SiC MOSFET Enhances Stability Under Real Application Conditions

The recently launched 1200 V CoolSiC™ MOSFET M1H comes with a variety of new features and improvements from which the targeted applications will benefit. One highlight is the much improved stability of the threshold voltage under real application conditions.

By André Lenze and Dr. Paul Salmen, Infineon Technologies

Introduction
The drift of threshold voltage ($V_{GS(th)}$) under real application conditions has been a SiC-specific focus in the last couple of years. Infineon first discovered the drift phenomenon in $V_{GS(th)}$ under long-term stress caused by dynamic operations and presented recommendations for an operation gate voltage area to minimize drift over the lifetime. [1]. After ongoing research and subsequent optimization, the newly launched CoolSiC™ MOSFET M1H now shows a significant improvement in $V_{GS(th)}$ stability with a negligible impact of the drift effect in almost all cases.

Phenomenological Description
$V_{GS(th)}$ drifts are typically characterized by high-temperature gate bias stress tests (DC-HTGS) that follow the test guidelines defined in standards such as JEDEC. Recent findings indicate that bipolar AC gate stress including $< 0 \, V$ can lead to a higher threshold voltage drift than corresponding static gate-stress tests would imply (DC-HTGS). This finding presents a new perspective in SiC MOSFET device reliability [1,3].

Figure 1 shows the different impact of AC & DC stress conditions. The data of the change in $V_{GS(th)}$ (ΔV_{th}) was derived using maximum conditions from the data sheet [1]. Two different slopes are visible, the first corresponding to a typical DC-like drift behavior (“DC fit”). The second larger slope is due to the bipolar AC stress effect (“AC fit”) also referred to as gate switching instability (GSI).

\[
R_{ch} \approx \frac{L}{\mu_n C_{ox} W (V_{GSO(n)} - V_{GSO(t)})}
\]

(1)

The total $R_{DS(on)}$ is determined by the sum of the single resistances. These are named channel resistance (R_{ch}), the resistance of the junction field-effect transistor (R_{JFET}), the epitaxial layer resistance of the drift region (R_{epi}), and the resistance of the highly doped SiC substrate (R_{Sub}). The entire chain for the total $R_{DS(on)}$ is described in equation (2).

Thus, the increase of $V_{GS(th)}$ causes slight increases in the channel resistance, followed by the $R_{DS(on)}$ and in the on-state losses over time.

\[
R_{DS(on)} = R_{ch} + R_{JFET} + R_{epi} + R_{Sub}
\]

(2)

Gate Switching Stress
To secure and predict long-term electrical parameter stability of our CoolSiC™ MOSFETs during typical switching operation, we have developed and applied a new qualification stress test: the gate switching stress test (GSS). This test enables you to directly determine electrical parameter drifts that typically run in bipolar mode (positive $V_{GSO(n)}$ for turn-on and negative $V_{GSO(n)}$ for turn-off) under application-like gate switching conditions. This test is a must for qualifying SiC MOSFETs, as it enables developers to quantify the new failure mechanism described above.

The GSS test covers all important drift phenomena, including those that occur during normal device operation. Except for the missing load current, which itself does not alter the observed drift behavior [3], we mimic the application as closely as possible by keeping gate switching characteristics, such as voltage slopes, similar to typical application conditions (see figure 2) [1]. To cover potential impacts of over- and undershoots in the gate signal, which are common in real SiC MOSFET applications, we apply worst-case conditions by stressing at the allowed maximum gate voltages from the data sheet and the maximum static junction temperatures ($T_{j,typ}$).

\[
V_{GS} = 30
\]

(3)

Figure 2: Typical GSS gate source stress signal at a frequency of $f=500$ kHz [1]
The testing under worst-case conditions makes customers feel confident that they can use the device over the entire specification range without ever exceeding the drift limit. Hence, the approach guarantees excellent device reliability combined with easy calculation of safety margins. Besides \(V_{\text{GS(on)}} \), other parameters like the gate leakage current are also measured, and remain constant over time for the tested hardware [1].

Assessment of Worst-case end-of-life Drift and Impact on the Application

One of the main tasks during the development of an inverter is to predict the lifetime of the device. Therefore, it is necessary to have reliable models and information available. After extensive tests under various operating conditions, we were able to develop a predictive, semi-empirical model that describes the change in threshold voltage as a function of the relevant mission profile parameters such as stress time \(t_{\text{sw}} \), gate bias low level \(V_{\text{GS(low)}} \), gate bias high level \(V_{\text{GS(high)}} \), switching frequency \(f_{\text{sw}} \), and operation temperature \(T \) \(\Delta V_{\text{GS}}(t_{\text{sw}}, V_{\text{GS(low)}}, V_{\text{GS(high)}}, f_{\text{sw}}, T) \) [3].

Based on the model, we have established a method of assessing the threshold-voltage drift with a worst-case end-of-application profile (EoAP) to calculate the relative drift. For applications that run at an arbitrary frequency for certain times, we calculate the total number of switching cycles \(N_{\text{cycle}} \) until EoAP. \(N_{\text{cycle}} \) can then be used to read out the relative drift.

The number of cycles depends on the switching frequency and the operating time. Typical hard-switching industrial applications, such as solar string inverters, make use of a switching frequency between 15 to 50 kHz. Inverters that use resonant topologies often switch faster than 100 kHz. The lifetime targets of these applications are typically between 10 to 20 years, while the real operating time is often between 50 percent to 100 percent.

The following example shows a sample evaluation:

- Targeted lifetime [years]: 20
- Real operation time [percent]: 50 => 10 years
- Real operation time [s]: 31536000 s (10 years)
- Switching frequency [kHz]: 48
- Cycle duration [s]: 1 / switching frequency = 0.0000208
- Number of cycles at end of life: operating time / cycle duration = \(-1.52\times10^7\)

For a turn-on voltage of 18 V, a relative \(R_{\text{DS(on)}} \) change of less than 6 percent at 25°C and less than 3 percent at 175°C can be expected, as shown in figure 3.

The example shown in figure 4, based on the recently launched EasyPACK™ FS55MR12W1M1H_B11 (six-pack configuration in a DC-AC inverter), illustrates the impact of the predicted change in \(R_{\text{DS(on)}} \) [4]. The example shows applications in which conduction losses \(\rho \) can represent a big portion of the loss distribution. \(T_{\text{vj,op}} \) rises only by 2 K from an initial 148°C to the worst-case EoAP of 150°C. The result confirms that a slight change in \(R_{\text{DS(on)}} \) leads to a negligible increase in \(T_{\text{vj,op}} \) even after 20 years' lifetime.

![Image](https://www.infineon.com)

Figure 4: Worst-case EoL assessment: \(V_{\text{dc}}: 800 \text{~V}, I_{\text{rms}}: 18 \text{~A}, f_{\text{sw}}: 50 \text{kHz}, \cos(\phi): 1, T_{\text{th}} = 80 \text{~°C} \)

This approach implies that the largest drifts should be expected under the worst-case conditions described. With the new M1H hardware, customers will be able to choose the parameter set from the data sheet’s specification range that best fits their application. Parasitic overshoots and undershoots in the gate signal will not impact the drift and do not need to be considered on customer side. Therefore time and effort can be saved.

Note that applications that run at well-controlled gate bias levels much below data-sheet maximum limits, e.g. +18 V / -3 V, yield even lower change in \(R_{\text{DS(on)}} \) for the same number of switching cycles.

Conclusion

The characteristics of the threshold voltage under real application conditions have been studied by performing long-term tests under various switching conditions. We have developed and applied a stress test procedure to determine worst-case EoAP parameter drifts under realistic, application-oriented switching conditions to provide our customers with a reliable model for prediction.

In addition to other key improvements, the recently launched 1200 V CoolSiC™ MOSFET, called M1H, shows great stability and diminishes the impact of the drift phenomenon.

References

[1] Infineon Application Note 2018-09
[3] Infineon: Whitepaper 08-2020: How Infineon controls and assures the reliability of SiC-based power semiconductors 11–21;