Not subject to production test, specified by design

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

4.3 Thermal resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For further information visit https://www.jedec.org.

Table 4 Thermal resistance

$T_J = -40°C$ to $+150°C$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Junction to case</td>
<td>$R_{th JC}$</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>K/W</td>
</tr>
<tr>
<td>Junction to ambient (2s2p)</td>
<td>$R_{th JA}$</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>K/W</td>
</tr>
</tbody>
</table>

1) Not subject to production test, specified by design
2) Specified $R_{th JC}$ value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are ambient temperature) $T_A = 25°C$. Power switch and freewheeling diode dissipate 1 W
3) Specified $R_{th JA}$ value is according to JEDEC JESD51-2,-7 at natural convection on FR4 2s2p board; the product (chip and package) was simulated on a 76.2 \times 114.3 \times 1.5 mm3 board with two inner copper layers ($2 \times 70 \mu m$ Cu, $2 \times 35 \mu m$ Cu)
General product characteristics

5.1 General parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage drop over power transistor</td>
<td>$V_{\text{Drop,100}}$</td>
<td>– 0.8 –</td>
<td>V $I_{\text{peak}}=100,\text{mA}$</td>
<td>P_5.1.1</td>
<td></td>
</tr>
<tr>
<td>Voltage drop over power transistor</td>
<td>$V_{\text{Drop,700}}$</td>
<td>– 1.4 –</td>
<td>V $I_{\text{peak}}=700,\text{mA}$</td>
<td>P_5.1.2</td>
<td></td>
</tr>
<tr>
<td>Freewheeling diode forward voltage</td>
<td>$V_{\text{fw,100}}$</td>
<td>– 0.8 –</td>
<td>V $I_{\text{peak}}=100,\text{mA}$</td>
<td>P_5.1.3</td>
<td></td>
</tr>
<tr>
<td>Freewheeling diode forward voltage</td>
<td>$V_{\text{fw,700}}$</td>
<td>– 1.4 –</td>
<td>V $I_{\text{peak}}=700,\text{mA}$</td>
<td>P_5.1.4</td>
<td></td>
</tr>
<tr>
<td>Peak overcurrent limit</td>
<td>$I_{\text{peak,lim}}$</td>
<td>– 1.4 –</td>
<td>A –</td>
<td></td>
<td>P_5.1.5</td>
</tr>
<tr>
<td>Peak current accuracy</td>
<td>$I_{\text{peak,acc}}$</td>
<td>450 500 550 mA</td>
<td>V $V_{\text{REC}}=12,\text{V}$ $V_{\text{EN}}=5,\text{V}$ $V_{\text{LED}}=7.2,\text{V}$ $R_{\text{SET}}=14,\text{k}\Omega$ $L_{\text{SW}}=220,\mu\text{H}$ $f_{\text{SW}}=200,\text{kHz}$</td>
<td>P_5.1.6</td>
<td></td>
</tr>
<tr>
<td>Input undervoltage shutdown threshold</td>
<td>$V_{\text{REC,UVOFF}}$</td>
<td>– – 5 V</td>
<td>V $V_{\text{EN}}=5,\text{V}$ V_{REC} decreasing; see Figure 4</td>
<td>P_5.1.7</td>
<td></td>
</tr>
<tr>
<td>Input voltage startup threshold</td>
<td>$V_{\text{REC,UVON}}$</td>
<td>– – 6 V</td>
<td>V $V_{\text{EN}}=5,\text{V}$ V_{REC} increasing; see Figure 4</td>
<td>P_5.1.8</td>
<td></td>
</tr>
<tr>
<td>Input undervoltage shutdown hysteresis</td>
<td>$V_{\text{REC,UPhyst}}$</td>
<td>– 1 –</td>
<td>V $V_{\text{EN}}=5,\text{V}$</td>
<td>P_5.1.9</td>
<td></td>
</tr>
<tr>
<td>Input overvoltage shutdown threshold</td>
<td>$V_{\text{REC,OVOFF}}$</td>
<td>40.5 – – V</td>
<td>$V_{\text{EN}}=5,\text{V}$ V_{REC} increasing; see Figure 4</td>
<td>P_5.1.10</td>
<td></td>
</tr>
<tr>
<td>Input overvoltage startup threshold</td>
<td>$V_{\text{REC,OVON}}$</td>
<td>40 – – V</td>
<td>$V_{\text{EN}}=5,\text{V}$ V_{REC} decreasing; see Figure 4</td>
<td>P_5.1.11</td>
<td></td>
</tr>
<tr>
<td>Input overvoltage shutdown hysteresis</td>
<td>$V_{\text{REC,OPhyst}}$</td>
<td>– 1.5 – V</td>
<td>$V_{\text{EN}}=5,\text{V}$</td>
<td>P_5.1.12</td>
<td></td>
</tr>
<tr>
<td>Switch-on delay</td>
<td>t_{dON}</td>
<td>– 400 600 ns</td>
<td>– 1)</td>
<td>P_5.1.13</td>
<td></td>
</tr>
<tr>
<td>Switch-off delay</td>
<td>t_{dOFF}</td>
<td>– 500 850 ns</td>
<td>– 1)</td>
<td>P_5.1.14</td>
<td></td>
</tr>
<tr>
<td>Reference voltage at SET pin</td>
<td>V_{SET}</td>
<td>1.16 1.225 1.29 V</td>
<td>–</td>
<td>–</td>
<td>P_5.1.15</td>
</tr>
</tbody>
</table>

Table 5 Electrical characteristics: Buck regulator

$V_{\text{REC}} = 8\,\text{V to 36}\,\text{V}$; $T_{\text{j}} = -40\,\text{°C to} +150\,\text{°C}$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

1) Not recommended for nominal operation.
General product characteristics

Table 5 **Electrical characteristics: Buck regulator** (continued)

\[V_{REC} = 8 \text{ V to } 36 \text{ V}; \ T_J = -40^\circ \text{C to } +150^\circ \text{C}; \text{ all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-up current for FREQ pin</td>
<td>(I_{FREQ})</td>
<td>5</td>
<td>–</td>
<td>mA</td>
<td>P_5.1.16</td>
</tr>
<tr>
<td>Oscillator switch-off threshold</td>
<td>(V_{FREQ,\text{HIGH}})</td>
<td>–</td>
<td>3.2</td>
<td>V</td>
<td>P_5.1.17</td>
</tr>
<tr>
<td>Oscillator switch-on threshold</td>
<td>(V_{FREQ,\text{LOW}})</td>
<td>–</td>
<td>1.2</td>
<td>V</td>
<td>P_5.1.18</td>
</tr>
</tbody>
</table>

1) The minimum switching "on" time \(t_{\text{ON}} \) must be greater than \(t_{\text{ON}} + t_{\text{OFF}} \)
5.2 Power supply monitoring

Overvoltage and undervoltage shutdown

If the supply voltage V_{REC} drops below the input undervoltage threshold voltage ($V_{REC,UVOFF}$), the power stage is switched off.

If V_{REC} rises again and reaches the input undervoltage startup threshold $V_{REC,UVON}$ the power stage is restarted and the device is back to normal operation mode.

Same behaviour applies to overvoltage.

The internal status transistor switches off during an overvoltage or undervoltage event on V_{REC}.

A detailed description of the under and overvoltage behaviour is displayed in Figure 4 below.
Enable, Dimming function and Thermal protection

6 Enable, Dimming function and Thermal protection

6.1 Description

Enable function
A logic high signal on the EN pin turns the device on. A logic low signal on enable pin EN brings the device into sleep mode. The current consumption is typically 0.1 µA (Iq,OFF, see P_6.2.1). The EN pin has an internal pull-down resistor which ensures that the IC is in sleep mode and the power stage is switched off in case the pin EN is externally not connected.

Dimming function
The PWMI pin combines two functions:
1. PWM dimming via a µC (3.3 V and 5 V µC)
2. Integrated PWM dimming engine for standalone solutions in decentralized light module (frequency and duty cycle adjustable via external RC network)
A detailed description of the PWMI pin is displayed in Figure 5, below.

Figure 5 PWMI pin description
6.2 Electrical characteristics: Enable, Bias, Dimming function and Thermal protection

Table 6 Electrical characteristics: Enable, Bias, Dimming function and Thermal protection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
<th>Unit</th>
<th>Note or Test Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption, sleep mode</td>
<td>$I_{q,OFF}$</td>
<td>–</td>
<td>0.1</td>
<td>μA</td>
<td>P_6.2.1</td>
</tr>
<tr>
<td>Current consumption, active mode (Open Load)</td>
<td>$I_{q,OL}$</td>
<td>–</td>
<td>5</td>
<td>mA</td>
<td>P_6.2.2</td>
</tr>
<tr>
<td>Current Consumption, active mode</td>
<td>$I_{q,ON}$</td>
<td>–</td>
<td>10</td>
<td>mA</td>
<td>P_6.2.3</td>
</tr>
<tr>
<td>EN Turn on threshold</td>
<td>$V_{EN,ON}$</td>
<td>2.8</td>
<td>–</td>
<td>–</td>
<td>P_6.2.4</td>
</tr>
<tr>
<td>EN Turn off threshold</td>
<td>$V_{EN,OFF}$</td>
<td>–</td>
<td>0.8</td>
<td>–</td>
<td>P_6.2.5</td>
</tr>
<tr>
<td>EN high input current</td>
<td>$I_{EN,hi}$</td>
<td>–</td>
<td>100</td>
<td>μA</td>
<td>P_6.2.6</td>
</tr>
<tr>
<td>EN low input current</td>
<td>$I_{EN,lo}$</td>
<td>0</td>
<td>–</td>
<td>20 μA</td>
<td>P_6.2.7</td>
</tr>
<tr>
<td>PWMI Turn on threshold</td>
<td>$V_{PWMI,ON}$</td>
<td>–</td>
<td>1</td>
<td>– V</td>
<td>P_6.2.8</td>
</tr>
<tr>
<td>PWMI Turn off threshold</td>
<td>$V_{PWMI,OFF}$</td>
<td>–</td>
<td>2</td>
<td>– V</td>
<td>P_6.2.9</td>
</tr>
<tr>
<td>PWMI source current</td>
<td>I_{PWMI}</td>
<td>–</td>
<td>250</td>
<td>μA</td>
<td>P_6.2.10</td>
</tr>
<tr>
<td>Overtemperature shutdown</td>
<td>$T_{j,sd}$</td>
<td>150</td>
<td>175</td>
<td>– $^\circ$C</td>
<td>P_6.2.11</td>
</tr>
<tr>
<td>Overtemperature shutdown hysteresis</td>
<td>$T_{j,sd,hyst}$</td>
<td>–</td>
<td>15</td>
<td>– $^\circ$C</td>
<td>P_6.2.12</td>
</tr>
</tbody>
</table>

1) Specified by design. Not subject to production test.
6.2.1 PWM dimming with µC connected to TLD5045EJ PWMI pin

The PWMI pin can be used for PWM dimming. It is a commonly practiced dimming method to prevent color shift in LED light applications.

![Timing diagram for LED dimming with µC](image)

Figure 6 Timing diagram for LED dimming with µC
6.2.2 Internal PWM dimming function

The TLD5045EJ has an integrated PWM dimming engine. Via an external R_{PWM} and C_{PWM} network it is possible to achieve a PWM LED current waveform. The duty cycle and dimming frequency depends on the size of the external components (see Table 7). This feature is specially designed to achieve a standalone PWM dimming function without the usage of microcontrollers or external logic. This allows a flexible and cost effective usage of the device in a decentralized light module application (refer to application drawing Figure 14).

The advantage of a PWM dimming (to reduce the LED load current) is the change of light intensity only, at constant light color.

With an external RC network a PWM programming between 100 Hz and 1200 Hz and duty cycles between 4% and a maximum of 20% is possible. Table 7 displays the external components corresponding to the desired PWM frequency and duty cycle.

The following setup applies for Table 7:

- $V_{REC} = 12 \, \text{V}$
- $V_{LED} = 7.2 \, \text{V}$
- $L_{SW} = 220 \, \mu\text{H}$
- $R_{SET} = 14 \, \text{k}\Omega$

<table>
<thead>
<tr>
<th>R_{PWM} [k\Omega]</th>
<th>C_{PWM} [nF]</th>
<th>f_{PWM} [Hz]</th>
<th>DC [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
<td>64</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>216</td>
<td>32</td>
<td>200</td>
<td>4</td>
</tr>
<tr>
<td>216</td>
<td>21</td>
<td>300</td>
<td>4</td>
</tr>
<tr>
<td>216</td>
<td>16</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>87</td>
<td>150</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>87</td>
<td>75</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>87</td>
<td>50</td>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>87</td>
<td>37</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>44</td>
<td>265</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>44</td>
<td>132</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>44</td>
<td>88</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>44</td>
<td>66</td>
<td>400</td>
<td>20</td>
</tr>
</tbody>
</table>
6.3 Overtemperature protection of the device

A temperature sensor at the power stage causes the overheated device to switch off to prevent destruction. During overtemperature condition the internal ST transistor is switched off. Due to the autorestart function of the device the status signal will toggle accordingly. The timing of this pattern is dependant on the thermal capability of the application and can be used to distinguish between open load error and overtemperature condition. More details on the overtemperature behavior is displayed in Figure 7 below.

![Overtemperature behavior](image-url)
Open load diagnosis

7 Open load diagnosis

7.1 Description
The TLD5045EJ has an integrated open load during “on” diagnosis. During normal operation the ST pin (open collector output) is pulled to GND (internal transistor is on). The open load detection is realized by monitoring the switching behavior at the SW pin. During an open load event the integrated power stage at the SW pin will be statically turned on. If the output stage is turned on for more than the open load diagnosis delay time (t_{OL}) an open load condition is detected. An open load event will switch off the internal transistor. If a µC is connected to the ST pin an external pull-up resistor should be placed to achieve a logic “high” level for the proper open load error signalling reporting. For a timing diagram on the functionality of the open load diagnosis please refer to Figure 8 and Figure 9.

7.2 Electrical characteristics: Open load diagnosis

<table>
<thead>
<tr>
<th>Table 8</th>
<th>Functional Range</th>
</tr>
</thead>
</table>

$V_{REC} = 8\,\text{V to 36\,V},\ T_J = -40^\circ\text{C to }+150^\circ\text{C};$ all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open load diagnosis delay time</td>
<td>t_{OL}</td>
<td>20</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Voltage drop over internal ST transistor</td>
<td>$V_{Drop,ST}$</td>
<td>–</td>
<td>0.3</td>
<td>–</td>
</tr>
<tr>
<td>Open Load diagnosis current</td>
<td>I_{OL}</td>
<td>–</td>
<td>50</td>
<td>–</td>
</tr>
</tbody>
</table>
7.3 Open load diagnosis under different application conditions

7.3.1 Light module application without µC

Most of the time, the open load diagnosis of the whole light module is done via the current sense of the driver IC (e.g. PROFET) located in the light control module (or BCM module). See Figure 14 for a simplified application schematic. The light module needs to sink to a specified minimum current (e.g. 100 mA) to indicate normal operation. To guarantee this minimum current also under light load conditions (e.g. high efficiency LED bin at high supply voltages = min. load current required) system designers often have to place resistors in parallel to the application circuit (see resistors connected to supply lines in Figure 14). When using such resistors connected between Vs and GND, an open LED diagnosis is not possible anymore. To overcome this issue an internal transistor (open collector) is connected to the ST pin of the TLD5045EJ. During normal operation the ST pin is low and a minimum module current can be guaranteed.

As soon as an open load occurs the internal ST transistor switches off. Due to this, the current on the VREC pin decreases below the open load detection threshold of the driver IC located in the light control module.

Note: Open Load is only detected during the “on” cycle of the switching transistor. During the “off” state the ST signal displays what was detected in the previous “on” state.

Figure 8 Open load diagnosis using internal PWM mode
7.4 Application with µC connected to TLD5045EJ IC

The ST pin can be connected directly to a µC input. During an open load condition the ST transistor is off. An external pull-up resistor connected to V_{DD} is required to signal a logic high signal on the ST pin during an open load error. Please consider that this diagnosis functionality is only active if the device is in active mode (high potential at the EN pin).

Refer to application drawing Figure 13.

![Open load diagnosis via µC connected to ST pin](image)
8 Application information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

8.1 Output peak current adjustment via R_{SET}

The external resistor R_{SET} is used to adjust the peak current of the regulator. Maximum achievable peak current is 700 mA and minimum achievable peak current is 100 mA. The SET pin provides an internally fixed voltage level at typically 1.225 V. The following equation can be deduced:

$$I_{peak} = \left(\frac{1.225 \text{ V}}{R_{SET}} \right) \cdot 5710$$ \hspace{1cm} (8.1)

The factor 5710 is derived from following considerations:

- $I_{peak, \text{max}} = 700 \text{ mA} \left(R_{SET} = 10 \text{ k}\Omega \right)$
- $I_{peak, \text{min}} = 100 \text{ mA} \left(R_{SET} = 70 \text{ k}\Omega \right)$

Internal comparator voltage at SET pin = 1.225 V.

The circuitry behind the SET pin adjusts higher peak currents with lower R_{SET} values.

The R_{SET} value should be in the range from 10 kΩ to 70 kΩ to achieve the requested peak current range.

The following setup applies for the values displayed in Figure 10:

- $V_{REC} = 12 \text{ V}$
- $V_{LED} = 7.2 \text{ V}$
- $L_{SW} = 220 \mu\text{H}$

![I_peak vs. R_SET](image_url)

Figure 10 R_{SET} resistor selection
8.2 Switching frequency determination

With the external R_{FREQ}, C_{FREQ} and R_{COMP} network, it is possible to adjust the switching frequency of the regulator. To ensure a stable frequency over a broad range of input voltage V_{REC}, an external resistor R_{COMP} can be used.

The following setup applies to Table 9:

- $V_{\text{REC}} = 12\, \text{V}$
- $V_{\text{LED}} = 7.2\, \text{V}$
- $L_{\text{SW}} = 220\, \mu\text{H}$
- $R_{\text{SET}} = 14\, \text{k}\Omega$

![Figure 11](image) Setting t_{OFF} time of regulator with external $R_{\text{FREQ}}, C_{\text{FREQ}}$ network

<table>
<thead>
<tr>
<th>R_{comp} [kΩ]</th>
<th>R_{freq} [kΩ]</th>
<th>C_{freq} [pF]</th>
<th>f_{SW} [kHz]</th>
<th>t_{off} [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.8</td>
<td>17.1</td>
<td>220</td>
<td>50</td>
<td>6.47</td>
</tr>
<tr>
<td>115.8</td>
<td>7.7</td>
<td>220</td>
<td>100</td>
<td>3.19</td>
</tr>
<tr>
<td>69.7</td>
<td>4.6</td>
<td>220</td>
<td>150</td>
<td>2.12</td>
</tr>
<tr>
<td>46.8</td>
<td>3.1</td>
<td>220</td>
<td>200</td>
<td>1.59</td>
</tr>
<tr>
<td>72.8</td>
<td>4.9</td>
<td>100</td>
<td>250</td>
<td>1.27</td>
</tr>
<tr>
<td>52.7</td>
<td>3.5</td>
<td>100</td>
<td>300</td>
<td>1.06</td>
</tr>
</tbody>
</table>
Figure 12 Theoretical operating waveforms
8.3 TLD5045EJ in different LED applications

8.3.1 TLD5045EJ in a Body Control Module (BCM) with µC Interface

Figure 13 provides a simplified application with two high brightness LEDs in series. A µC controls the EN pin to put the device into sleep/active mode. Also the PWMI pin can be directly controlled via a µC port if PWM dimming of the LED current is required. The open load ST pin monitors the load condition of the application and gives feedback to the µC. An external pull-up resistor is recommended to achieve a logic “high” signal during an open load error (internal status transistor is switched off and the ST pin is high, external pull-up resistor ensures a logic “high” signal).

The external low power resistor R_{SET} is used to set the required peak current for the LED load (refer to Figure 10 for more details).

To set the desired switching frequency of the buck regulator the external R_{FREQ} and C_{FREQ} network must be connected to GND (reference values are given in Table 9).

![Figure 13: Simplified application diagram TLD5045EJ](image)

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
8.3.2 Decentralized Light Module application - DLM (Input configuration 1)

The connection between the body control module (BCM), supplied by Vbat and the decentralized light module, supplied by V_S, is realized via only power line and one GND connection.

The supply line could change between two different operation modes:

1. **Light Function 1 - Daytime Running Light (DRL) mode**: If the supply line is permanently “on”, the DRL application which requires higher LED current (e.g. 400 mA) is active. The proper \(R_{\text{SET}} \) resistor should be placed to achieve the desired load current (e.g. 18 k\(\Omega \)).

2. **Light Function 2 - Position Light (PL) mode**: During a PWM signal (e.g. 200 Hz) on the supply line the mean LED current is reduced to a lower level (e.g. 50 mA) and the application enters into PL mode. The enable pin of the TLD5045EJ is a high voltage pin (max. 45 V) and can be directly connected via a resistor \(R_{\text{EN}} \) before the reverse polarity protection diode of the module to achieve a fast capture of the PWM signal. The PWMI pin is connected to GND (inverse logic = “on”).

To simulate a module current during light load conditions, the ST pin can be connected via a resistor to the supply voltage line. (refer to Chapter 7 for a detailed description of the ST behavior)

For a decentralized solution without microcontroller involvement the possibility to connect a PTC resistor at the SET pin is a cost effective solution to protect the LED load from thermal destruction.

Figure 14 Application diagram of Decentralized Light Module without µC (input config. 1)

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
8.3.3 Decentralized Light Module application - DLM (Input configuration 2)

In this particular input configuration two supply lines are tied together on the DLM. The following input states must be considered to distinguish between Light Function 1 (DRL mode) and Light Function 2 (PL mode).

1. Condition: DRL = ON, PL = OFF. Desired function: DRL mode (e.g. 400 mA LED load current)
2. Condition: DRL = OFF, PL = ON. Desired function: PL mode (e.g. 50 mA LED load current)
3. Condition: DRL = ON, PL = ON. Desired function: PL mode (e.g. 50 mA LED load current)

To achieve a lower mean LED load current during the PL mode the integrated PWM engine is a useful feature. The external RPWM and CPWM circuit predefines a dedicated PWM frequency and duty cycle. (for details refer to Table 7)

To simulate a module current during light load conditions the ST pin can be connected via resistors to both supply voltage lines. (refer to Chapter 7 for a detailed description of the ST behavior)

For a decentralized solution without microcontroller involvement, the possibility to connect a PTC resistor at the SET pin is a cost effective solution to protect the LED load from thermal destruction.

Figure 15 Application diagram of Decentralized Light Module without µC (input config. 2)

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
8.3.4 Decentralized Light Module application - DLM (Input configuration 3)

A permanent supply chooses the Light Function 1 (DRL mode) and a second dedicated PWM supply between 100 Hz and 200 Hz switches to Light Function 2 (PL mode). For this input configuration, it is possible to connect the PWM dimming output of the BCM directly to the PWMI input of the TLD5045EJ. To simulate a module current during light load conditions the ST pin can be connected via a resistor to the permanent supply voltage line. (refer to Chapter 7 for a detailed description of the ST behavior)

For a decentralized solution without microcontroller involvement the possibility to connect a PTC resistor at the SET pin is a cost effective solution to protect the LED load from thermal destruction. (for details refer to Figure 14)

![Application Diagram of Decentralized Light Module without µC (input config. 3)](image)

Figure 16 Application Diagram of Decentralized Light Module without µC (input config. 3)

Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
9 Package outlines

Figure 17 Outline PG-DSO-8 EP

Green product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages
https://www.infineon.com/packages

1) Dimensions in mm
Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 1.2 | 2018-09-12 | Revision history from 2015-05-28 updated, revision number corrected (1.0 -> 1.1)
| | | P_4.1.2: removed |
| | | P_4.2.3: removed |
| | | **Table 5**: inserted test conditions |
| | | P_5.1.12 updated (typ 0.5 → 1.5) |
| 1.1 | 2015-05-28 | Brand name change to LITIX™ Power |
| 1.0 | 2011-05-27 | Initial datasheet for TLD5045EJ available |
IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.