About this document

Scope and purpose
The Infineon ‘Server Fan Reference Design’ is a complete solution for a low-voltage fan motor drive application (a BLDC and PMSM server fan motor), with low noise, minimal motor vibration, and a very low external component count. This application is typically used to supply cooling air to electronic equipments.

The compact design is based around the Infineon 32-bit ARM® Cortex™ XMC1302 microcontroller with ready-to-use sensorless Field Oriented Control (FOC) firmware to support fast implementation into existing development platforms. The XMC1302 is a low-cost, high-performance microcontroller, and has flexible ADC features, Capture Compare Units (CCU4/8), and a Math Co-processor.

The PCB layout has a unique ‘coin concept’. The spacing on the PCB board is utilized with surface mount components which results in lower BOM costs:

![Server Fan PCB layout ‘coin concept’](image)

Intended audience
Server Fan motor manufacturers and design engineers who intend to reduce the system cost, improve efficiency, and shorten the application development cycle.
Server Fan Control Reference Design

Applicable Products
- XMC1302
- BSL308C
- BC848W
- IFX20001MB
- DAVE™

References
The User's Manual can be downloaded from http://www.infineon.com/XMC
DAVE™ and its resources can be downloaded from http://www.infineon.com/DAVE

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About this document</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>1 XMC1302 features</td>
<td>3</td>
</tr>
<tr>
<td>2 Reference Design Target Requirements</td>
<td>4</td>
</tr>
<tr>
<td>3 System Block Diagram</td>
<td>5</td>
</tr>
<tr>
<td>4 Motor Drive features</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Infineon Sensorless FOC algorithm with XMC1302</td>
<td>6</td>
</tr>
<tr>
<td>5 Hardware design</td>
<td>7</td>
</tr>
<tr>
<td>5.1 Form factors</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Pin mapping</td>
<td>7</td>
</tr>
<tr>
<td>5.3 Microcontroller Motor Control Ports</td>
<td>8</td>
</tr>
<tr>
<td>5.4 MOSFET stage</td>
<td>9</td>
</tr>
<tr>
<td>5.5 Microcontroller Control Interface</td>
<td>10</td>
</tr>
<tr>
<td>5.6 Power Supply</td>
<td>11</td>
</tr>
<tr>
<td>6 Software State Machine</td>
<td>12</td>
</tr>
<tr>
<td>7 Motor Control Test Data</td>
<td>13</td>
</tr>
<tr>
<td>7.1 Start-up Current Waveform</td>
<td>13</td>
</tr>
<tr>
<td>7.2 Power Stage Inverter Dead-Time</td>
<td>14</td>
</tr>
<tr>
<td>7.3 Motor Steady-State Current Waveform</td>
<td>16</td>
</tr>
<tr>
<td>7.4 Motor High Speed Current Waveform</td>
<td>17</td>
</tr>
<tr>
<td>7.5 Start-up Lock Detection</td>
<td>18</td>
</tr>
<tr>
<td>8 Revision History</td>
<td>19</td>
</tr>
</tbody>
</table>
1 XMC1302 features

The XMC1302 is a low-cost microcontroller, optimized for motor control applications.

Package types
- TSSOP-16
- VQFN-24
- TSSOP-28
- TSSOP-38
- VQFN-40

XMC1302 as a controller for various types of motor
- Permanent Magnet Synchronous Motors (PMSM)
- Brushless DC Motors
- AC Induction Motors (ACIM)
- Servo Motors
- Brushed DC Motors

Key features
- High performance 32-bit Cortex-M0 CPU
- MATH Co-processor (MATH), consists of a CORDIC unit for trigonometric calculation and a division unit
- On-Chip Memories, 16 kbytes on-chip high-speed SRAM, up to 200 kbytes on-chip Flash program and data memory
- 12 channels 12-bit ADCs with hardware trigger
- Built-in Temperature Sensor
- Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control PWM generation
- Watchdog Timer (WDT) for safety sensitive applications
Reference Design Target Requirements

The reference design is intended to meet common server fan application specifications:

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Type</td>
<td>3 Phase PMSM motor</td>
</tr>
<tr>
<td>Motor Pole Pair</td>
<td>2 pp</td>
</tr>
<tr>
<td>Motor Resistance (per phase)</td>
<td>1.1 ~ 1.2 Ω</td>
</tr>
<tr>
<td>Motor Inductance (per phase)</td>
<td>293 ~ 302 uH (10 kHz)</td>
</tr>
<tr>
<td>PCB Layout Diameter</td>
<td>22 mm</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Current Rating</td>
<td>1.00 A</td>
</tr>
<tr>
<td>Power Rating</td>
<td>12 W</td>
</tr>
<tr>
<td>Speed</td>
<td>0 to 25000 rpm</td>
</tr>
<tr>
<td>Fault Detection</td>
<td>Lock, reverse polarity</td>
</tr>
<tr>
<td>Over Current</td>
<td>Yes</td>
</tr>
<tr>
<td>Control Interface</td>
<td>POT / PWM input / FG Output</td>
</tr>
<tr>
<td>Control Algorithm</td>
<td>Field Oriented Control</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>XMC1302 TSSOP16/VQFN24</td>
</tr>
</tbody>
</table>

Note: All test waveforms are captured and shown later in this document.
The hardware can be divided into four parts:

- **Microcontroller (MCU)**
 - The MCU consists of an XMC1302 ARM® Cortex™ with single-shunt Field Oriented Control (FOC) algorithm. It is used to control high-side and low-side transistors with adjustable dead-time.

- **MOSFET stage**
- **Control interface**
- **Voltage regulator**

This reference design uses ADC for current measurement with integrated gain in the XMC1302 microcontroller.

A two-wire SWD or single-wire SPD debugging interface is supported.
4 Motor Drive features

The major requirements of server fan applications are for low audible noise and high efficiency. To boost the efficiency, design engineers need a means to offset the higher cost of a 3-phase fan motor compared to a single or dual-phase fan motor.

Most server fan motors are based on a 3-phase Brushless DC (BLDC) motor and Permanent Magnet Synchronous Motor (PMSM). While BLDC and PMSM motors have always been preferred for performance (efficiency, noise, starting torque), a complex and robust sensorless motor control algorithm is required.

4.1 Infineon Sensorless FOC algorithm with XMC1302

- Fast execution with hardware Math co-processor
- Optimized FOC block, without Inverse Park Transform
- Optimized Space Vector Modulation (SVM) using internal amplifier for single-shunt current sensing
- One single CORDIC calculation for Space Vector Modulation (SVM)
- Smooth and low-power start-up
5 Hardware design

This reference design hardware includes single-shunt current measurement. The operating supply voltage of the hardware is 10V to 30V. It supports up to 25 kHz PWM switching frequency.

5.1 Form factors

Figure 3 Diameter 22 mm with 2 layer Circular PCB layout

5.2 Pin mapping

Figure 4 XMC1302 VQFN pin assignment
5.3 Microcontroller Motor Control Ports

Figure 5 XMC1302 Motor Control Ports

Highlights
- XMC1302 ARM® Cortex™ - M0 32-bit microcontroller for motor control.
- Control of High-side and Low-side transistors with dead-time.
- ADC current measurement with adjustable gain.
- Support debug interface which includes two wire SWD or 1 wire SPD.
 - The non-isolated debug interface pins are connected directly to the controller.
- No external crystal or resonator is required. This helps for small size PCB layout.
5.4 MOSFET stage

![MOSFET Circuit Diagram]

Figure 6 High-side and Low-side MOSFET circuitry

Highlights

- Dual MOSFET switching with enhanced High-side driver circuitry.
- Direct drive of Low-side MOSFET.
- Single Shunt current sensing measurement.
5.5 Microcontroller Control Interface

Figure 7 Interface circuitry with XMC1302

Highlights

- Speed control with PWM input including 12V level shifter.
- FG output with open collector circuitry for use in 12V domain.
- Two independent UART channels (RXD/TXD) with 12V level shifter (optional).
5.6 Power Supply

Figure 8 Low Dropout Power Supply

Highlights

- IFX20001MBV5 in small package SCT-595.
- Input voltage range up to 45V.
- Output voltage 5V, output current 30mA.
- Protection functions include over-temperature protection, and reverse polarity protection.
- Wide temperature range $-40 \, ^\circ C \leq T_j \leq 125 \, ^\circ C$.
6 Software State Machine

The Infineon Server Fan Control Reference Design software provides the following life-cycle states:

- **Brake**
 - When the board is powered on, braking is applied for position alignment.

- **Start-up**
 - The motor will start based on the voltage applied.

- **Ramping**
 - It performs speed adjustment (ramp-up or ramp-down).

- **Transition**
 - Maximum Efficiency Tracking (MET) is applied to increase transition from open loop to closed loop stability.

- **Stop/Trip Protection**
 - If any over-current protection is triggered, the motor will stop or stop-restart the operation.

- **FOC PLL Observer**
 - Closed loop algorithm to estimate the rotor position based on single shunt current feedback measurement.
7 Motor Control Test Data

7.1 Start-up Current Waveform

When the fan motor is at a standstill, it is impossible to sense positional information from motor back-EMF. The Infineon Server Fan Reference Design provides FOC direct start-up control to achieve better efficiency.
7.2 Power Stage Inverter Dead-Time

To minimize the unwanted ripple in torque that may affect motor motion smoothness, the XMC1302 Capture Compare Unit (CCU4/8) provides flexible dead-time generation. This is used to generate a blanking time period (high-side and low-side transistor in off-state simultaneously). Both transistors are switched off for a short period of time to prevent the transistors conducting simultaneously and causing a short circuit from DC link voltage to ground. The CCU8 supports assymetric dead-time which is required in this application for efficient switching.

Figure 11 Phase U Rising Edge Output

CH 1 (Y): P0.0 (UH) – Inverter phase U high-side control signal
CH 2 (G): P0.1 (UL) – Inverter phase U low-side control signal
CH 3 (B): Gate of inverter high-side switch (PMOSFET), for phase U
CH 4 (P): Phase U output of inverter

Dead-Time 0.5μs
Figure 12 Phase U Failing Edge Output

CH 1 (Y): P0.0 (UH) – Inverter phase U high-side control signal

CH 2 (G): P0.1 (UL) – Inverter phase U low-side control signal

CH 3 (B): Gate of inverter high-side switch (PMOSFET), for phase U

CH 4 (P): Phase U output of inverter

Dead-Time 1.5μs
7.3 Motor Steady-State Current Waveform

The Frequency Generator (FG) output is an important feature because it provides feedback for the system to monitor the speed behavior of the Server Fan. For example, if the FG output is at 96Hz:

\[
\omega = \frac{60 \times FG_{freq}}{n} = \frac{60 \times 96 \text{ Hz}}{2} = 2880\text{ rpm}
\]

Where:
\(\omega \) = Motor Speed (in rpm)
\(n \) = Number of pole pairs
7.4 Motor High Speed Current Waveform

The motor phase current waveform has a harmonic PWM frequency of 15 kHz. The harmonic distortion is mainly due to the small phase inductance of the fan motor. By increasing the PWM frequency, the harmonic distortion could be reduced.

\[
\omega = \frac{60 \times \gamma}{n} = \frac{60 \times 769 \text{ Hz}}{2} = 23,070
\]

Where:
- \(\omega\) = Motor Speed (in rpm)
- \(n\) = Number of pole pairs
- \(\gamma\) = Angle (in Hz)
7.5 Start-up Lock Detection

The FG pin outputs a PWM waveform under normal operating conditions. During the start-up lock protection, FG output remains high until the motor restarts. The retry process will only be stopped when the microcontroller power is reset.

Figure 15 Phase Current Waveform during Start-up
8 Revision History

Current Version is V1.0, 2015-04

<table>
<thead>
<tr>
<th>Page or Reference</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0, 2015-03</td>
<td>Initial Version</td>
</tr>
</tbody>
</table>