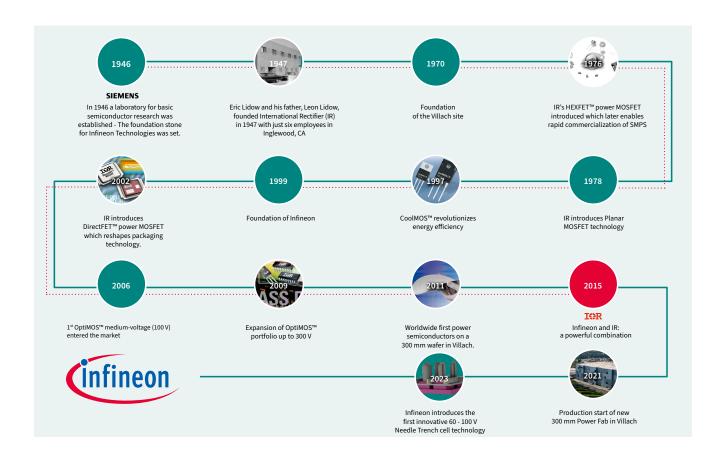


OptiMOS™ and StrongIRFET™ MOSFET

Selection guide 2024-2025



Contents

OptiMOS™ and StrongIRFET™
15-300 V MOSFETs N-channel power MOSFETs -
Technology development and product family positioning
Guidance for applications and voltage classes
Space-saving and high-performance packages
Discrete packages
OptiMOS™ 7 15 V
OptiMOS™ 7 40 V
OptiMOS™ Scalable Power Block
StrongIRFET™ 2 MOSFETs –30 V/40 V/60 V/80 V/100 V
OptiMOS™ Linear FET
OptiMOS™ 6 120 V
OptiMOS™ 6 135 V and 150 V
OptiMOS™ 6 200 V
OptiMOS™ 40 V in PQFN 8x6
Small-signal/small-power MOSFETs -250 to 600 V
OptiMOS™ power MOSFETs 15 -150 V Source-Down
OptiMOS™ PD
TOLx family
Product portfolio
Nomenclature

Infineon shapes power for growth through MOSFET innovation

With more than 40 years of experience in power MOSFET innovation, Infineon has led the way in solving the challenges design engineers face on a daily basis while enabling them achieve their targets. Although these targets may have changed over the years, the innovative spirit behind Infineon's product offering has persisted – from device design, technology, package and product development through manufacturing. Looking at the evolution of MOSFETs in the industry, numerous advancements in MOSFET technology have enabled the applications and trends that have become an indispensable part of our lives. Infineon power MOSFET innovation has proven that optimization at the component level brings significant system-level performance advantages and contributes to an easier, safer and greener future.

OptiMOS™ and StrongIRFET™

15-300 V N-channel power MOSFETs

Infineon's semiconductors are designed to bring greater efficiency, power density, and cost-effectiveness. The full range of OptiMOS™ and StrongIRFET™ power MOSFETs enables innovation and performance in applications such as switch mode power supplies (SMPS), battery powered applications, motor control, drives, inverters, and computing.

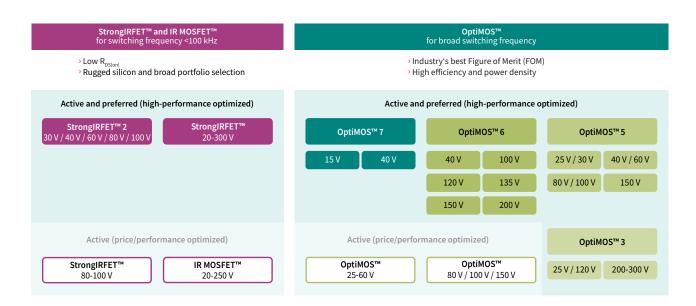
Infineon's highly innovative OptiMOS™ and StrongIRFET™ families consistently meet the highest quality and performance demands in key specifications for power system designs such as on-state resistance (R_{DS(on)}) and figure of merit (FOM).

OptiMOSTM power MOSFETs provide best-in-class performance. Features include ultra low $R_{DS(on)}$, as well as low charge for high switching frequency applications. StrongIRFETTM power MOSFETs are designed for drives applications and are ideal for designs with a low switching frequency, as well as those that require a high current carrying capability.

Technology development and product family positioning

StrongIRFET™

Robust and excellent price/performance ratio


- Optimized for switching frequency < 100 kHz
- Designed for industrial applications
- High current carrying capability
- Rugged silicon

Best-in-class technology

- Optimized for broad switching frequency
- Designed for high performance applications

OptiMOS™

- Industry's best figure of merit
- High efficiency and power density

With more than 40 years of experience in power MOSFET innovation, Infineon offers a broad portfolio of products. The product portfolio is divided into "active and preferred", referring to the latest technology available offering best-inclass performance, and "active", consisting of well-established technologies which complete this broad portfolio.

StrongIRFET $^{\text{TM}}$ 2 power MOSFETs are the latest generation to be added to the family. Available in 30 V, 40 V, 60 V, 80 V and 100 V, this family offers broad availability and excellent price/performance ratio and are suitable for a broad range of applications.

Building on its legacy of innovation, Infineon now unveils the industry's premier 15 V trench power MOSFETs, using the brand-new OptiMOS™ 7 technology. The OptiMOS™ 7 15 V series primarily targets optimized DC-DC conversion for servers, computing, datacenter, and artificial intelligence applications.

OptiMOS[™] 6 power MOSFETs 40 V, 80 V, 100 V, and 120 V are the newest addition to the OptiMOS[™] product family. They are the perfect solution when best-in-class (BiC) products and high efficiency over a wide range of output power are required. For other voltage classes, from 15 V up to 150 V, OptiMOS[™] 5 represents the latest generation in the market, offering low conduction losses and high switching performance.

For high and low frequency applications OptiMOS[™] 3 power MOSFETs is our largest OptiMOS[™] family and complements our existing product portfolio as well as providing additional options when best-in-class is not required. StrongIRFET[™] is recommended for 20-300 V applications when the high performance is not essential and the cost is a more significant consideration.

Guidance for applications and voltage classes

OptiMOS™ and StrongIRFET™ portfolio, covering from 15 up to 300 V MOSFETs, can address a broad range of needs from low to high switching frequencies. The tables below provide a guidance on the recommended OptiMOS™ or StrongIRFET™ products for each major sub-application and voltage class.

Rec	commended volt	age	15 V to 30 V	40 V	60 V	75 V to 80 V	100 V	120 V to 150 V	200 V	250 V	300 V
red	Low power Power tools,	OptiMOS™	√	✓	✓	√					
Battery powered	multicopter, battery, industrial drives	StrongIRFET™	✓	✓	✓	√					
ttery	High power	OptiMOS™			√		✓	✓	✓		
Ba	(LEV, LSEV)	StrongIRFET™			✓	✓	✓	✓	✓		
		OptiMOS™			√	√	√	√			
	Solar	StronglRFET™			√	✓	✓				
						slow sw	itching				
		OptiMOS™	√	✓	√	√	√	√	√	√	√
Inverters	Outine UDC	StrongIRFET™	✓	✓	✓	✓	√	√	✓	√	✓
Inve	Online UPS	fast switching									
		OptiMOS™	✓	✓	✓	✓	✓	✓	✓	✓	✓
		StrongIRFET™	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Offline UPS	OptiMOS™		✓	✓						
	on time or 5	StrongIRFET™		✓	✓						
	Adapter /	OptiMOS™		√	√	✓	√				
	Charger	StrongIRFET™		✓	✓	√	√				
		OptiMOS™		✓	√						
	PC Power	StrongIRFET™		✓	✓						
	LCD TV	OptiMOS™			√	✓	✓				
SMPS	LCD TV	StrongIRFET™			✓	✓	✓				
S	Server	OptiMOS™		✓	✓	√					
	Server	StrongIRFET™	✓	✓	✓	✓					
	AC-DC	OptiMOS™				✓	✓	✓	✓		
	AC-DC	StrongIRFET™				✓	✓				
	Telecom	OptiMOS™	✓	✓	✓	✓	✓	✓			
	retecom	StrongIRFET™	✓	✓	✓	✓	✓				

StrongIRFET™ recommended

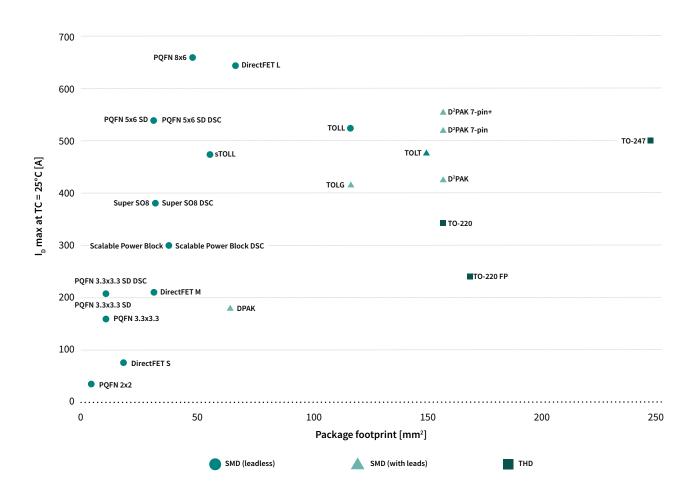
StrongIRFET™ available

OptiMOS™ recommended

OptiMOS™ available

Space-saving and high-performance packages

	TO-247	TO-220	TO-220 FullPAK	D²PAK	D²PAK 7-pin	TO-Leadless	TOLT (Top-side cooling)	TOLG (Gullwing leads)		
				Silver of the second	H. H.		Marine Minne			
Special features		- Optimized Opti for top-side for T cooling robu								
Height [mm]	5.0	4.4	4.5	4.4	4.4	2.3	2.3	2.3		
Outline [mm]	40.15 x 15.9	29.5 x 10.0	29.5 x 10.0	15.0 x 10.0	15.0 x 10.0	11.7 x 9.9	15.0 x 9.9	11.7 x 9.9		
Thermal resistance R _{thJC} [K/W]	2.0	0.5	2.5	0.5	0.5	0.4	0.4	0.4		


	sTOLL	PQFN 8x6	SuperSO8	SuperSO8 dual-side cooling (DSC)	PQFN 5x6 Source-Down	PQFN 5x6 Sour- ce-Down dual-si- de cooling (DSC)	Power Block	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3	PQFN 3.3x3.3 Source Down dual-side co- oling (DSC)	PQFN 2x2	DirectFET™
	9,1110		G Intition Survey									Contain Summer
	Optimized for high power in small form factor	Highest power density in the industry	For highest efficiency and power management	Optimized for dual-side cooling	Highest power density per area	Optimized thermal per- formance	Significant design shrink	Highest power density per area	High efficiency in small form factor	Optimized thermal per- formance	Enables significant space saving	Optimized for dual side cooling
Height [mm]	2.3	1.0	1.0	0.75	1.0	0.7	5.0 x 6.0: 1.0 6.3 x 6.0: 0.9 6.3 x 6.0 DSC: 0.7	1.0	1.0	1.0	0.9	Small: 0.65 Medium: 0.65 Large: 0.71
Outline [mm]	8.0 x 7.0	8.0 x 6.0	5.15x6.15	5.0 x 6.0	5.0 x 6.0	5.0 x 6.0	5.0 x 6.0 6.3 x 6.0	3.3 x 3.3	3.3 x 3.3	3.3 x 3.3	2.0 x 2.0	Small: 4.8 x 3.8 Medium: 6.3 x 4.9 Large: 9.1 x 6.98
Thermal resistance R _{thJC} [K/W]	0.6	0.5	0.8	0.5	0.45	0.45	1.5	1.4	3.2	1.4	11.1	0.5

Discrete packages

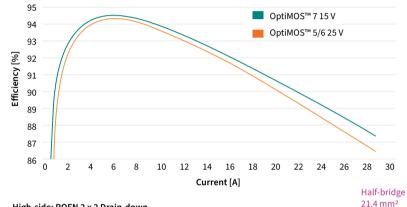
Infineon has been making an impact in the MOSFET industry with innovation in MOSFET manufacturing techniques and processes as well as pioneering new packages to meet the changing demands of cutting-edge designs in various applications. OptiMOS™ and StrongIRFET™ technologies are available in different packages to address demands for high current carrying capability and significant space saving. The broad portfolio enables footprint reduction, boosted current rating, and optimized thermal performance. While the surface mount leadless devices are enabled for footprint reduction, through-hole packages are characterized by a high-power rating.

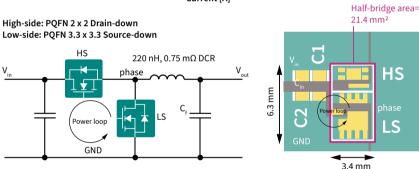
Infineon offers innovative packages such as DirectFET™ and TO-Leadless (TOLL). DirectFET™ is designed for high frequency applications by offering the lowest parasitic resistance. This package is available in three different can sizes: small, medium, and large. TO-Leadless is optimized to dissipate power up to 375 W, increasing power density with a substantial reduction in footprint.

New package innovations include the SuperSO8 Source-Down package offering high power density and performance; the TOLG (Gullwing leads) optimized for TCoB (Thermal cycling on board) robustness; TOLT (top-side cooling) optimized for superior thermal performance; sTOLL optimized for high power in small form factor; and the SuperSO8 dual-side cooling (DSC) optimized for dual-side cooling in a standard 5x6 mm² footprint.

OptiMOS™ 7 15 V

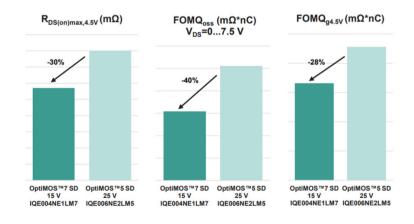
Infineon's latest technology with the industry's first 15 V trench power MOSFETs provides the next level of system efficiency and performance


Infine on introduced the industry's first 15 V trench power MOSFETs, utilizing the brand-new OptiMOS™ 7 technology. This system and application-optimized technology targets DC-DC conversion with low server and computing applications output voltages.


Compared to OptiMOS[™] 5 25 V, the OptiMOS[™] 7 15 V MOSFET family offers a lower breakdown voltage, significantly reducing R_{DS(on)} and FOMQ_g/FOMQO_{SS}. The best-in-class product portfolio comprises Source-Down PQFN 3.3x3.3 packages with bottom and dual-side cooling variants in Standard and Center-Gate footprints for flexible and optimal PCB design and a PQFN 2x2 package with a reinforced clip. The latter offers a pulsed current capability of more than 500 A, with an RthJC of 1.6 K/W. Reducing conduction and switching losses in combination with the Source-Down package, simplifies thermal management, pushing power density and efficiency to the next level.

The high-side MOSFET uses the PQFN 2x2 (taking advantage of the lower switching losses) and the low-side MOSFET uses the Source-Down (taking advantage of the low conduction losses).

OptiMOS™715Vvs. OptiMOS™5/625V


- Outstanding FOMQ_g/FOMQ_{oss}
 improves peak efficiency by
 0.2 percent while enabling high frequency operation
- Lower R_{DS(on)} improves full load efficiency by 0.85 percent while enabling output power increase

Features and benefits

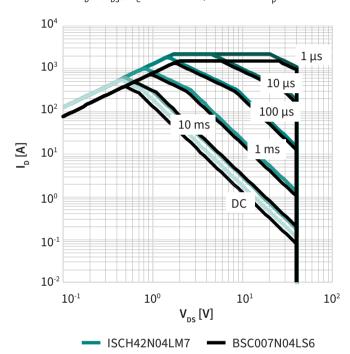
Key features	Key benefits
- First 15 V trench power MOSFETs	 Improved efficiency in sub 12 V DC-DC output stages where 25 V MOSFETs are used
– Benchmark R _{DS(on)} compared to 25 V node	Reduced conduction losses
 Outstanding FOMQ_e/FOMQ_{oss} 	Highest efficiency with best switching performance
- Ultralow package parasitics	- Center-Gate for ideal parallelization, Standard-Gate for easy layout fit-in
Standard and Center-Gate footprints with dual-side cooling variants	Better thermal management with significant space saving enablement

The OptiMOS™ 7 15 V product family offers a leap forward in technology supporting new trends in power distribution architectures, e.g., high ratio DC-DC conversion, enabling further advancements in server, datacom, and artificial intelligence applications while minimizing CO₂ footprint.

OptiMOS™ 7 40 V

Unleash maximum power with the next best-in-class OptiMOS™ 7 40 V power MOSFET in a SuperSO8 5x6

Infine on introduces the best-in-class 40 V power MOSFET in the latest OptiMOSTM 7 trench technology. This new product expands the OptiMOSTM 7 portfolio from the industry's first 15 V power MOSFETs to the lowest $R_{DS(on)}$ in a SuperSO8 5x6 40 V power MOSFET, minimizing the energy loss in the system and making it best fit in BMS applications. The $R_{DS(on)}$ is improved by 40 percent compared to the existing OptiMOSTM 6 40 V products. In addition, the SuperSO8 5x6 package makes a 50 percent PCB real estate area reduction possible when compared to the DirectFETTM (L) solution while making the need for parallelization obsolete.


The new OptiMOSTM 7 40 V power MOSFET offers a leap forward in terms of $R_{DS(on)}$ reduction, a product feature highly beneficial in BMS applications, facilitating increased power density, improved system efficiency and cost reduction.

ISCH42N04LM7 has a higher DC current capability than the BSC007N04LS6 mainly driven by the lower $R_{DS(on)}$: at 0.1 V DC > 40% at 40 V DC > 30%

Also in short pulse regime and high V_{DS} there is noticeable current capability improvement: at 40 V 1 ms > 20% at 40 V 100 μ s > 10%

Safe operating area

 $I_p = f(V_{ps}); T_c = 25$ °C; D=0 parameter: t_p

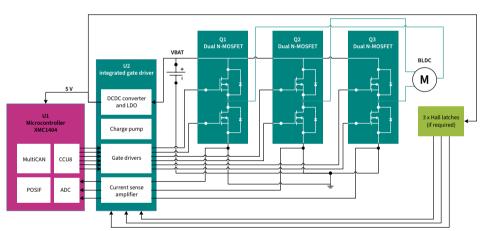
Features and benefits

Key features	
- BiC 40 V power MOSFET in a SuperSO8 5x6 in the market	– Best fit i
- Outstanding R _{DS(on)}	– Energy l
- Industry standard footprint	Multiple
- Wide safe operating area	- Increase

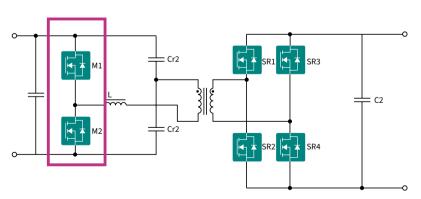
Key benefits		
- Best fit in BMS applications		
Energy loss minimization with highest power density		
Multiple sourcing possibility		
 Increased reliability and robustness 		

OptiMOS™ Scalable Power Block

Symmetric half-bridge solution enabling 50 percent improvement in power density


OptiMOSTM 6 40 V and OptiMOSTM 5 100 V Symmetric power block (Q1 and Q2 of similar $R_{DS(on)}$) integrates a low-side and a high-side MOSFET in a compact leadless SMD 6.3x6.0 mm² package targeting a variety of applications (drives, SMPS). By replacing two separate discrete packages, e.g., SuperSO8 (PQFN 5x6), customers can shrink the power section on the board by at least 50 percent.

The MOSFET half-bridge family features Infineon's proven OptiMOS^M 5 and 6 technologies, offering very low on-state resistance ($R_{DS(on)}$) and figure of merits (Q_g , Q_{gd}). The reduction in the package's parasitic inductance of the package results in improved switching performance and EMI, as well as reduced overall BOM cost. Optimized lead-frame and Cu-clip significantly improve the package's thermal performance. The dual-side cooling version of the package boosts the power throughput by an additional 25 percent.

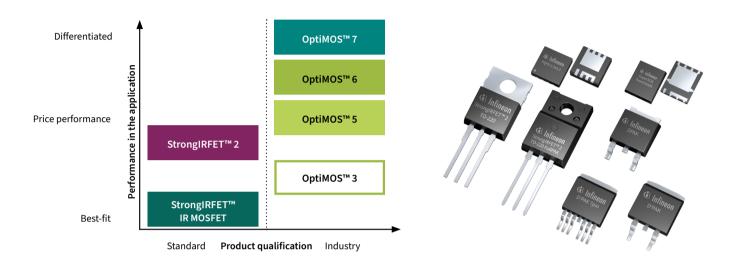


Integrated symmetric half-bridge solution using the latest OptiMOS™ silicon technology offered in both over-molded and dual-side cooling options for supreme power density and performance advantage.

Half-bridge replacement in Inverter circuit for drives

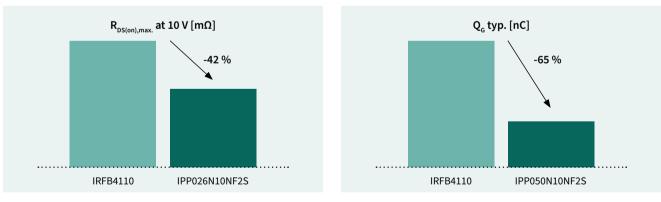
Power switches in LLC circuit

Features and benefits


Key features					Key benefits		
– High chip/package ratio		н	igh power cap	ability			
 Optimized lead-frame and Cu-clip design 		– 0	ptimum therm	nal performan	ce		
 Internally connected low-side and high side (lowest loop inductance) 	7	– c	ompact and si	mplified layou	ıt design		
– Dual-side cooling available		- S	uperior switch	ing performa	nce/EMI		
	:: 1	D-	95	Ŷ	(0)	6	

StrongIRFET™ 2 MOSFETs – 30 V/40 V/60 V/80 V/100 V

Right-fit products for a broad range of applications


The new StrongIRFET™ 2 power MOSFETs are the latest generation of MOSFETs addressing a wide range of applications such as adapters, motor drives, e-scooters, battery management systems, light electric vehicles, robotics, power and gardening tools, and other consumer applications. Featuring broad availability and excellent price/performance ratio and robustness, this new technology offers right-fit products with an easy choice for designers interested in convenient selection and purchasing. Optimized for both low- and high-switching frequencies, the family supports a broad range of applications enabling flexibility in design.

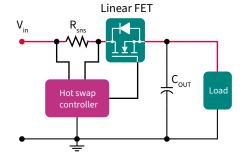
Features and benefits

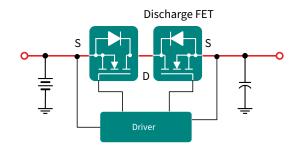
Key features	Key benefits
Broad availability from distribution partners	- Increased security of supply
 Excellent price/performance ratio 	- Right-fit products
 Ideal for high and low switching frequency 	Supports wide variety of applications
- Industry standard footprint	Standard pin out allows for drop-in replacement
- High current rating	 Increased product ruggedness

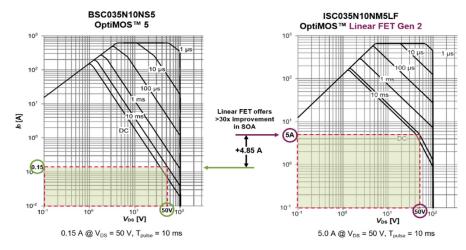
StrongIRFET™ 2 vs. previous generation 100 V performance comparison

Compared to the previous StrongIRFETTM generation in 100 V TO-220 package, StrongIRFETTM 2 shows significant improvements such as ~40 percent lower $R_{DS(on)}$ and ~65 percent reduced Q_G . This results in better efficiency and longer life time.

OptiMOS™ Linear FET


Combining a low R_{DS(on)} with a wide safe operating area (SOA)


With Infineon's OptiMOSTM Linear FET you can avoid settling between on-state resistance $(R_{DS(on)})$ and linear mode capability – operation in the saturation region of an enhanced mode MOSFET. The OptiMOSTM Linear FET revolutionary approach offers the state-of-the-art $R_{DS(on)}$ of a trench MOSFET together with the wide safe operating area (SOA) of a classic planar MOSFET.


OptiMOS™ Linear FET MOSFETs prevent damage at the load by limiting high in-rush current. This product is the perfect fit for hot-swap, e-fuse (electronic fuse), and battery protection functions commonly found in telecom, servers, and battery management system (BMS). A new 100 V Linear FET in PQFN 3.3x3.3 is also a fit for soft start in Power-over-Ethernet (PoE) application.

Protection in eFuse/Hot-swap/Soft start circuit

Charge and Discharge FET in BMS circuit

OptiMOSTM Linear FET offers a much wider safe operating area (SOA) compared to standard OptiMOSTM MOSFETs with similar $R_{DS(on)}$.

Features and benefits

Key features	Key benefits
– Wide safe operating area (SOA)	Rugged linear mode operation
- Low R _{DS(on)}	– Low conduction losses
- High maximum pulse current	– Higher in-rush current enabled
- High maximum continuous current	– Faster start-up and shorter down time
– Multiple packages: D ² PAK, D ² PAK 7-pin, TOLL, PQFN 5x6 and 3.3x3.3	Compatible footprint for drop-in replacement
	Telecom Server BMS Battery Pol

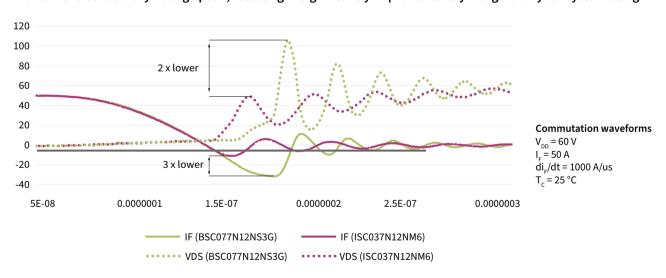
OptiMOS™ 6 120 V

Fully optimized best-in-application performance power MOSFET at 120 V

Infineon's extensive experience in trench MOSFET technology development, and the knowledge gained from customer support are the key motivators of the development of the new OptiMOS™ 6 120 V MOSFETs. The new OptiMOS™ 6 120 V power MOSFET technology offers devices with extremely low on-state resistance and very low gate charges, yielding the industry's best figure of merit (FOM). These features make the OptiMOS™ 6 the best fit for high-switching frequency applications, such as battery-powered power tools, solar applications, and SMPS.


Features and benefits

Key features	Key benefits
– Industry's lowest R _{DS(on)} in 120 V	- Highest efficiency
- Best balance between switching and conduction losses	– Less paralleling required
 Significantly improved FOMs compared to OptiMOS™ 3 	– High power density


Key Applications

OptiMOS™ 6 120 V is available in logic level and normal level versions to accommodate different application requirements. It includes the following packages: PQFN 3.3x3.3, SuperSO8, D²PAK, D²PAK-7, TO-220, TOLL, TOLT, TOLG

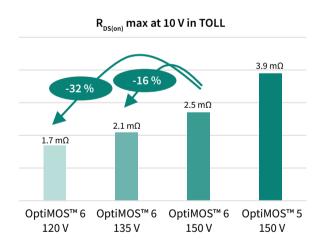
- Gardening tools
- Power tools
- eScooter
- USB PD charger
- Solar

Lower reverse recovery voltage peak, resulting in significantly improved safety margins for your system design

- OptiMOS™ 6's reverse recovery voltage peak is two times lower compared to its predecessor resulting in much better safety margins in system design.
- Lower QRR decreases voltage overshoot and switching loss

OptiMOS™ 6 135 V and 150 V*

Best-in-application offering with the latest OptiMOS™ 6 products


The new OptiMOS™ 6 135 V and 150 V technologies were designed to fulfill the requirements of various applications, from synchronous rectification sockets in telecom and server SMPS to motor inverters in eForklifts and light electric vehicles (LEV), solar optimizers, and high-power USB chargers. With industry's lowest R_{DS(on)}, improved switching performance and excellent EMI behavior both technologies bring unparalleled efficiency, power density, and reliability into the highly competitive 150 V market. Both newly released product families bring significant improvements upon its predecessor OptiMOS™ 5 150V. This offering provides the customer best-in-application products with different possibilities. Our ability to scale sets us apart as the industry's leading supplier of power MOSFETs.

Features and benefits

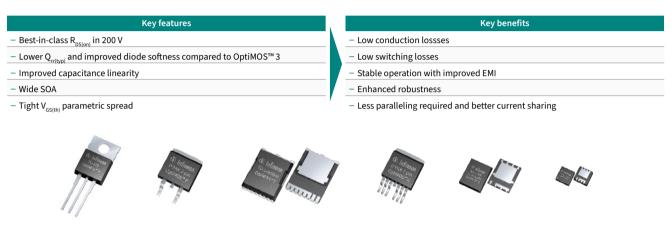
Key features	Key benefits
 Best-in-class R_{DS(on)} and FOMg in 135 V and 150 V 	 Low conduction and switching losses, in hard and soft switching
– Lower $Q_{rr(tyo)}$ and improved diode softness compared to OptiMOS TM 3	 Stable operation with improved EMI enabling less overshoot
- Tight V _{gs(th)} spread	Better paralleling performance
- High avalanche ruggedness	- Enhanced robustness
– Max junction temperature of 175°C and MSL1	– Longer lifetime and improved reliability

Key Applications

- Forklift
- eScooter
- Telecom and Server
- Solar
- Power and gardening tools
- Charger
- UPS

Which is the right MOSFET voltage for your application? OptiMOS™ 6 135 V and 150 V new product families complement the recently released OptiMOS™ 6 120 V. With a complete portfolio, we offer our customers alternatives to choose between higher breakdown voltage margin and lower losses.

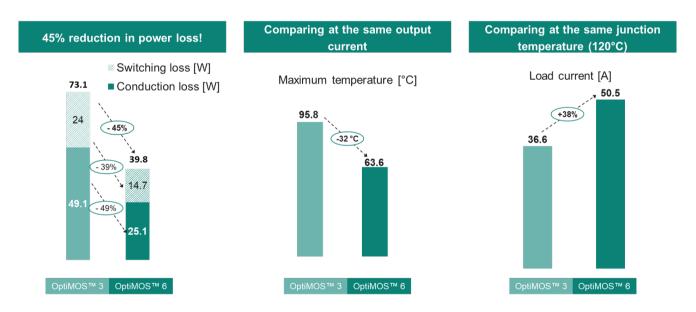
Click here to learn more:


www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos6 www.infineon.com/optimos7

OptiMOS™ 6 200 V

Setting the new industry standard

The OptiMOSTM 6 200 V employs an advanced cell design to set the new technology standard in its voltage class. It addresses the need for high power density, efficiency, and reliability. The OptiMOSTM 6 200 V technology was designed for optimal performance in motor drive applications such as light electric vehicles (LEV), forklifts, and drones. It features industry-leading $R_{DS(on)}$, improved switching and current sharing capability, enabling high power density, less paralleling, and excellent EMI performance. The improved switching behavior makes the OptiMOSTM 6 200 V family an ideal choice for switching applications such as telecom, server, or audio. Additionally, the combination of wide SOA and industry-leading $R_{DS(on)}$ results in a perfect fit for static switching applications such as battery management systems (BMS).

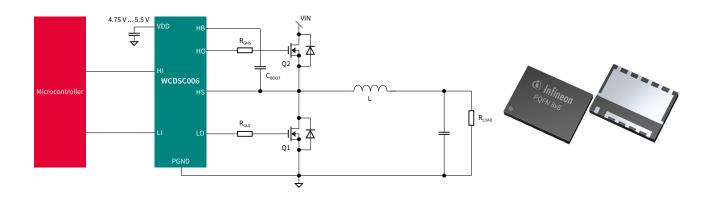

Features and benefits

Application test results

OptiMOS[™] 6 vs. OptiMOS[™] 3 in 200 V

- 42 percent lower $R_{DS(on)}$ enables reduced conduction losses
- Improved switching behavior enables reduced switching losses

- At the same output power, the maximum device temperature reduction of 32°C was achieved.
- At the same Junction temperature, 38 percent higher load current was achieved.



OptiMOS™ 40 V in PQFN 8x6

A high-power density package family

Infineon's family of OptiMOS^{M} N-channel power MOSFETs in PQFN 8x6 packages are benchmark products optimized for very low R_{DS(on)} and high-current capability, alongside Infineon's renowned quality standard for robust industry designs. This makes the PQFN 8x6 MOSFET package the ideal solution for various battery powered, battery protection, and battery formation applications requiring low package resistance and high-current handling MOSFETs. The PQFN 8x6 family of MOSFETs is available in a small 8x6 mm leadless package to reduce the physical footprint and overall BOM of end products. The improved $R_{DS(on)}$ and I_D ratings, continuous and pulsed, enable increased battery run time and higher power density.

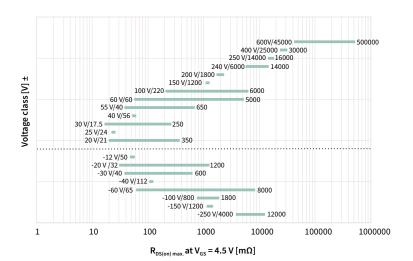
Features and benefits

Key features	Key benefits
- >50% reduction in footprint compared to TOLL	Power density increase enabling higher power designs while maintaining the space contraints
 Best-in-class continuous current rating and competitive avalanche energy rating 	Good design martin in worst case conditionals (e.g., in-rush motor stall/short)
– Excellent package area utilization	– Ultralow R _{DS(on)} with good thermal resistance R _{thJC}
- Ultralow package parasitics	– EMI improvement due to lower device parasitics
- Footprint compatability with SuperSO8 5x6	 Simple PCB design change based on SuperSO8 provides scalability across varying power requirements

Small-signal/small-power MOSFETs -250 to 600 V

Combining latest high-performance silicon technology with small and innovative packaging

Small-signal/small power products are ideally suited for space-constrained automotive and non-automotive applications. With an optimal price/performance ratio and small footprint packages, Infineon's small-signal and small-power MOSFETs are the best fit for a wide range of applications and circuits. These include low-voltage drives, linear battery charger, battery protection, load switches, DC-DC converters, reverse polarity protection and many more.


The entire family includes different packages:

SOT-223, SOT-23, SOT-323, SOT-363, SOT-89, TSOP-6, and SC59

The product portfolio covers N-channel and P-channel enhancement mode MOSFETs as well as N-channel depletion mode products:

- -250 to -12 V P-channel enhancement mode (available in single and dual configurations)
- 20 to 600 V N-channel enhancement mode (available in single and dual configurations)
- -20/+20 V and -30/+30 V complementary (P + N channel) enhancement mode
- 60 to 600 V N-channel depletion mode

Key features	Key benefits
- Products available in Automotive, Industrial, and Standard qualification levels	 Suitable for automotive and high quality demanding applications
– Four $V_{GS(th)}$ classes available for 1.8 V, 2.5 V, 4.5 V, and 10 V gate drives	– Easy interface to MCU
– ESD protected P-channel parts	– Reduction of design complexity
- V _{DS} range from -250 to 600 V	– Wide selection of products available
– RoHS compliant and halogen free	– Environmentally friendly

Small-signal/small-power MOSFETs are available in seven industry-standard package types ranging from the largest SOT-223 to the smallest SOT-323.

Products are offered in single, dual and complementary configurations and are suitable for a wide range of applications, including battery protection, LED lighting, low-voltage drives, and DC-DC converters.

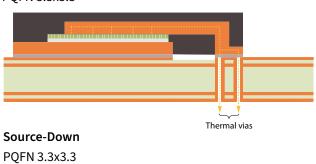
SOT-363	SOT-323	SOT-23	TSOP-6	SC59	SOT-89	SOT-223
	O integral	0 Minus	G Islinon TSGTG	G Infineon Scigo	G Infineen Sories	G Jalineon SO 1221

Click here to learn more:

OptiMOS™ power MOSFETs 15 -150 V Source-Down

An innovative PQFN 3.3x3.3 mm² and PQFN 5x6 mm² product family

Once again, Infineon is setting a new standard in MOSFET performance with the new Source-Down package to support the requirement for high power density and optimized system-level efficiency. In comparison with a normal Drain-Down device, in the Source-Down technology, the source potential is connected to the thermal pad. The OptiMOS™ power MOSFET 3.3x3.3 mm² Source-Down packages are now available in 15-150 V in BSC (bottom-side cooling) and in DSC (dual-side cooling). The latest addition to the family is the OptiMOS™ power MOSFET 5x6 mm² Source-Down, available in BSC. Optional Center-Gate footprint is also available for both families. Here the gate pin is moved to the center supporting easy parallel configuration of multiple MOSFETs. With the larger drain-to-source creepage distance, it is possible to connect the gates of multiple devices on a single PCB layer.


Features and benefits

Key features - Major reduction in R_{DS(on)}, up to 30% due to larger silicon die in same package outline - Improved R_{thuc} overcurrent PQFN package technology - High power density - Standard-Gate and Center-Gate footprint options - Available in standard and logic level options Key benefits - Enabling highest power density and performance - Superior thermal performance - Form factor reduction - Optimized layout possibilities - Simplifying parallel configuration of multiple MOSFETs with Center-Gate footprints - Simplifying gate drive

Optimized thermal management

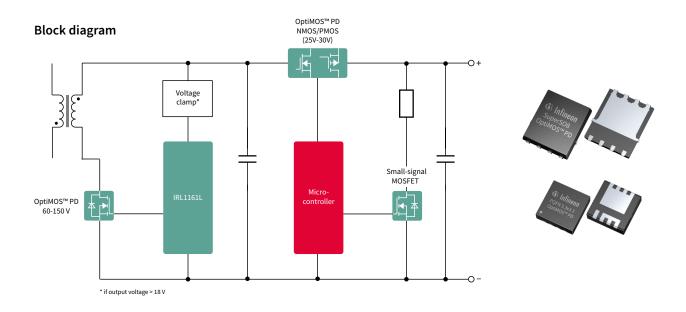
Drain-Down

POFN 3.3x3.3

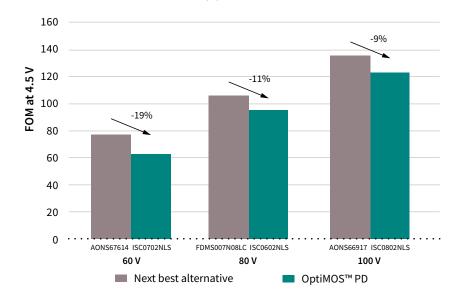
Thermal vias

In the Source-Down package technology, the heat is dissipated directly into the PCB through a thermal pad instead of over the bond wire or the copper clip. The package significantly improves the thermal resistance (R_{thJC}) of this product family. In most cases, thermal vias cannot be used on the thermal pad if it is connected to the noisy switch node potential. With Source-Down, the thermal pad of the low-side MOSFET is now on the ground potential enabling the use of thermal vias right underneath the device. This considerably improves the thermal performance and the power density in the end application.

Click here to learn more:


www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages

www.infineon.com/optimos6 www.infineon.com/optimos7

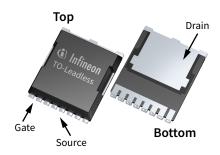

OptiMOS™ PD

The best fit for USB-PD and fast charger designs

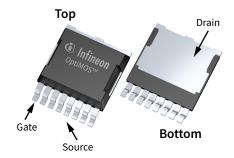
OptiMOS™ PD is Infineon's new MOSFET portfolio representing the best fit for USB-PD and fast charger designs and is available in 2 small standard packages: PQFN 3.3x3.3 and SuperSO8. Logic level availability enables parts to be fully driven from 4.5 V or directly from microcontrollers resulting in a lower part count in the application. The portfolio ranges from 25 V up to 150 V MOSFETs where 25 V and 30 V products represent the fit as load switch and 60-150 V parts are the optimal choice to function as synchronous rectification FETs in charger and adapter designs.

OptiMOS[™] PD comparison of $R_{DS(on)}$ in 60 V, 80 V, and 100 V

The OptiMOS™ PD family features MOSFETs offering a low on-state resistance (R_{DS(on)}), less switching losses as well as low gate-, outputand reverse-recovery charges. The reduction in overall losses results in an excellent price/performance ratio leading to a decrease in total system BOM cost.



TOLx family

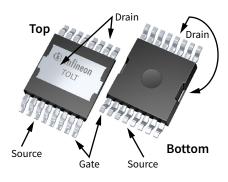

TO-Leadless (TOLL)

Optimized for high power applications

TO-Leadless is optimized to handle currents up to 500 A, increasing power density with a substantial reduction in footprint. A footprint reduction of 30 percent compared to D²PAK, together with a height reduction of 50 percent, results in an overall space saving of 60 percent enabling much more compact designs.

Key features	Key benefits
– Best-in-class technology	– High performance capability
- High current rating > 500 A	– High system reliability
– 60% space reduction compared to D²PAK 7-pin	– Optimized board utilization

TOLG (Gullwing leads)

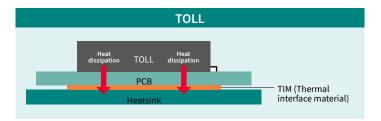


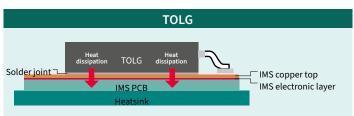
Optimized for better TCoB robustness

TOLG package offers a compatible footprint to the TO-Leadless with the additional feature of Gullwing leads resulting in two times higher TCoB performances compared to TO-Leadless. This package is excellent on aluminum insulated metal substrate boards (Al-IMS).

Key features	Key benefits
– Best-in-class technology	– High performance capability
- High current rating > 450 A	– High system reliability
 Low ringing and voltage overshoot 	High efficiency and lower EMI
- 60% space reduction compared to D2PAK 7-pin	 Optimized board utilization
- Gullwing leads	- High thermal cycling on board performance

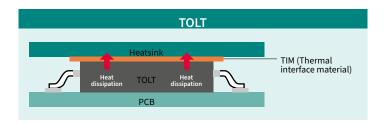
TOLT (Top-side cooling)



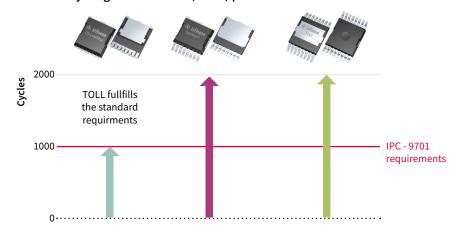

Optimized for superior thermal performance

TOLT is the new top-side cooling package within the TOLx family. With top-side cooling, the drain is exposed at the surface of the package allowing for 95 percent of the heat to be dissipated directly to the heatsink, achieving 20 percent better R_{thJA} and 50 percent improved R_{thJC} compared to the TOLL package. With bottom-side cooling packages, like the TOLL or the D²PAK, the heat is dissipated via the PCB to the heatsink resulting in high power losses.

Key features	Key benefits
– Low R _{DS(on)}	Reduction in conduction losses
- High current rating	– Increased product ruggedness
- Top-side cooling	Superior thermal performance
- Negative standoff	Minimize thermal resistance to heatsink


TOLx family - Cooling concept

With TOLL/TOLG, board mounting, the heat is dissipated through the PCB to the heatsink. Due to the PCB thermal resistance, power losses occur.



With top-side cooling setup, the drain pad is exposed on the top of the package allowing the majority of the heat to be dissipated into the top-mounted heatsink. This pulls heat away from the PCB resulting in at least 20 percent better R_{thJA} compared to standard over-molded TOLL.

Thermal cycling on IMS board (TCoB) performance

OptiMOS™ 7 15 V logic level

$\begin{array}{c} R_{_{DS(on),max}} \\ \text{at V}_{_{GS}} = 4.5 \text{ V} \\ [\text{m}\Omega] \end{array}$	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down dual-side cooling (DSC)	PQFN 2x2
	IQE004NE1LM7 $R_{DS(on)}=0.57 \text{ m}\Omega$	$R_{DS(on)}$ =0.57 mΩ	
<1	IQE004NE1LM7CG $R_{DS(on)}$ =0.57 $m\Omega$	$ \begin{array}{c} \text{IQE004NE1LM7CGSC} \\ \text{R}_{\text{DS(on)}} \text{=0.57 m}\Omega \end{array} $	
2-4			$ SK018NE1LM7 $ $R_{DS[0n]}=2.15 \text{ m}\Omega$

OptiMOS™ and StrongIRFET™ 20 V (super) logic level

$\begin{array}{c} R_{DS(on),max} \\ \text{at V}_{GS} = 4.5 \text{ V} \\ [m\Omega] \end{array}$	PQFN 2x2	PQFN 3.3x3.3	SuperSO8
<1			$\begin{array}{c} \text{IRFH6200TRPBF}^{1)} \\ \text{R}_{\text{DS(on)}} \text{=} 0.99 \text{ m}\Omega \end{array}$
2-4		IRLHM620TRPBF** 1) $R_{DS(on)}$ =2.5 mΩ	
	IRLHS6242TRPBF $R_{_{DS(on)}}$ =11.7 $m\Omega$		

OptiMOS™ and StrongIRFET™ 25 V logic level

$\begin{array}{c} {\sf R}_{\sf DS(on),max} \\ {\sf at V}_{\sf GS} {=} 10 {\sf V} \\ {\sf [m\Omega]} \end{array}$	PQFN 2x2	PQFN 3.3x3.3	SuperSO8	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	PQFN 5x6 Source-Down	PQFN 5x6 Source- Down DSC (dual-side cooling)
			BSC004NE2LS5 $R_{DS(on)}$ =0.45 m Ω	IQE006NE2LM5 $R_{DS(on)}=0.65 \text{ m}\Omega$	IQE006NE2LM5CGSC $R_{DS(on)}$ =0.58 m Ω	IQDH29NE2LM5CG $R_{DS(on)}$ =0.29 $m\Omega$	IQDH29NE2LM5SC $R_{DS(on)}$ =0.29 $m\Omega$
<1				IQE006NE2LM5CG $R_{DS(on)} = 0.65 \text{ m}\Omega$	IQE006NE2LM5SC $R_{DS(on)}$ =0.58 m Ω	IQDH29NE2LM5 $R_{DS(on)}$ =0.29 m Ω	IQDH29NE2LM5CGSC $R_{DS(on)}$ =0.29 m Ω
		$\begin{array}{c} \text{BSZ009NE2LS5} \\ \text{R}_{\text{DS(on)}} \text{=} 0.9 \text{ m}\Omega \end{array}$	BSC009NE2LS5I* $R_{DS(on)}=0.95 \text{ m}\Omega$			IQDH29NE2LM5SC Rds(on)=0.29 mΩ	
		$\begin{array}{c} \text{BSZ011NE2LS5I} \\ \text{R}_{\text{DS(on)}} \text{=} 1.1 \text{ m}\Omega \end{array}$				IQDH29NE2LM5CGSC Rds(on)=0.29 mΩ	
		BSZ013NE2LS5I* $R_{DS(on)}=1.3 \text{ m}\Omega$					
		BSZ014NE2LS5IF** $R_{DS(on)}$ =1.45 m Ω	BSC015NE2LS5I* $R_{DS(on)}=1.5 \text{ m}\Omega$				
			BSC018NE2LS $R_{DS(on)}$ =1.8 $m\Omega$				
		BSZ018NE2LS $R_{DS(on)}$ =1.8 m Ω					
	ISK024NE2LM5 $R_{DS(on)}=2.4 \text{ m}\Omega$	BSZ031NE2LS5 $R_{DS(on)}$ =3.1 m Ω					
2-4			BSC026NE2LS5 $R_{DS(on)}$ =2.6 m Ω				
			BSC032NE2LS $R_{DS(on)}$ =3.2 m Ω				
4-10		BSZ060NE2LS $R_{DS(on)}$ =6.0 mΩ	BSC050NE2LS $R_{DS(on)}$ =5.0 $m\Omega$				

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

www.infineon.com/optimos6

OptiMOS™ 25 V in Power Block 5x6

Doub woudh au	Monolithically-in-		DV 5/4	$R_{DS(on), max.}$ [$m\Omega$] at V_{GS} =4.5 V max.		Q _G [nC] at V _{GS} =4.5 V typ.	
Part number	Package	tegrated Schottky-like diode	BV _{DSS} [V]	High-side	Low-side	High-side	Low-side
BSG0810NDI	SuperSO8	✓	25	4.0	1.2	5.6	16.0
BSG0811ND	SuperSO8	-	25	4.0	1.1	5.6	20.0
BSG0813NDI	SuperSO8	✓	25	4.0	1.7	5.6	12.0

OptiMOS™ 25/30 V symmetrical and asymmetrical dual N-channel MOSFETs in 5x6 and 3x3 PQFN

Integrates the low-side and high-side MOSFET of a synchronous DC-DC converter into a single package. The small outline and the interconnection of the two MOSFETs within the package minimize the loop inductance which boosts efficiency.								
						_{GS} =4.5 V typ.		
Part number	Package	tegrated Schottky-like diode	BV _{DSS} [V]	High-side	Low-side	High-side	Low-side	
BSC0911ND*	asymmetrical dual 5x6	_	25	4.8	1.7	7.7	25	
BSC0921NDI*	asymmetrical dual 5x6	✓	30	7	2.1	5.8	21	
BSC0923NDI*	asymmetrical dual 5x6	✓	30	7	3.7	5.2	12.2	
BSC0924NDI*	asymmetrical dual 5x6	✓	30	7	5.2	5.2	8.6	

OptiMOS[™] 40 V and 100 V in Symmetrical Power Block 6.3x6.0

Part number	Package	Dual-side cooling	BV _{DSS} [V]	$R_{DS(on)} [m\Omega]$ at $V_{GS} = 10 \text{ V max}$	Q_{G} [nC] at V_{GS} = 10 V typ.
ISG0613N04NM6H	Power Block 6.3x6.0	_	40 V	0.88	69
ISG0613N04NM6HSC	Power Block 6.3x6.0	✓	40 V	0.88	69
ISG0616N10NM5HSC	Power Block 6.3x6.0	✓	100 V	3.4	52

OptiMOS™/StrongIRFET™ 30 V - 100 V dual N-channel MOSFETs

Integrates two independent N-channel MOSFETs into a single package for high power density and compact design. Ideal for DC motors with power rating < 200 W										
		Monolithically		$R_{DS(on), max.}[m\Omega]$ at V_{GS} =10 V max.		Q _g [nC] at \	_{es} =10 V typ.			
Part number	Package	integrated Schottky like diode	BV _{DSS} [V]	High-side	Low-side	High-side	Low-side			
IRF7907*	asymmetrical dual SO8	_	30	16.4	11.8	6.7**	14**			
IRLHS6376*	symmetrical dual PQFN 2x2	-	30	63**	63**	2.8**	2.8**			
BSC072N04LD*	symmetrical dual 5x6	-	40	7.2	7.2	39	39			
BSC076N04ND	symmetrical dual 5x6	-	40	7.6	7.6	28	28			
BSC155N06ND	symmetrical dual 5x6	-	60	15.5	15.5	21	21			
IRF7351	symmetrical dual SO8	-	60	17.8	17.8	24	24			

Dual N-channel audio MOSFETs

Digital audio MOSFET half-bridges are specifically designed for class D audio amplifier applications. They consist of two power MOSFET switches connected in half-bridge configuration.									
Part number	Package	Monolithically- integrated Schottky like diode	BV _{DSS} [V]	R _{DS(on), max.} [mΩ] : High-side	at V _{GS} =4.5 V max. Low-side	Q _g [nC] at V	_{cs} =4.5 V typ. Low-side		
IRFI4212H-117P	half-bridge in TO220FP	-	100	72.5	72.5	12	12		

1) Coming soon

Click here to learn more: -

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

www.infineon.com/optimos6

www.infineon.com/strongirfet2

$\mathsf{OptiMOS^{\scriptscriptstyle\mathsf{TM}}}$ and $\mathsf{StrongIRFET^{\scriptscriptstyle\mathsf{TM}}}\,30\,V$ normal level

$\begin{array}{c} R_{DS(on),max.} \\ \text{at V}_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	SuperSO8	TOLL (TO-Leadless)
<1		IPT004N03L $R_{DS(on)}$ =0.04 m Ω
	IRF8788TRPBF $R_{DS(on)} = 2.8 \text{ m}\Omega$	
2-4	IRF7862TRPBF $R_{DS(on)}$ =3.3 m Ω	
	IRF7832TRPBF $R_{DS(on)}$ =4.0 m Ω	
4 10	IRF8736TRPBF $R_{DS(on)}$ =4.8 m Ω	

OptiMOS™ and StrongIRFET™ 30 V logic level

$\begin{array}{c} \textbf{R}_{\text{DS(on), max.}} \\ \textbf{at V}_{\text{GS}} = \textbf{10 V} \\ [\textbf{m}\boldsymbol{\Omega}] \end{array}$	TO-252 (DPAK)	ТО-220
1-2		$\begin{array}{c} \text{IPP011N03LF2S} \\ R_{\text{DS(on)}} = 1.1 \text{ m}\Omega \\ \\ \text{IPP018N03LF2S} \\ R_{\text{DS(on)}} = 1.8 \text{ m}\Omega \\ \\ \text{IPP020N03LF2S} \\ R_{\text{DS(on)}} = 2.0 \text{ m}\Omega \end{array}$
2-4	IPD031N03L G $R_{DS(on)} = 3.1 \ m\Omega$	IPP023N03LF2S $R_{\text{DS(on)}}$ =2.3 mΩ IPP033N03LF2S $R_{\text{DS(on)}}$ =3.3 mΩ
4-10		$\begin{array}{c} \text{IPP044N03LF2S} \\ \text{R}_{\text{DS(on)}} = 4.4 \text{ m}\Omega \\ \\ \text{IPP050N03LF2S} \\ \text{R}_{\text{DS(on)}} = 5.0 \text{ m}\Omega \end{array}$

OptiMOS™ and StrongIRFET™ 30 V logic level

$\begin{array}{c} R_{DS(on),max.} \\ at V_{GS} = 10 V \\ [m\Omega] \end{array}$	PQFN 3.3 x 3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	PQFN 5x6 Source-Down	PQFN 5x6 Source-Down DSC (dual-side cooling)	PQFN 3.3 x 3.3	SuperSO8
<1	IQE008N03LM5 R _{DS(on)} =0.85 mΩ	IQE008N03LM5CGSC $R_{DS(on)} = 0.85 \text{ m}\Omega$	IQDH35N03LM5 $R_{DS(on)} = 0.35 \text{ m}\Omega$	IQDH35N03LM5SC $R_{DS(on)}$ =0.35 $m\Omega$		BSC005N03LS5 $R_{DS(on)}$ =0.55 m Ω
<1	IQE008N03LM5CG $R_{DS(on)}$ =0.85 m Ω	IQE008N03LM5SC $R_{DS(on)} = 0.85 \text{ m}\Omega$	IQDH35N03LM5CG $R_{DS(on)} = 0.35 \text{ m}\Omega$	IQDH35N03LM5CGSC $R_{DS(on)}$ =0.35 m Ω		BSC005N03LS5I* $R_{DS(on)}=0.5 \text{ m}\Omega$
						BSC011N03LS $R_{DS(on)}$ =1.1 m Ω
						BSC011N03LSI* $R_{DS(on)}=1.1 \text{ m}\Omega$
1.2					BSZ0500NSI* $R_{DS(on)}=1.5 \text{ m}\Omega$	
1-2					BSZ019N03LS $R_{DS(on)}$ =1.9 m Ω	
					BSZ0501NSI* $R_{DS(on)}=2.0 \text{ m}\Omega$	BSC0901NS $R_{DS(on)}=1.9 \text{ m}\Omega$
						BSC0501NSI** $R_{DS(on)}=1.9 \text{ m}\Omega$

My Click here to learn more:

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

www.infineon.com/optimos6

OptiMOS™ and StrongIRFET™ 30 V logic level

$egin{array}{l} R_{ exttt{DS(on), max.}} \ ext{at V}_{ ext{GS}} = 10 \ ext{V} \ [m\Omega] \end{array}$	PQFN 3.3x3.3	SuperS08	PQFN 2x2
			ISK036N03LM5 $R_{DS[on]}$ =3.6 mΩ
	BSZ0902NS $R_{DS(on)}$ =2.6 m Ω		
	$\begin{array}{c} BSZ0502NSl^{**} \\ R_{DS[on]} = 2.8 \; m\Omega \end{array}$	BSC0902NS $R_{DS(on)}$ =2.6 m Ω	
2-4		BSC0902NSI* $R_{DS(on)}=2.8 \text{ m}\Omega$	
		BSC030N03LS G $R_{DS(on)} = 3.0 \text{ m}\Omega$	
		BSC0504NSI* $R_{DS(on)}=3.7 \text{ m}\Omega$	
	BSZ0904NSI** $R_{DS(on)}=4.0 mΩ$		
	BSZ0506NS $R_{DS(on)}$ =4.4 m Ω	BSC0906NS $R_{DS(on)}$ =4.5 m Ω	
4-10	BSZ065N03LS $R_{DS(on)}$ =6.5 mΩ		

OptiMOS™ and StrongIRFET™ 40 V normal level

$\begin{array}{c} {\sf R}_{\sf DS(on),max.} \\ {\sf at V}_{\sf GS} {=} 10 {\sf V} \\ {\sf [m\Omega]} \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D ² PAK 7-pin)	TO-220	PQFN 5.x6 Source-Down	PQFN 5x6 Source-Down DSC (dual-side cooling)	sTOLL	SuperSO8	TOLL (TO-Leadless)
					$\begin{aligned} & \text{IQD005N04NM6CG} \\ & \text{R}_{\text{DS(on)}} = 0.5 \text{ m}\Omega \end{aligned}$	$\begin{array}{l} \text{IQD005N04NM6SC} \\ \text{R}_{\text{DS(on)}} \text{=0.47 m}\Omega \end{array}$	IST006N04NM6 R _{DS(on)} =0.6 mΩ	$\begin{array}{c} \text{ISC007N04NM6} \\ \text{R}_{\text{DS(on)}} \text{=0.7 m}\Omega \end{array}$	IRL40T209 R _{DS(on)} =0.72 mΩ
<1					IQD005N04NM6 R _{DS(on)} = 0.5 mΩ	IQD005N04NM6CGSC $R_{DS(on)}$ =0.47 $m\Omega$		ISC010N04NM6 R _{DS(on)} =1.0 mΩ	
			IPF009N04NF2S $R_{DS(on)} = 0.9 \text{ m}\Omega$				IST010N04NM5 $R_{DS(on)}$ =1.0 mΩ		
								ISC012N04NM6 $R_{DS(on)} = 1.2 \text{ m}\Omega$	
		IPB012N04NF2S R _{DS(on)} = 1.25 mΩ		IPP011N04NF2S R _{DS(on)} = 1.15 mΩ					
1-2				IPP013N04NF2S $R_{DS(on)} = 1.3 \text{ m}Ω$					
1-2		IPB014N04NF2S $R_{DS(on)} = 1.45 \text{ m}\Omega$	IPF013N04NF2S $R_{DS(on)} = 1.35 \text{ m}\Omega$	IPP015N04NF2S $R_{DS(on)} = 1.5 \text{ m}Ω$				ISC015N04NM5 $R_{DS(on)}$ =1.5 m Ω	
		IRFS7437TRLPBF $R_{DS(on)} = 1.8 \text{ m}\Omega$						ISC017N04NM5 R _{DS(on)} =1.7 mΩ	
								ISC019N04NM5 R _{DS(on)} =1.9 mΩ	
2-4	IPD023N04NF2S $R_{DS(on)} = 2.3 \text{ m}\Omega$			IRFB7440PBF $R_{DS(on)} = 2.5 \text{ m}\Omega$				IRFH7440TRPBF $R_{DS(on)} = 2.4 \text{ m}\Omega$	
2-4	IPD029N04NF2S $R_{DS(on)} = 2.9 \text{ m}\Omega$							ISC028N04NM5 R _{DS(on)} =2.8 mΩ	
4-10								ISC046N04NM5 R _{DS(on)} =4.6 mΩ	
4-10								ISC058N04NM5 $R_{DS(on)}$ =5.8 m Ω	

Click here to learn more: -

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

Ն=

OptiMOS™ and StrongIRFET™ 40 V logic level

T\ I	
₽₽F	-+

BSC059N04LS6 $R_{DS(on)}$ =5.9 m Ω

		_							
$\begin{array}{c} R_{\text{DS(on), max.}} \\ \text{at V}_{\text{GS}} = 10 \text{ V} \\ \text{[} m\Omega \text{]} \end{array}$	TO-263 (D2PAK)	PQFN 5x6 Source-Down	PQFN 2x2	PQFN 5x6 Source-Down DSC (dual-side cooling)	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	PQFN 3.3x3.3	SuperSO8	SuperSO8 dual-side cooling (DSC)
<1		IQDH45N04LM6CG $R_{DS(on)} = 0.45 \text{ m}\Omega$		IQDH45N04LM6SC $R_{DS(on)}$ =0.45 m Ω				ISCH42N04LM7 R _{DS(on)} =0.42 mΩ	BSC007N04LS6SC $R_{DS(on)}$ =0.7 m Ω
				IQDH45N04LM6CGSC $R_{DS(on)} = 0.45 \text{m}\Omega$				BSC007N04LS6 R _{DS(on)} =0.7 mΩ	BSC009N04LSSC $R_{DS(on)} = 0.94 \text{ m}\Omega$
					IQE013N04LM6 R _{DS(on)} = 1.35 mΩ	IQE013N04LM6CGSC* R _{DS(on)} =1.35 mΩ			
	IRL40S212 R _{DS(on)} =1.9 mΩ				IQE013N04LM6CG $R_{DS(on)} = 1.35 \text{ m}\Omega$	IQE013N04LM6SC* $R_{DS(on)} = 1.35 \text{ m}\Omega$		BSC010N04LS6 R _{DS(on)} =1.0 mΩ	
								BSC010N04LSI $R_{DS(on)} = 1.05 \text{ m}\Omega$	
1-2								ISC012N04LM6 R _{DS(on)} =1.2 mΩ	
								BSC014N04LS $R_{DS(on)}$ =1.4 $m\Omega$	
							BSZ018N04LS6 R _{DS(on)} =1.8 mΩ	BSC014N04LSI R _{DS(on)} =1.45 mΩ	
								BSC019N04LS $R_{DS(on)}$ =1.9 m Ω	
							BSZ021N04LS6 $R_{DS(on)} = 2.1 \text{ m}\Omega$		
							BSZ024N04LS6 R _{DS(on)} =2.4 mΩ		
2-4								BSC026N04LS $R_{DS(on)}$ =2.6 m Ω	
							BSZ028N04LS R _{DS(on)} =2.8 mΩ		
							BSZ034N04LS $R_{DS(on)}$ =3.4 m Ω	BSC032N04LS $R_{DS(on)} = 3.2 \text{ m}\Omega$	
			ISK057N04LM6 $R_{DS(on)} = 5.75 \text{ m}\Omega$						
4-10							BSZ063N04LS6 $R_{DS(on)}$ =6.3 m Ω		

Op

					FullPAK		DSC (dual side cooling)
			IQD009N06NM5CG $R_{DS(on)} = 0.9 \text{ m}\Omega$				
			IQD009N06NM5 R _{DS(on)} = 0.9 mΩ				
	IPB010N06N ¹⁾ $R_{DS(on)} = 1.0 \text{ m}\Omega$						
	IPF010N06NF2S $R_{DS(on)} = 1.05 \text{ m}\Omega$						
	IPF012N06NF2S $R_{DS(on)} = 1.2 \text{ m}\Omega$						
PB013N06NF2S R _{DS(on)} = 1.3 mΩ	IPB014N06N R _{DS(on)} = 1.4 mΩ						
				IPP014N06NF2S R _{DS(on)} =1.4 mΩ			BSC014N06NSS0 $R_{DS(on)} = 1.4 \text{ m}\Omega$
				IPP016N06NF2S R _{DS(on)} =1.6 mΩ			BSC016N06NSS0 $R_{DS(on)} = 1.6 \text{ m}\Omega$
				IPP019N06NF2S R _{DS(on)} =1.9 mΩ			
				SS(M)			
11	$R_{DS(en)} = 1.3 \text{ m}\Omega$ IPB015N06NF2S $R_{DS(en)} = 1.5 \text{ m}\Omega$	IPB015N06NF2S	IPB015N06NF2S	IPB015N06NF2S	$\begin{array}{c} \text{IPP014N06NF2S} \\ R_{\text{DS(on)}} = 1.4 \text{ m}\Omega \\ \\ \text{IPP016N06NF2S} \\ R_{\text{DS(on)}} = 1.6 \text{ m}\Omega \\ \\ \text{IPP019N06NF2S} \\ R_{\text{DS(on)}} = 1.9 \text{ m}\Omega \\ \\ \text{IPB015N06NF2S} \end{array}$	$\begin{array}{c} \text{IPP014N06NF2S} \\ \text{R}_{\text{DS(on)}} = 1.4 \text{ m}\Omega \\ \\ \text{IPP016N06NF2S} \\ \text{R}_{\text{DS(on)}} = 1.6 \text{ m}\Omega \\ \\ \text{IPP019N06NF2S} \\ \text{R}_{\text{DS(on)}} = 1.9 \text{ m}\Omega \\ \\ \text{IPB015N06NF2S} \end{array}$	$\begin{array}{c} \text{IPP014N06NF2S} \\ R_{\text{DS(on)}} = 1.4 \text{ m}\Omega \\ \\ \text{IPP016N06NF2S} \\ R_{\text{DS(on)}} = 1.6 \text{ m}\Omega \\ \\ \text{IPP019N06NF2S} \\ R_{\text{DS(on)}} = 1.9 \text{ m}\Omega \\ \\ \text{IPB015N06NF2S} \\ \end{array}$

2-4

IPD025N06N¹⁾

 $R_{DS(on)} = 2.5 \text{ m}\Omega$

IPD028N06NF2S

 $R_{DS(on)} = 2.85 \text{ m}\Omega$

IPD033N06N 1) $R_{DS(on)}$ =3.3 m Ω IPD038N06NF2S

 $R_{DS(on)} = 3.85 \text{ m}\Omega$

IRFR7546TRPBF

 $R_{_{DS(on)}}$ =7.9 $m\Omega$

4-10

IPD053N06N 1) $R_{DS(on)} = 5.3 \text{ m}\Omega$

IPB057N06N1) IRFB7545PBF $R_{DS(on)} = 5.7 \text{ m}\Omega$ $R_{DS(on)}$ =5.9 m Ω

IPI029N06N1)

 $R_{DS(on)} = 2.9 \text{ m}\Omega$

IPF016N06NF2S $R_{DS(on)} = 1.7 \text{ m}\Omega$

IPB018N06NF2S $R_{DS(on)} = 1.8 \text{ m}\Omega$

IPB026N06N1)

 $R_{DS(on)} = 2.6 \text{ m}\Omega$

IPB029N06NF2S

 $R_{DS(on)} = 2.9 \text{ m}\Omega$

IRFS7537TRLPBF

 $R_{DS(on)}$ =3.3 $m\Omega$

IPP040N06N1) $R_{DS(on)} = 4.0 \text{ m}\Omega$

IPP020N06N1)

 $R_{DS(on)} = 2.0 \text{ m}\Omega$

IPP029N06N1)

 $R_{DS(on)} = 2.9 \text{ m}\Omega$

IPP030N06NF2S $R_{DS(on)}$ =3.05 m Ω

IPP040N06NF2S

 $R_{DS(on)}$ =4.00 m Ω

IPA060N06N 1) $R_{DS(on)} = 6.0 \text{ m}\Omega$

IPA029N06N 1)

 $R_{DS(on)} = 2.9 \text{ m}\Omega$

IRFP7537PBF $R_{DS(on)} = 3.3 \text{ m}\Omega$ IPA040N06N 1)

IRFP7530PBF

 $R_{DS(on)}$ =2.0 $m\Omega$

BSC028N06NSSC

 $R_{DS(on)} = 2.8 \text{ m}\Omega$

 $R_{DS(on)} = 4.0 \text{ m}\Omega$

🕠 Click here to learn more: -

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages

www.infineon.com/optimos6 www.infineon.com/optimos7

Solar

OptiMOS™ and StrongIRFET™ 60 V normal level

$\begin{array}{c} R_{DS(on),max.} \\ at V_{GS} = 10 V \\ [m\Omega] \end{array}$	PQFN 3.3x3.3	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	PQFN 5x6 Source-Down dual-side cooling (DSC)	SO8	SuperSO8	TOLT	TO-Leadless	sTOLL
				IQD009N06NM5SC R _{DS(on)} =0.9 mΩ			IPTC007N06NM5 $R_{DS(on)} = 0.7 \text{ m}\Omega$	IPT007N06N ¹⁾ R _{DS(on)} =0.7 mΩ	IST011N06NM5 $R_{DS(on)} = 1.1 \text{ m}\Omega$
<1				IQD009N06NM5CGSC R _{DS(on)} =0.9 mΩ					
						ISC010N06NM5	IPTC012N06NM5		IST015N06NM5
						R _{DS(on)} =1.05 mΩ	$R_{DS(on)} = 1.2 \text{ m}\Omega$		$R_{DS(on)} = 1.5 \text{ m}\Omega$
						BSC012N06NS $R_{DS(on)} = 1.2 \text{ m}\Omega$		IPT012N06N ¹⁾ R _{DS(on)} =1.2 mΩ	
1-2								IPT008N06NM5LF $R_{DS(on)} = 0.8 \text{ m}\Omega$	
						BSC019N06NS ¹⁾ R _{DS(on)} =1.9 mΩ			
		IQE030N06NM5CG $R_{DS(on)} = 3 \text{ m}\Omega$	IQE030N06NM5CGSC * $R_{DS(on)}$ =3.0 mΩ			BSC028N06NS ¹⁾ $R_{DS(on)}$ =2.8 mΩ			
		IQE030N06NM5 $R_{DS(on)} = 3 \text{ m}\Omega$	IQE030N06NM5SC * $R_{DS(on)}$ =3.0 mΩ			ISC0702NLS $R_{DS(on)}$ =2.8 m Ω			
						BSC034N06NS ¹⁾ R _{DS(on)} =3.4 mΩ			
2.4						BSC039N06NS ¹⁾ $R_{DS(on)}$ =3.9 mΩ			
2-4	BSZ042N06NS ¹⁾ R _{DS(on)} =4.2 mΩ				IRF7855TRPBF R _{DS(on)} =9.4 mΩ	IRFH7545TRPBF $R_{DS(on)} = 5.2 \text{ m}\Omega$			
						BSC066N06NS ¹⁾ $R_{DS(on)}$ =6.6 m Ω			
	BSZ068N06NS ¹⁾ R _{DS(on)} =6.8 mΩ								
	BSZ100N06NS ¹⁾ R _{DS(on)} =10.0 mΩ								
	9					BSC097N06NS ¹⁾ R _{DS(on)} =9.7 mΩ			
5-20					IRF7351TRPBF R _{DS(on)} =17.8 mΩ	BSC155N06ND R _{DS(on)} =15.5 mΩ			

V=

OptiMOS™ and StrongIRFET™ 60 V logic level

AC-DC	Adapter	Battery	Consumer	DC-DC	
<u>2</u> 7	- +	®	∷		
Motor control	Offline	PC power	Power tools	Server	

$\begin{array}{c} R_{\scriptscriptstyle DS(on),\; max.} \\ \text{at V}_{\scriptscriptstyle GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-252 (DPAK)	PQFN 5x6 Source-Down	PQFN 5x6 Source- Down dual-side cooling (DSC)	PQFN 3.3x3.3 Source-Down	TO-263 (D²PAK 7-pin)	TO-220	PQFN 2x2	PQFN 3.3x3.3	SuperSO8
<1		IQDH88N06LM5CG $R_{DS(on)} = 0.88 \text{ m}\Omega$	IQDH88N06LM5SC* Rds(on)=0.86 mΩ						ISC009N06LM5 $R_{DS(on)} = 0.9 \text{ m}\Omega$
		IQDH88N06LM5 $R_{DS(on)} = 0.88 \text{ m}\Omega$	IQDH88N06LM5CGSC* Rds(on)=0.86 mΩ						
									ISC011N06LM5 $R_{DS(on)} = 1.1 \text{ m}\Omega$
1-2					IRLS3036TRL7PP $R_{DS(on)} = 1.9 \text{ m}\Omega$				ISC015N06NM5LF ¹⁾ $R_{DS(on)} = 1.5 \text{ m}\Omega$
					IRLS3036TRL7PP $R_{DS(on)} = 1.9 \text{ m}\Omega$			ISZ034N06LM5 R _{DS(on)} = 3.4 mΩ	
				IQE022N06LM5 $R_{DS(on)} = 2.2 \text{ m}\Omega$		IRLB3036PBF R _{DS(on)} =2.4 mΩ			BSC027N06LS5 $R_{DS(on)}$ =2.7 m Ω
2.4				IQE022N06LM5CG $R_{DS(on)} = 2.2 \text{ m}\Omega$					
2-4				IQE022N06LM5SC $R_{DS(on)} = 2.2 \text{ m}\Omega$					
				IQE022N06LM5CGSC $R_{DS(on)} = 2.2 \text{ m}\Omega$					
	IPD048N06L3 G $R_{DS(on)} = 4.8 \text{ m}\Omega$							BSZ040N06LS5 $R_{DS(on)} = 4.0 \text{ m}\Omega$	BSC065N06LS5 R _{DS(on)} =6.5 mΩ
	IRLR3636TRPBF $R_{DS(on)} = 6.8 \text{ m}\Omega$							BSZ065N06LS5 $R_{DS(on)} = 6.5 \text{ m}\Omega$	BSC094N06LS5 $R_{DS(on)}$ =9.4 m Ω
4-10	IPD079N06L3 G $R_{DS(on)} = 7.9 \text{ m}\Omega$							BSZ099N06LS5 $R_{DS(on)} = 9.9 \text{ m}\Omega$	
	IPD088N06N3 G R _{DS(on)} = 8.8 mΩ								
>10	IPD220N06L3 G $R_{DS(on)} = 22 \text{ m}\Omega$						IRL60HS118 $R_{DS(on)}=17.0 \text{ m}\Omega$		

OptiMOS™ and StrongIRFET™ 75 V normal level

$\begin{array}{c} R_{_{DS(on),max.}} \\ \text{at V}_{_{GS}}\text{=}10\text{V} \\ [\text{m}\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D ² PAK)	TO-263 (D ² PAK 7-pin)	TO-220	TO-247
1-2			IRFS7730TRL7PP $R_{DS(on)}$ =2.0 mΩ		
1-2					IRFP4368PBF $R_{DS(on)}$ =1.85 mΩ
		$ \begin{array}{c} \text{IRFS7730TRLPBF} \\ \text{R}_{\text{DS(on)}} = 2.6 \text{ m}\Omega \end{array} $			IRFP3077PBF $R_{DS(on)}$ =3.3 mΩ
2-4				IRFB7730PBF $R_{DS(on)}$ =2.6 mΩ	
				IRFB7734PBF $R_{DS(on)}$ =3.5 mΩ	
5.10				IRFB3307ZPBF $R_{DS(on)} = 5.8 \text{ m}\Omega$	
5-10	IRFR3607PBF $R_{DS(on)}$ =9.0 mΩ	$ \begin{array}{c} RFS3607TRLPBF \\ R_{DS(on)} = 9.0 \ m\Omega \end{array} $			

OptiMOS™ and StrongIRFET™ 80 V normal level/logic level

Ղ=	뉴		\bigcirc	==	% <u>~</u>	(\mathcal{B})	
AC-DC	Adapter	Battery	Consumer	DC-DC	Electric toys	Industrial drives	LED
<u>2</u> 7	- +						(3)
Motor control	Offline	PC power	Power tools	Server	SMPS	Solar	UPS

$\begin{array}{c} R_{DS(on),max.} \\ at V_{GS} = 10 V \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D²PAK 7-pin)	TO-220	TO-220 FullPAK	SuperSO8 DSC (dual-side cooling)	PQFN 5x6 Source-Down	PQFN 5x6 Source-Down dual-side cooling (DSC)	PQFN 3.3x3.3 Source-Down	PQFN 2x2	PQFN 3.3x3.3	SuperSO8	TO-Leadless
							IQD016N08NM5CG $R_{DS(on)} = 1.6 \text{ m}\Omega$	IQD016N08NM5SC* $R_{DS(on)}=1.57 \text{ m}\Omega$					
		IPB016N08NF2S $R_{DS(on)} = 1.65 \text{ m}\Omega$	IPB015N08N5 $R_{DS(on)}$ =1.5 mΩ	IPP016N08NF2S $R_{DS(on)}$ =1.6 mΩ			IQD016N08NM5 $R_{DS(on)} = 1.6 \text{ m}\Omega$	IQD016N08NM5CGSC* R _{DS(on)} =1.57 mΩ	•				
1-2			IPF014N08NF2S $R_{DS(on)} = 1.4 \text{ m}\Omega$	IPP019N08NF2S $R_{DS(on)}$ =1.9 m Ω									IPT010N08NM5 $R_{DS(on)}$ =1.0 mΩ
		IPB019N08NF2S $R_{DS(on)} = 1.95 \text{ m}\Omega$	$\begin{aligned} & \text{IPF017N08NF2S} \\ & \text{R}_{\text{DS(on)}} = 1.7 \text{ m}\Omega \end{aligned}$										IPT012N08N5 R _{DS(on)} =1.2 mΩ
													IPT012N08NF2S $R_{DS(on)} = 1.23 \text{ m}\Omega$
		IPB020N08N5 $R_{DS(on)}$ =2.0 mΩ	IPB019N08N5 R _{DS(on)} =1.95 mΩ	IPP024N08NF2S R _{DS(on)} =2.4 mΩ		BSC023N08NS5SC $R_{DS(on)} = 2.3 \text{ m}\Omega$							IPT013N08NM5LF $R_{DS(on)} = 1.3 \text{ m}\Omega$
			IPF023N08NF2S $R_{DS(on)} = 2.3 \text{ m}\Omega$	IPP023N08N5 R _{DS(on)} =2.3 mΩ		BSC033N08NS5SC $R_{DS(on)} = 3.3 \text{ m}\Omega$						BSC025N08LS5 $R_{DS(on)} = 2.5 \text{ m}\Omega$	IPT014N08NM5 R _{DS(on)} =1.4 mΩ
2-4		IPB024N08NF2S $R_{DS(on)} = 2.4 \text{ m}\Omega$	IPF039N08NF2S $R_{DS(on)} = 3.9 \text{ m}\Omega$									BSC026N08NS5 $R_{DS(on)} = 2.6 \text{ m}\Omega$	IPT019N08N5 R _{DS(on)} =1.9 mΩ
												BSC030N08NS5 $R_{DS(on)}$ =3.0 m Ω	
		IPB031N08N5 R _{DS(on)} =3.1 mΩ		IPP034N08N5 R _{DS(on)} =3.4 mΩ									
		IPB040N08NF2S $R_{DS(on)} = 4 \text{ m}\Omega$		IPP040N08NF2S R _{DS(on)} =4.0 mΩ					IQE046N08LM5 $R_{DS(on)} = 4.6 \text{ m}\Omega$			BSC037N08NS5 $R_{DS(on)}$ =3.7 m Ω	
		IPB049N08N5 $R_{DS(on)} = 4.9 \text{ m}\Omega$							IQE046N08LM5CG $R_{DS(on)} = 4.6 \text{ m}\Omega$			BSC040N08NS5 $R_{DS(on)} = 4.0 \text{ m}\Omega$	
	IPD040N08NF2S $R_{DS(on)} = 4 \text{ m}\Omega$	IPB055N08NF2S $R_{DS(on)} = 5.5 \text{ m}\Omega$			IPA052N08NM5S $R_{DS(on)}$ =5.2 mΩ				IQE046N08LM5SC $R_{DS(on)} = 4.6 \text{ m}\Omega$			BSC052N08NS5 $R_{DS(on)} = 5.2 \text{ m}\Omega$	
4-10	IPD055N08NF2S $R_{DS(on)} = 5.5 \text{ m}\Omega$			IPP055N08NF2S R _{DS(on)} =5.5 mΩ					IQE046N08LM5CGSC $R_{DS(on)} = 4.6 \text{ m}\Omega$		BSZ070N08LS5 R _{DS(on)} =7.0 mΩ		
											BSZ075N08NS5 R _{DS(on)} =7.5 mΩ	BSC061N08NS5 $R_{DS(on)}$ =6.1 m Ω	
												BSC072N08NS5 R _{DS(on)} =7.2 m Ω	
											BSZ084N08NS5 R _{DS(on)} =8.4 mΩ		
>10												BSC117N08NS5 R _{DS(on)} =11.7 mΩ	
-10										IRL80HS120 R _{DS(on)} =32.0 mΩ	$\begin{array}{l} \text{BSZ110N08NS5} \\ \text{R}_{\text{DS(on)}} = & 11.0 \text{ m}\Omega \end{array}$		

Click here to learn more:

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos6 www.infineon.com/strongirfet2 www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7 www.infineon.com/smallsignal

OptiMOS™ and StrongIRFET™ 80 V normal level/logic level

$\begin{array}{c} R_{\text{DS(on), max.}} \\ \text{at V}_{\text{GS}} = 10 \text{ V} \\ \text{[m}\Omega] \end{array}$	TOLT (TO-Leaded top-side cooling)	sTOLL	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	SuperSO8
1-2	$\begin{aligned} & \text{IPTC011N08NM5} \\ & R_{DS(on)} = 1.2 \text{ m}\Omega \\ & \text{IPTC014N08NM5} \\ & R_{DS(on)} = 1.4 \text{ m}\Omega \end{aligned}$	$\begin{aligned} & IST019N08NM5 \\ & R_{DS(on)} = 1.9 \ m\Omega \end{aligned}$			
3-5			$\begin{aligned} & \text{IQE050N08NM5} \\ & R_{\text{DS(on)}} = 5 \text{ m}\Omega \\ & \text{IQE050N08NM5CG} \\ & R_{\text{DS(on)}} = 5 \text{ m}\Omega \end{aligned}$	$\begin{aligned} & \text{IQE050N08NM5SC} \\ & R_{\text{DS(on)}} = 5 \text{ m}\Omega \\ & \text{IQE050N08NM5CGSC} \\ & R_{\text{DS(on)}} = 5 \text{ m}\Omega \end{aligned}$	
5-20					IRF7854TRPBF $R_{DS(on)} = 13.4 \text{ m}\Omega$

OptiMOS™ and StrongIRFET™ 100 V normal level

(9
	HPS

R _{DS(on), max.} at V _{GS} =10 V	TO-252 (DPAK)	TO-263 (D ² PAK)	TO-263 (D ² PAK 7-pin)	TO-220	TO-220 FullPAK	TO-247
[mΩ]	(DPAK)	(D-PAK)	(D-PAK 7-pin)		FUIIPAK	IDE100D310
						$R_{DS(on)} = 1.1 \text{ m}\Omega$
1-2			IPF016N10NF2S $R_{DS(on)} = 1.6 \text{ m}\Omega$			IRF100P219 R _{DS(on)} =2.1 mΩ
1-2			IPB017N10N5 R _{DS(on)} =1.7 mΩ			
			IPB017N10N5LF $R_{DS(on)}$ =1.7 m Ω			
		IPB020N10N5 R _{DS(on)} =2.0 mΩ		IPP023N10N5 R _{DS(on)} =2.3 mΩ	IPA030N10NF2S $R_{DS(on)}$ =3.0 mΩ	IRFP4468PBF $R_{DS(on)} = 2.6 \text{ m}\Omega$
2.4		IPB020N10N5LF $R_{DS(on)}$ =2.0 m Ω	IPB024N10N5 R _{DS(on)} =2.4 mΩ	IPP026N10NF2S $R_{DS(on)}$ =2.6 mΩ		
2-4		IPB026N10NF2S $R_{DS(on)} = 2.65 \text{ m}\Omega$	IPB032N10N5 $R_{DS(on)} = 3.2 \text{ m}\Omega$	IPP030N10N5 R _{DS(on)} =3.0 mΩ		
		IPB027N10N5 R _{DS(on)} =2.7 mΩ		IPP039N10N5 R _{DS(on)} =3.9 mΩ		
	IPD050N10N5 R _{DS(on)} =5.0 mΩ	IPB033N10N5LF $R_{DS(on)} = 3.3 \text{ m}\Omega$	IPF042N10NF2S $R_{DS(on)} = 4.25 \text{ m}\Omega$			IRFP4110PBF $R_{DS(on)} = 4.5 \text{ m}\Omega$
	IPD052N10NF2S $R_{DS(on)} = 5.2 \text{ m}\Omega$	IPB043N10NF2S $R_{DS(on)} = 4.35 \text{ m}\Omega$	IPF050N10NF2S $R_{DS(on)} = 5.05 \text{ m}\Omega$	IRFB4110PBF $R_{DS(on)}$ =4.5 m Ω		IRFP4310ZPBF $R_{DS(on)}$ =6.0 m Ω
				IPP050N10NF2S $R_{DS(on)}$ =5.0 mΩ		
4-10		IPB050N10NF2S $R_{DS(on)} = 5.05 \text{ m}\Omega$			IPA082N10NF2S $R_{DS(on)}$ =8.2 mΩ	
		IRFS4310ZTRLPBF $R_{DS(on)} = 7.0 \text{ m}\Omega$		IPP082N10NF2S $R_{DS(on)}$ =8.2 m Ω	IPA083N10N5 R _{DS(on)} =8.3 mΩ	
				IPP083N10N5 R _{DS(on)} =8.3 mΩ		
				IRFB4410ZPBF $R_{DS(on)} = 9.0 \text{ m}\Omega$		
10-25	IPD130N10NF2S $R_{DS(on)} = 13.0 \text{ m}\Omega$			IPP129N10NF2S $R_{DS(on)}$ =12.9 $m\Omega$		
>25	IPD78CN10N G R _{DS(on)} =78.0 mΩ					

OptiMOS[™] and StrongIRFET[™] 100 V normal level

$\begin{array}{c} \textbf{R}_{\text{DS(on), max.}} \\ \textbf{at V}_{\text{GS}} = \textbf{10 V} \\ [\textbf{m}\boldsymbol{\Omega}] \end{array}$	DirectFET™	PQFN 3.3x3.3	PQFN 3.3x3.3 Source-Down	PQFN 3.3x3.3 Source-Down DSC (dual-side cooling)	PQFN 5x6 Source-Down	PQFN 5x6 Source-Down DSC (dual-side cooling)	SuperSO8	SuperSO8 DSC (dual-side cooling)	SO8	TOLL (TO-Leadless)	TOLT (TO-Leaded top-side cooling)	TOLG (TO-Leaded Gullwing)	sTOLL
		ISZ080N10NM6 R _{DS(on)} = 8.0 mΩ									IPTC015N10NM5 $R_{DS(on)} = 1.5 \text{ m}\Omega$	PTG014N10NM5 $R_{DS(on)} = 1.4 \text{ m}\Omega$	
							ISC022N10NM6 R _{DS(on)} = 2.2 mΩ			IPT015N10N5 R _{DS(on)} =1.5 mΩ		IPTG018N10NM5 $R_{DS(on)} = 1.8 \text{ m}\Omega$	
1-2							ISC027N10NM6 $R_{DS(on)} = 2.7 \text{ m}\Omega$			IPT015N10NF2S $R_{DS(on)} = 1.5 \text{ m}\Omega$		IPTG025N10NM5 $R_{DS(on)} = 2.5 \text{ m}\Omega$	
							ISC030N10NM6 $R_{DS(on)} = 3.0 \text{ m}\Omega$			IPT017N10NF2S $R_{DS(on)} = 1.75 \text{ m}\Omega$	IPTC019N10NM5 $R_{DS(on)} = 1.9 \text{ m}\Omega$		
					IQD020N10NM5CGSC $R_{DS(on)} = 2.0 \text{ m}\Omega$	IQD020N10NM5SC* $R_{DS(on)}$ =2.05 mΩ		BSC030N10NS5SC $R_{DS(on)} = 3.0 \text{ m}\Omega$		IPT020N10N5 R _{DS(on)} =2.0 mΩ			
2-4					$R_{DS(on)} = 2.05 \text{ m}\Omega$	$\begin{aligned} & \text{IQD020N10NM5CGSC*} \\ & \text{R}_{\text{DS(on)}} \text{=} 2.05 \text{ m}\Omega \end{aligned}$				IPT022N10NF2S $R_{DS(on)} = 2.25 \text{ m}\Omega$			
2-4	IRF7769L1TRPBF $R_{DS(on)} = 3.5 \text{ m}\Omega$							BSC040N10NS5SC $R_{DS(on)}$ =4.0 m Ω		IPT026N10N5 R _{DS(on)} =2.6 mΩ			IST026N10NM5 $R_{DS(on)} = 2.6 \text{ m}\Omega$
							BSC040N10NS5 $R_{DS(on)}$ =4.0 m Ω						
							BSC050N10N5 R _{DS(on)} =5.0 mΩ						
							ISC060N10NM6 R _{DS(on)} = 6.0 mΩ						
4-10							BSC070N10NS5 $R_{DS(on)} = 7.0 \text{ m}\Omega$	BSC070N10NS5SC $R_{DS(on)}$ =7.0 mΩ					
							ISC080N10NM6 R _{DS(on)} = 8.0 mΩ						
		$ SZ113N10NM5LF2 \\ R_{DS(on)} = 11.3 \text{ m}\Omega$					BSC098N10NS5 $R_{DS(on)} = 9.8 \text{ m}\Omega$						
10.25	IRF6644TRPBF R _{DS(on)} =13.0 mΩ	ISZ230N10NM6 R _{DS(on)} = 23.0 mΩ											
10-25							ISC230N10NM6 R _{DS(on)} =23.0 mΩ		IRF7853TRPBF $R_{DS(on)} = 18.0 \text{ m}\Omega$				
>25	IRF6645TRPBF $R_{DS(on)}$ =35.0 m Ω												

OptiMOS™ and StrongIRFET™ 100 V logic level

			27
Consumer	DC-DC	LED	Motor co

$\begin{array}{c} R_{DS(on),max.} \\ \text{at V}_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	T0-220	PQFN 2x2	PQFN 3.3x3.3	SuperSO8
1-4						BSC034N10LS5 $R_{DS(on)} = 3.4 \text{ m}\Omega$
4-10			IRLB4030PBF R _{DS(on)} =4.3 mΩ		BSZ096N10LS5 $R_{DS(on)}$ =9.6 m Ω	BSC070N10LS5 R _{DS(on)} =7.0 mΩ
4-10						BSC096N10LS5 $R_{DS(on)}$ =9.6 m Ω
10.25					BSZ146N10LS5 R _{DS(on)} =14.6 mΩ	
	$ \begin{array}{ c c } \hline RRR3110ZTRPBF \\ R_{DS(on)} = 14.0 \ m\Omega \end{array} $					$ \begin{vmatrix} BSC146N10LS5 \\ R_{DS(on)} = 14.6 \text{ m}\Omega \end{vmatrix} $

OptiMOS™ and StrongIRFET™ 120 V normal level/logic level

	•		, 0					
$\begin{array}{c} R_{_{DS(on),max.}} \\ \text{at V}_{_{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-263 (D ² PAK 7-pin)	PQFN 3.3x3.3	SuperSO8	TO-220	TO-263 (D²PAK)	TOLG (TO-Leaded Gullwing)	TOLL (TO-Leadless)	TOLT (TO-Leaded top-side Cooling)
1-2	IPF019N12NM6 $R_{DS(on)} = 1.9 \text{ m}\Omega$					IPTG017N12NM6 $R_{DS(on)} = 1.7 \text{ m}\Omega$		IPTC017N12NM6 $R_{DS(on)} = 1.7 \text{ m}\Omega$
			ISC030N12NM6 $R_{DS(on)} = 3.04 \text{ m}\Omega$	IPP022N12NM6* $R_{DS(on)} = 2.2 \text{ m}\Omega$	IPB022N12NM6* $R_{DS(on)} = 2.2 \text{ m}Ω$		IPT017N12NM6 $R_{DS(on)} = 1.7 \text{ m}\Omega$	IPTC028N12NM6* $R_{DS(on)} = 2.8 \text{ m}\Omega$
2-4			ISC032N12LM6 $R_{DS(on)} = 3.2 \text{ m}\Omega$		IPB035N12NM6* $R_{DS(on)} = 3.5 \text{ m}\Omega$			
			ISC037N12NM6 $R_{DS(on)} = 3.7 \text{ m}\Omega$					
			ISC073N12LM6 $R_{DS(on)} = 7.3 \text{ m}\Omega$					
4-10			ISC078N12NM6 $R_{DS(on)} = 7.8 \text{ m}\Omega$					
			BSC080N12LS $R_{DS(on)} = 8.0 \text{ m}\Omega$					
		ISZ106N12LM6 $R_{DS(on)} = 10.6 \text{ m}\Omega$	ISC104N12LM6 $R_{DS(on)} = 10.4 \text{ m}\Omega$		IPB133N12NM6* R _{DS(on)} = 13.3 mΩ			
10.05		ISZ330N12LM6 $R_{DS(on)} = 33.0 \text{ m}\Omega$	ISC110N12NM6 $R_{DS(on)} = 11.0 \text{ m}\Omega$					
10-25			BSC120N12LS $R_{DS(on)} = 12.0 \text{ m}\Omega$					
			ISC320N12LM6 $R_{DS(on)} = 32.0 \text{ m}\Omega$					

Click here to learn more: -

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages

OptiMOS™ and StrongIRFET™ 135-150 V normal/logic level

$\begin{array}{c} R_{\scriptscriptstyle DS(on),max.} \\ \text{at V}_{\scriptscriptstyle GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	DirectFET™	PQFN 3.3x3.3	PQFN 5x6 Source-Down	PQFN 5x6 Source-Down DSC (dual-side cooling)	SuperSO8 DSC (dual-side cooling)	SuperSO8	TOLL (TO-Leadless)
			IQD063N15NM5CGSC $R_{DS(on)} = 6.3 \text{ m}\Omega$	IQD063N15NM5SC* R _{DS(on)} =6.32 mΩ	BSC093N15NS5SC $R_{DS(on)} = 9.3 \text{ m}\Omega$	ISC037N13NM6 $R_{DS(on)} = 3.7 \text{ m}\Omega$	IPT020N13NM6 $R_{DS(on)} = 2.0 \text{ m}\Omega$
				IQD063N15NM5CGSC* $R_{DS(on)} = 6.32 \text{ m}\Omega$		ISC044N15NM6 R _{DS(on)} = 4.4 mΩ	IPT025N15NM6* $R_{DS(on)} = 2.5 \text{ m}\Omega$
						ISC055N15NM6 $R_{DS(on)} = 5.5 \text{ m}\Omega$	IPT039N15N5 $R_{DS(on)} = 3.9 \text{ m}\Omega$
1.10						ISC079N15NM6 $R_{DS(on)} = 7.9 \text{ m}\Omega$	IPT044N15N5 $R_{DS(on)} = 4.4 \text{ m}\Omega$
1-10						ISC046N13NM6 R _{DS(on)} =4.6 mΩ	IPT054N15N5 $R_{DS(on)} = 5.4 \text{ m}\Omega$
						BSC074N15NS5 ²⁾ R _{DS(on)} =7.4 mΩ	IPT063N15N5 $R_{DS(on)} = 6.3 \text{ m}\Omega$
						BSC088N15LS5 R _{DS(on)} = 8.8 mΩ	
						BSC093N15NS5 R _{DS(qp)} =9.3 mΩ	
	IRF7779L2TRPBF ²⁾ $R_{DS(on)} = 11.0 \text{ m}\Omega$	ISZ143N13NM6 R _{DS(on)} =14.3 mΩ			BSC110N15NS5SC $R_{DS(on)} = 11.0 \text{ m}\Omega$	BSC105N15LS5 $R_{DS(on)} = 10.5 \text{ m}\Omega$	
	IRF150DM115 $R_{DS(on)} = 11.3 \text{ m}\Omega$	ISZ173N15NM6* $R_{DS(on)} = 17.3 \text{ m}\Omega$			BSC160N15NS5SC $R_{DS(on)} = 16.0 \text{ m}\Omega$	BSC152N15LS5 $R_{DS(on)} = 15.2 \text{ m}\Omega$	
10-25	()					BSC110N15NS5 $R_{DS(on)} = 11.0 \text{ m}\Omega$	
						BSC160N15NS5 R _{DS(on)} =16.0 mΩ	
>25	IRF6775MTRPBF $R_{DS(on)} = 56.0 \text{ m}\Omega$						

OptiMOS™ and StrongIRFET™ 135-150 V normal/logic level

$\begin{array}{c} R_{\text{DS(on), max.}} \\ \text{at V}_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D ² PAK 7-pin)	TO-262 (I²PAK)	TOLT (TO-Leaded top-side cooling)	TOLG (TO-Leaded Gullwing)	TO-220	TO-247
		IPB029N15NM6* $R_{DS(op)} = 2.9 \text{ m}\Omega$	IPF021N13NM6 $R_{DS(op)} = 2.1 \text{ m}\Omega$	IPI051N15N5 R _{DS(on)} =5.1 mΩ	IPTC020N13NM6 $R_{DS(qp)} = 2.0 \text{ m}\Omega$	IPTG020N13NM6 $R_{DS(on)} = 2.0 \text{ m}\Omega$	IPP029N15NM6* R _{DS(on)} = 2.9 mΩ	IRF150P220 R _{DS(on)} =2.5 m Ω
		IPB044N15N5 $R_{DS(on)} = 4.4 \text{ m}\Omega$	IPF026N15NM6* $R_{DS(on)} = 2.6 \text{ m}\Omega$	DS(on)	IPTC025N15NM6 $R_{DS(on)} = 2.5 \text{ m}\Omega$	$R_{DS(on)} = 2.5 \text{ HM}^2$ IPTG025N15NM6* $R_{DS(on)} = 2.5 \text{ m}\Omega$	$R_{DS(on)} = 2.5 \text{ H}\Omega^2$ IPP051N15N5 ²⁾ $R_{DS(on)} = 5.1 \text{ m}\Omega$	IRF150P221 R _{DS(on)} =4.8 mΩ
		IPB048N15N5 R _{DS(on)} =4.8 mΩ	IPF031N13NM6 $R_{DS(on)} = 3.1 \text{ m}\Omega$		IPTC039N15NM5 $R_{DS(on)} = 3.9 \text{ m}\Omega$	IPTG029N13NM6 $R_{DS(on)} = 2.9 \text{ m}\Omega$	IPP073N13NM6 R _{DS(on)} =7.3 mΩ	IRFP4568PBF $R_{DS(on)} = 5.9 \text{ m}\Omega$
1-10		IPB048N15N5LF R _{DS(on)} =4.8 mΩ		IPI076N15N5 R _{DS(on)} =7.6 mΩ	IPTC044N15NM5 $R_{DS(on)} = 4.4 \text{ m}\Omega$	IPTG039N15NM5 $R_{DS(on)} = 3.9 \text{ m}\Omega$	IPP076N15N5 R _{DS(on)} =7.6 mΩ	
		IPB060N15N5 R _{DS(on)} =6.0 mΩ			IPTC054N15NM5 $R_{DS(on)} = 5.4 \text{ m}\Omega$	IPTG044N15NM5 $R_{DS(on)} = 4.4 \text{ m}\Omega$	IPP089N15NM6* R _{DS(on)} = 8.9 mΩ	
		IPB073N15N5 R _{DS(on)} =7.3 mΩ			IPTC063N15NM5 $R_{DS(on)} = 6.3 \text{ m}\Omega$	IPTG054N15NM5 $R_{DS(on)} = 5.4 \text{ m}\Omega$		
						IPTG063N15NM5 $R_{DS(on)} = 6.3 \text{ m}\Omega$		
							IRFB4115PBF $R_{DS(on)} = 11.0 \text{ m}\Omega$	
10-25		IRFS4321TRLPBF $R_{DS(on)}$ =15.0 m Ω					IRFB4321PBF $R_{DS(on)} = 15.0 \text{ m}\Omega$	IRFP4321PBF $R_{DS(on)} = 15.5 \text{ m}\Omega$
20 20		$ \begin{array}{c} \text{IRFS4115TRLPBF} \\ \text{R}_{\text{DS(on)}} \!=\! \! 12.1 \text{ m}\Omega \end{array} $						
		IRFS4615TRLPBF $R_{DS(on)} = 42.0 \text{ m}\Omega$						
>25	IRFR4615TRLPBF $R_{DS(on)}$ =42.0 m Ω						IRFB5615PBF $R_{DS(on)}$ =39.0 m Ω	
							IRFB4019PBF R _{DS(on)} =95.0 mΩ	

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

www.infineon.com/optimos6

OptiMOS™ and StrongIRFET™ 200 V normal level

$\begin{array}{c} R_{\text{DS(on), max.}} \\ \text{at V}_{\text{GS}} = 10 \text{ V} \\ \text{[m}\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TO-263 (D²PAK 7-pin)	TO-220	TO-247
4-10		IPB068N20NM6 R _{DS(on)} = 6.8 mΩ	IPF067N20NM6 R _{DS(on)} = 6.7 mΩ	IPP069N20NM6 $R_{DS(on)} = 6.9 \text{ m}\Omega$	IRF200P222 $R_{DS(on)}$ =6.6 mΩ
7 10					IRFP4668PBF $R_{DS(on)} = 9.7 \text{ m}\Omega$
		IPB107N20N3 G R _{DS(on)} =10.7 mΩ	IPF129N20NM6 $R_{DS(on)} = 12.9 \text{ m}\Omega$	IPP110N20N3 G $R_{DS(on)} = 11.0 \text{ m}\Omega$	
10-25				IRFB4127PBF $R_{DS(on)} = 20.0 \text{ m}\Omega$	IRFP4227PBF $R_{DS(on)}$ =25.0 m Ω
		IRFS4127TRLPBF R _{DS(on)} =22.0 mΩ			
				IRFB4227PBF $R_{DS(on)}$ =26.0 m Ω	
	IPD320N20N3 G R _{DS(on)} =32.0 mΩ	IPB320N20N3 G R _{DS(on)} =32.0 mΩ		IPP319N20NM6 ¹⁾ $R_{DS(on)} = 31.9 \text{ m}\Omega$	
. 25		IPB339N20NM6 R _{DS(on)} = 33.9 mΩ		IPP320N20N3 G $R_{DS(on)} = 32.0 \text{ m}\Omega$	
>25	IRFR4620TRLPBF $R_{DS(on)} = 78.0 \text{ m}\Omega$	IRFS4620TRLPBF $R_{DS(on)} = 78.0 \text{ m}\Omega$		IPP339N20NM6 R _{DS(on)} = 33.9 m Ω	
				IRFB5620PBF $R_{DS(on)}$ =72.5 m Ω	
				IRFB4020PBF $R_{DS(on)} = 100.0 \text{ m}\Omega$	

OptiMOS™ and StrongIRFET™ 200 V normal level

$R_{DS(on), max.}$ at V_{GS} =10 V [m Ω]	DirectFET™	PQFN 3.3x3.3	SuperSO8	TOLL (TO-Leadless)	TOLG (TO-Leaded Gullwing)
			ISC119N20NM6* $R_{DS(on)} = 11.9 \text{ m}\Omega$	IPT067N20NM6 $R_{DS(on)} = 6.7 \text{ m}\Omega$	
1-25			ISC130N20NM6 $R_{DS(on)}$ = 13.0 mΩ		IPTG111N20NM3FD $R_{DS(on)} = 11.1 \text{ m}\Omega$
			$\begin{aligned} & \text{ISC151N20NM6} \\ & \text{R}_{\text{DS(on)}} = 15.1 \text{ m}\Omega \end{aligned}$	IPT129N20NM6 R _{DS(on)} = 12.9 mΩ	
			BSC320N20NS3 G $R_{DS(on)}$ =32.0 m Ω		
			BSC500N20NS3G R _{DS(on)} =50.0 mΩ		
. 25		ISZ520N20NM6 R _{DS(on)} = 52.0 m Ω	IRFH5020TRPBF $R_{DS(on)}$ =55.0 m Ω		
>25		BSZ900N20NS3 G $R_{DS(on)}$ =90.0 m Ω	BSC900N20NS3 G $R_{DS(on)}$ =90.0 m Ω		
	IRF6785MTRPBF $R_{DS(on)}$ =100.0 mΩ				
		BSZ22DN20NS3 G R _{DS(op)} =225.0 m Ω			

Adapter	Audio amplifier	Consumer	DC-AC	DC-DC	Lighting
<u>P</u>	[<u>'';'</u>]	=		111 **	(3)
Motor control	PoE	SMPS	Solar	Telecom	UPS

$\begin{array}{c} R_{\text{DS(on), max.}} \\ \text{at V}_{\text{GS}} = 10 \text{ V} \\ [\text{m}\Omega] \end{array}$	TO-252 (DPAK)	TO-263 (D²PAK)	TOLG (TO-Leaded Gullwing)	TO-220	TO-247	PQFN 3.3x3.3	SuperSO8	TOLL (TO-Leadless)
		IPB200N25N3 G R _{DS(on)} =20.0 mΩ	IPTG210N25NM3FD $R_{DS(on)} = 21.0 \text{ m}\Omega$		IRF250P224 R _{DS(on)} =12.0 mΩ			
10-25				IPP220N25NFD R _{DS(on)} =22.0 mΩ	IRFP4768PBF $R_{DS(on)} = 17.5 \text{ m}\Omega$			IPT210N25NFD $R_{DS(on)}$ =21.0 mΩ
					IRF250P225 R _{DS(on)} =22.0 mΩ			
							BSC430N25NSFD $R_{DS(on)}$ =43.0 m Ω	
		IRFS4229TRLPBF $R_{DS(on)}$ =48.0 m Ω		IRFB4332PBF $R_{DS(on)}$ =33.0 m Ω	IRFP4332PBF $R_{DS(on)} = 33.0 \text{ m}\Omega$		BSC600N25NS3 G $R_{DS(on)}$ =60.0 m Ω	
>25	IPD600N25N3 G R _{DS(on)} =60.0 mΩ	IPB600N25N3 G R _{DS(on)} =60.0 mΩ		IRFB4229PBF R _{DS(on)} =46.0 mΩ			BSC670N25NSFD $R_{DS(on)}$ =67.0 m Ω	
				IPP600N25N3 G R _{DS(on)} =60.0 mΩ	IRFP4229PBF $R_{DS(on)}$ =46.0 m Ω	BSZ16DN25NS3 G $R_{DS(on)}$ =165.0 m Ω		
						BSZ42DN25NS3 G $R_{DS(on)}$ =425.0 m Ω	BSC16DN25NS3 G $R_{DS(on)}$ =165.0 m Ω	

OptiMOS™ and StrongIRFET™ 300 V

normal level

$\begin{array}{c} R_{DS(on),\;max.} \\ \text{at V}_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$	ТО-220	TO-247	SuperSO8
0-25		IRF300P226 $R_{DS(on)}$ =19.0 mΩ	
	IPP410N30N $R_{DS(on)}$ =41.0 mΩ		
>25		IRF300P227 $R_{DS(on)} = 40 \text{ m}Ω$	
			$ \begin{array}{c} BSC13DN30NSFD \\ R_{DS(on)} = 130.0 \text{ m}\Omega \end{array} $

Power MOSFETs complementary

P	P
Onb	oard

	Voltage [V]		PQFN 3.3x3.3	S 08
Complementary	-20/20	>50 mΩ	BSZ15DC02KD H*/** N: 55 m Ω , 5.1 A P: 150 m Ω , -3.2 A BSZ215C H*/** N: 55 m Ω , 5.1 A P: 150 m Ω , -3.2 A	
Co	-30/30	27-64 mΩ		IRF9389TRPBF N: 27 mΩ, 6.8 A P: 64 mΩ, -4.6 A

Click here to learn more: –

Power P-channel MOSFETs

POOLOGE Page	ν	oltage [V]	TO-252 (DPAK)	TO-263 (D²PAK)	TO-220	PQFN 3.3x3.3	SuperSO8	S08	PQFN 2x2
1000 1000									
PRODUCTION PRO		-20						DS(on) -7.0 11112	
PO0429034 G Repair 2 mm									DS(en)
No.			IPD042P03L3 G						
SPOSPOPPORT									
SPOSOP6931.6 " SC200F693NS16 Round = 8.6 m SC204F03NS16 Round = 8.6 m SC204F03N			1200				IRFH9310	IRF9321	
BECORPORASS G Recome = 12.0 mD BECORPORASS G Recome = 15.0 mD						BSZ086P03NS3E G	D3(UII)	Da(OII)	
130 SSZ120PG3NS3 G R _{com} = 5.4 mΩ SSZ031SP H R _{com} = 8.0 mΩ R _{com} = 8.0 mΩ R _{com} = 12.0 m			$R_{DS(on)} = 7.0 \text{ m}\Omega$			$R_{DS(on)} = 8.6 \text{ m}\Omega$	D00004D004000		
BS2120PGNNSS G R_Quant = 30 m C R_Quant = 30									
New							DS(on)		
POSSOPOSM PB110POSIM PB110POSIM SPP80POSP H* SZ210POSIM Round = 37.0 mQ						DS(on)			
SEZIBOPO3NSS G Reconstruction Rec		-30							
Page									
SEZ180P03HSSE G Rouse = 18.0 mΩ ₁ ESD RFH59331TRPRF Rouse = 37.0 mΩ RFH59321TRPRF Rouse = 37.0 mΩ RFH59321TRPRF Rouse = 37.0 mΩ RFH5932								, ""	
No. Page 1.0 mΩ; ESD									
No.									
Temporary Temp									
PD380P06NM IPB110P06LM SPP80P06P H ISZ810P06LM R ₂₀₀₀₀ = 24 mΩ R ₂₀₀₀₀₀ = 80 mΩ R ₂₀₀₀₀₀ = 80 mΩ R ₂₀₀₀₀₀₀ = 80 mΩ R ₂₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀									25(01)
PD380P06NM PB110P06LM SP80P06PH* SZ810P06LM SC240P06LM SC									
Posopopos Posopopopo Posopopopopopopopopopopopopopopopopopopo									
PD900PG6NM R _{DS0min} = 290 m Ω SPD18PG6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD08PD6P G* R _{DS0min} = 250 m Ω SPD18PD6NM R _{DS0min} = 200.0 m Ω SPD18P10P1GNM R _{DS0min} = 400 m Ω SPD15P10P1 G* SPD30P10NM R _{DS0min} = 33 m Ω SPD19P10P G* SPD30P10NM R _{DS0min} = 33 m Ω R _{DS0min} = 33 m Ω R _{DS0min} = 245 m Ω R _{DS0min} = 75 m Ω SPD18P10P1 G* R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 186 m Ω SPD18P	ETS		IPD380P06NM		SPP80P06P H*			DS(on)	
PD900PG6NM R _{DS0min} = 290 m Ω SPD18PG6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD08PD6P G* R _{DS0min} = 250 m Ω SPD18PD6NM R _{DS0min} = 200.0 m Ω SPD18P10P1GNM R _{DS0min} = 400 m Ω SPD15P10P1 G* SPD30P10NM R _{DS0min} = 33 m Ω SPD19P10P G* SPD30P10NM R _{DS0min} = 33 m Ω R _{DS0min} = 33 m Ω R _{DS0min} = 245 m Ω R _{DS0min} = 75 m Ω SPD18P10P1 G* R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 186 m Ω SPD18P	OSF				$R_{DS(on)} = 23.0 \text{ m}\Omega$	$R_{DS(on)} = 81 \text{ m}\Omega$			
PD900PG6NM R _{DS0min} = 290 m Ω SPD18PG6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD08PD6P G* R _{DS0min} = 250 m Ω SPD18PD6NM R _{DS0min} = 200.0 m Ω SPD18P10P1GNM R _{DS0min} = 400 m Ω SPD15P10P1 G* SPD30P10NM R _{DS0min} = 33 m Ω SPD19P10P G* SPD30P10NM R _{DS0min} = 33 m Ω R _{DS0min} = 33 m Ω R _{DS0min} = 245 m Ω R _{DS0min} = 75 m Ω SPD18P10P1 G* R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 186 m Ω SPD18P	e N								
PD900PG6NM R _{DS0min} = 290 m Ω SPD18PG6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD18PD6P G* R _{DS0min} = 250.0 mΩ SPD08PD6P G* R _{DS0min} = 250 m Ω SPD18PD6NM R _{DS0min} = 200.0 m Ω SPD18P10P1GNM R _{DS0min} = 400 m Ω SPD15P10P1 G* SPD30P10NM R _{DS0min} = 33 m Ω SPD19P10P G* SPD30P10NM R _{DS0min} = 33 m Ω R _{DS0min} = 33 m Ω R _{DS0min} = 245 m Ω R _{DS0min} = 75 m Ω SPD18P10P1 G* R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 185 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 178 m Ω SPD18P10NM R _{DS0min} = 186 m Ω SPD18P	ann			DS(on) 23.0 11112			DS(on)		
Form	P-c								
SPD18P06P G* R _{DS(m)} = 250.0 mΩ R _{DS(m)} = 250 mΩ R _{DS(m)} = 200.0 mΩ R _{DS(m)} = 300.0 mΩ R _{DS(m)} = 300.0 mΩ R _{DS(m)} = 32 mΩ R _{DS(m)} = 245 mΩ R _{DS(m)} = 75 mΩ R _{DS(m)} = 185 mΩ R _{DS(m)} = 186 mΩ R _{DS(m)} = 187 mΩ R _{DS(m)} = 185 mΩ R									
R _{DSCOM} = 130.0 mΩ SPD09P06PL G* R _{DSCOM} = 250.0 mΩ PD2SDP06NM R _{DSCOM} = 250 mΩ SPD08P06P G* R _{DSCOM} = 300.0 mΩ IPD40P06NM R _{DSCOM} = 400 mΩ SPD15P10PL G* R _{DSCOM} = 200.0 mΩ R _{DSCOM} = 32 mΩ R _{DSCOM} = 245 mΩ R _{DSCOM} = 75 mΩ SPD04P0F0 G* R _{DSCOM} = 33 mΩ R _{DSCOM}									
R _{DS(com)} = 250.0 mΩ		-60							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
R _{DS(on)} = 250 mΩ SPD08P06P G* R _{DS(on)} = 300.0 mΩ SPD08P06P M R _{DS(on)} = 400 mΩ SPD15P10PL G* R _{DS(on)} = 32 mΩ SPD15P10PL G* R _{DS(on)} = 32 mΩ SPD15P10PL G* R _{DS(on)} = 32 mΩ SPD15P10P G* R _{DS(on)} = 33 mΩ R _{DS(on)} = 245 mΩ R _{DS(on)} = 75 mΩ SPD15P10P G* R _{DS(on)} = 33 mΩ R _{DS(on)} = 33 mΩ R _{DS(on)} = 33 mΩ SPD04P10PL G* R _{DS(on)} = 33 mΩ R _{DS(on)} = 33 mΩ SPD04P10PL G* R _{DS(on)} = 185 mΩ SPD04P10PL G* R _{DS(on)} = 111 mΩ SPD04P10PL G* R _{DS(on)} = 185 mΩ SPD04P10PL G* R _{DS(on)} = 125 mΩ SPD04P10PL G* R _{DS(on)} = 126 mΩ SPD									
$\frac{R_{\text{DS(on)}} = 300.0 \text{ m}\Omega}{\text{IPD40DP06NM}} \\ R_{\text{DS(on)}} = 400 \text{ m}\Omega \\ \\ \frac{R_{\text{DS(on)}} = 400 \text{ m}\Omega}{\text{SPD15P10PL G}^{+}} \\ \frac{R_{\text{DS(on)}} = 200.0 \text{ m}\Omega}{\text{R}_{\text{DS(on)}} = 32 \text{ m}\Omega} \\ \frac{R_{\text{DS(on)}} = 220.0 \text{ m}\Omega}{\text{SPD15P10P G}^{+}} \\ \frac{R_{\text{DS(on)}} = 240.0 \text{ m}\Omega}{\text{SPD15P10P G}^{+}} \\ \frac{R_{\text{DS(on)}} = 33 \text{ m}\Omega}{\text{SPD15P10P G}^{+}} \\ \frac{R_{\text{DS(on)}} = 33 \text{ m}\Omega}{\text{SPD15P10NM}} \\ \frac{R_{\text{DS(on)}} = 33 \text{ m}\Omega}{\text{R}_{\text{DS(on)}} = 33 \text{ m}\Omega} \\ \\ \frac{R_{\text{DS(on)}} = 380.0 \text{ m}\Omega}{\text{IPD1DP10NM}} \\ \frac{R_{\text{DS(on)}} = 185 \text{ m}\Omega}{\text{IPD1DP10NM}} \\ \frac{R_{\text{DS(on)}} = 111 \text{ m}\Omega}{\text{IPD1BDP10LM}} \\ \frac{R_{\text{DS(on)}} = 178 \text{ m}\Omega}{\text{IPD1DP10NM}} \\ \frac{R_{\text{DS(on)}} = 186 \text{ m}\Omega}{\text{IPD12DP15LM}} \\ \frac{R_{\text{DS(on)}} = 186 \text{ m}\Omega}{\text{R}_{\text{DS(on)}} = 72 \text{ m}\Omega} \\ \\ \frac{I\text{PD42DP15LM}}{\text{ISZ75DP15LM}} \\ \frac{R_{\text{DS(on)}} = 560 \text{ m}\Omega}{\text{R}_{\text{DS(on)}} = 160 \text{ m}\Omega} \\ \frac{I\text{SZ75DP15LM}}{\text{ISZ15EP15LM}} \\ \\ \frac{R_{\text{DS(on)}} = 75 \text{ m}\Omega}{\text{ISZ15EP15LM}} \\ \\ \frac{I\text{SZ15EP15LM}}{\text{ISZ15EP15LM}} $									
$ \begin{array}{ c c c c c }\hline & PD40DP06NM \\ R_{DS(om)} = 400 \text{m} \Omega \\ \hline \\ & & & & & & & & & & & & & & & & &$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SPD15P10PL G*						
$-100 \begin{array}{ c c c c c c c }\hline & R_{DS(on)} = 240.0 \text{ m}\Omega & R_{DS(on)} = 33 \text{ m}\Omega & R_{DS(on)} = 33 \text{ m}\Omega \\ \hline & SPD04P10PL G^* & IPB19DP10NM \\ & R_{DS(on)} = 850.0 \text{ m}\Omega & R_{DS(on)} = 185 \text{ m}\Omega \\ \hline & IPD11DP10NM \\ & R_{DS(on)} = 111 \text{ m}\Omega & & & & & & & & & & & \\ \hline & IPD18DP10LM & & & & & & & & & & & \\ & IPD19DP10NM & & & & & & & & & & & \\ & R_{DS(on)} = 178 \text{ m}\Omega & & & & & & & & & & & \\ \hline & IPD19DP10NM & & & & & & & & & & & & & \\ & R_{DS(on)} = 186 \text{ m}\Omega & & & & & & & & & & & \\ \hline & IPD42DP15LM & & IPB720P15LM & & ISZ56DP15LM & ISC16DP15LM & & & & & & \\ & R_{DS(on)} = 420 \text{ m}\Omega & & R_{DS(on)} = 72 \text{ m}\Omega & & & R_{DS(on)} = 560 \text{ m}\Omega & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ \hline & -150 & & & & & & & & \\ \hline \end{array}$					IDD330D10NM	$R_{DS(on)} = 245 \text{ m}\Omega$	$R_{DS(on)} = 75 \text{ m}\Omega$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					DS(OII)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-100	$R_{DS(on)}$ =850.0 m Ω						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{ c c c c c c }\hline & IPD19DP10NM & & & & & & & \\ R_{DS(on)} = 186 \ m\Omega & & & & & & ISZ56DP15LM & ISC16DP15LM & \\ \hline & IPD42DP15LM & IPB720P15LM & ISZ56DP15LM & ISC16DP15LM & & & \\ R_{DS(on)} = 420 \ m\Omega & R_{DS(on)} = 72 \ m\Omega & R_{DS(on)} = 560 \ m\Omega & R_{DS(on)} = 160 \ m\Omega & & & \\ \hline & ISZ75DP15LM & & & & \\ R_{DS(on)} = 750 \ m\Omega & & & & \\ \hline & ISZ15EP15LM & & & & \\ \hline \end{array} $									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			IPD19DP10NM						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				IPB720P15LM		ISZ56DP15LM	ISC16DP15LM		
$\frac{R_{DS(on)} = 750 \text{ m}\Omega}{\text{ISZ15EP15LM}}$						$R_{DS(on)} = 560 \text{ m}\Omega$			
ISZ15EP15LM		-150							

1) 5-leg

Click here to learn more: -

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

www.infineon.com/optimos6

Small-signal/small-power N-channel

						drives	
Voltage	SOT-223	TSOP-6	SOT-89	SC59	SOT-23	SOT-323	SOT-363
[V]		DCI 202CN 4		BSR802N 5)		DCC01CNIW 5	BSD214SN ⁴⁾
		BSL202SN ⁴⁾ 36 mΩ, 7.5 A, SLL		32 mΩ, 3.7 A, ULL		BSS816NW ⁵⁾ 240 mΩ, 1.4 A, ULL	250 mΩ, 1.5 A, SLL
		IRLMS2002 1) 4)		BSR202N 4)	IRLML6244 1) 4)	BSS214NW 4)	BSD840N 5)
		45 mΩ, 6.5 A, SLL		33 mΩ, 3.8 A, SLL	27 mΩ, 6.3 A, SLL IRLML6246 ^{1) 4)}	250 mΩ, 1.5 A, SLL	560 mΩ, 0.88 A, ULL, dual
		BSL806N ⁵⁾ 82 mΩ, 2.3 A, ULL, dual			66 mΩ, 4.1 A, SLL		BSD235N ⁴⁾ 600 mΩ, 0.95 A, SLL, dual
					IRLML2502 1) 4)		
20 V					80 mΩ, 4.2 A, SLL		
					BSS806N ⁵⁾ 82 mΩ, 2.3 A, ULL		
					BSS806NE 5)		
					82 mΩ, 2.3 A, ULL, ESD		
					BSS205N ⁴⁾ 85 mΩ, 2.5 A, SLL		
					BSS214N ⁴⁾		
					250 mΩ, 1.5 A, SLL		
25 V					IRFML8244 1) 3)		
		IRLTS6342 1) 4)			41 mΩ, 5.8 A, LL IRLML6344 ^{1) 4)}		BSD316SN ³⁾
		22 mΩ, 8.3 A, SLL			37 mΩ, 5.0 A, SLL		280 mΩ, 1.4 A, LL
		IRFTS8342 1) 3)			IRLML0030 1) 3)		
		29 mΩ, 8.2 A, LL			40 mΩ, 5.3 A, LL		
		IRLMS1503 ^{1) 3)} 200 mΩ, 3.2A, LL			IRLML6346 ^{1) 4)} 80 mΩ, 3.4 A, SLL		
30 V					BSS306N 3)		
					93 mΩ, 2.3 A, LL		
					IRLML2030 ^{1) 3)} 154 mΩ, 2.7 A, LL		
					BSS316N 3)		
					280 mΩ, 1.4 A, LL		
					IRLML2803 ³⁾		
					400 mΩ, 1.2 A, LL IRLML0040 ¹⁾³⁾		
40 V					78 mΩ, 3.6 A, LL		
	IRFL024Z 1) 2)				BSS670S2L 3)		
	57.5 mΩ, 5.1 A, NL IRLL2705 ^{1) 3)}				825 mΩ, 0.54 A, LL		
	65 mΩ, 3.8 A, LL						
	IRFL4105 1) 2)						
55 V	45 mΩ, 3.7 A, NL						
	IRLL024N ^{1) 3)} 100 mΩ, 3.5 A, LL						
	IRLL014N 1) 3)						
	280 mΩ, 2.0 A, LL						
	IRFL014N ^{1) 2)} 160 mΩ, 1.9 A, NL						
	ISP670P06NMA*	BSL606SN 3)	BSS606N 3)		IRLML0060 1) 3)	BSS138W ³⁾	2N7002DW ³⁾
	67 mΩ, 3.7 A, NL	95 mΩ, 4.5 A, LL	90 mΩ, 3.2 A, LL		116 mΩ, 2.7 A, LL	4 Ω, 0.28 A, LL	4 Ω, 0.3 A, LL, dual
	ISP12DP06NMA*				IRLML2060 1) 3)	SN7002W 3)	
	125 mΩ, 2.8 A, NL ISP25DP06LMA*				640 mΩ, 1.2 A, LL 2N7002 ^{1) 3)}	7.5 Ω, 0.23 A, LL	
Jel	250 mΩ, 1.9 A, LL				4 Ω, 0.3 A, LL		
N-channel	ISP25DP06NMA*				BSS138I 1) 3)		
5	250 mΩ, 1.9 A, NL				4 Ω, 0.23 A, LL		
	BSP295 ³⁾ 500 mΩ, 1.8 A, LL				BSS138N ³⁾ 4 Ω, 0.23 A, LL		
60 V	, ,				SN7002I 1) 3)		
					7.5 Ω, 0.2 A, LL		
					SN7002N ³⁾ 7.5 Ω, 0.2 A, LL		
					BSS159N ⁶⁾		
					8 Ω, 0.13 A, depletion		
					ISS20EP06LMA* 2.0 Ω, 0.3 A, LL		
					ISS75EP06LMA*		
					7.5 Ω, 0.18 A, LL		
	BSP373N ²⁾				IRLML0100		
	240 mΩ, 1.8 A, NL BSP372N ³⁾				235 mΩ, 1.6 A, LL BSS119N ³⁾		
	270 mΩ, 1.8 A, LL				10 Ω, 0.19 A, LL		
	BSP296N 3)				BSS123I 1) 3)		
100 V	800 mΩ, 1.2 A, LL				10 Ω 0.19 A, LL		
	ISP16DP10LMA* 167 mΩ, 2.2 A, LL				BSS123N ³⁾ 10 Ω 0.19 A, LL		
					BSS169I 1) 6)		
					12 Ω, 0.09 A, depletion		
					BSS169 ⁶⁾ 12 Ω, 0.09 A, depletion		
45011	IRFL4315 1) 2)	IRF5802 1) 2)			, , ==p.edon		
150 V	185 mΩ, 2.6 A, NL	1.2 Ω, 0.9 A, NL					
	BSP297 ³⁾ 3 Ω, 0.66 A, LL	IRF5801 ^{1) 2)} 2.2Ω, 0.6 A, NL					
200 V	BSP149 ⁶⁾	, 5.5.4, 142					
	3.5 Ω, 0.14 A, LL, depletion						
	BSP88 3) 7 5 O 0 35 A SII		BSS87 3)		BSS131 3)		
	7.5 Ω, 0.35 A, SLL BSP89 ³⁾		7.5 Ω, 0.26 A, LL		20 Ω, 0.11 A, LL		
240 V	7.5 Ω, 0.35 A, LL						
	BSP129 6)						
	20 Ω, 0.05 A, LL, depletion				BSS139I 1) 6)		
25011					30 Ω, 0.10 A, LL, depletion		
250 V					BSS139 6)		
	DCD22 + 21				30 Ω, 0.10 A, LL, depletion		
400 V	BSP324 ³⁾ 22 Ω, 0.17 A, LL						
	BSP125 3)		BSS225 3)		BSS127I 1) 3)		
	60 Ω, 0.12 A, LL		45 Ω, 0.09 A, LL		600 Ω, 0.021 A, LL		
	BSP135I ^{1) 6)} 60 Ω, 0.02 A, LL, depletion				BSS127 ³⁾ 600 Ω, 0.021 A, LL		
60014	BSP135 ⁶⁾				BSS126I ^{1) 6)}		
600 V	60 Ω, 0.02 A, LL, depletion				700 Ω, 0.021 A, LL,		
					depletion BSS126 ⁶⁾		
					700 Ω, 0.021 A, LL,		

Click here to learn more: -

www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7

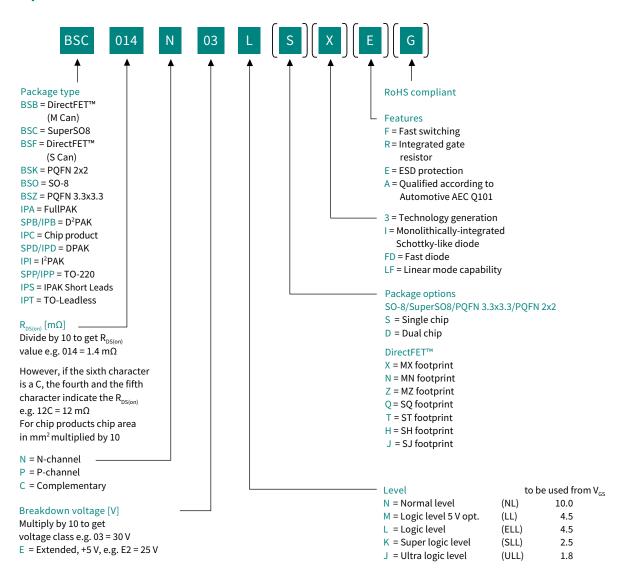
www.infineon.com/optimos6

Small-signal/small-power P-channel

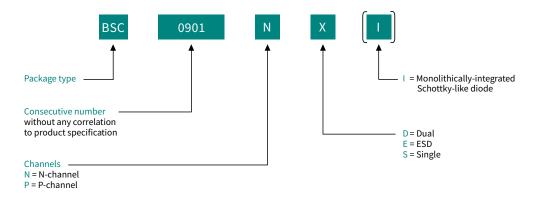
Voltag [V]	ge	SOT-223	TSOP-6	SOT-89	SC59	SOT-23	SOT-323	SOT-363
25	50 V	BSP317P ³⁾ 5 Ω, -0.43 A, LL		BSS192P ³⁾ 15 Ω, -0.19 A, LL	BSR92P ³⁾ 13 Ω, -0.14 A, LL			
-23	,	BSP92P ³⁾ 15 Ω, -0.26 A, LL						
-15	50 V	ISP14EP15LM ^{1) 3)} 1.4 Ω, -1.29 A, LL						
					BSR316P ³⁾ 2.2 Ω, -0.36 A, LL			
		BSP322P ³⁾ 1 Ω, -1.0 A, LL						
		BSP316P ³⁾ 2.3 Ω, -0.68 A, LL						
-10	00 V	ISP16DP10LM ^{1) 3)} 190 mΩ, -3.9 A, LL						
		ISP98DP10LM ^{1) 3)} 1.05 Ω, -1.55 A, LL						
		ISP20EP10LM ^{1) 3)} 2.2 Ω, -0.99 A, LL						
		ISP650P06NM ^{1) 2)} 65 mΩ, -3.7 A, NL			BSR315P ³⁾ 1.3 Ω, -0.62 A, LL	ISS17EP06LM ^{1) 3)} 2.2 Ω, -0.3 A, LL	BSS84PW ³⁾ 12 Ω, -0.15 A, LL	
		ISP12DP06NM ^{1) 2)} 125 mΩ, -2.8 A, NL						
		ISP13DP06NMS ^{1) 2)} 125 mΩ, -2.8 A, NL				BSS83P ³⁾ 3 Ω, -0.33 A, LL		
		BSP613P ²⁾ 130 mΩ, -2.9 A, NL				ISS55EP06LM ^{1) 3)} 7 Ω, -0.18 A, LL		
		ISP25DP06NM ^{1) 2)} 250 mΩ, -1.9 A, NL				BSS84P ³⁾ 12 Ω, -0.17 A, LL		
	0.14	ISP26DP06NMS ^{1) 2)} 260 mΩ, -1.9 A, NL				12 12, -0.17 A, LL		
	0 V	BSP170P 2)						
P-channel MOSFETs		300 mΩ, -1.9 A, NL ISP25DP06LM ^{1) 3)}						
Jel M		310 mΩ, -1.9 A, LL ISP25DP06LMS ¹⁾³⁾						
chanr		310 mΩ, -1.9 A, LL BSP171P ³⁾						
طّ		450 mΩ, -1.9 A, LL ISP75DP06LM ^{1) 3)}						
		1 Ω, -1.1 A, LL BSP315P ³⁾						
-40	0 V	1.4 Ω, -1.17 A, LL	IRF5803 ^{1) 2)}					
	•		112 mΩ, -3.4 A, NL IRFTS9342 ^{1) 2)}			IRLML9301 1) 3)		
			40 mΩ, -5.8 A, NL BSL307SP ³⁾			103 mΩ, -1.3 A, LL BSS308PE ³⁾		
			74 mΩ, -5.5 A, LL BSL308PE ³⁾			130 mΩ, -2.1 A, LL, ESD IRLML5203 ^{1) 3)}		
			130 mΩ, -2.1 A, LL, dual, ESD			165 mΩ, -3.0 A, LL		
-30	0 V					BSS314PE ³⁾ 230 mΩ, -1.5 A, LL, ESD		
						BSS315P $^{3)}$ 270 m Ω , -1.5 A, LL		
						IRLML9303 $^{1)4}$ 270 mΩ, -2.3 A, LL		
						IRLML5103 ^{1) 3)} 1000 mΩ, -0.76A, LL		
			BSL207SP ⁴⁾ 41 mΩ, -6.0 A, SLL			IRLML2244 ^{1) 4)} 95 mΩ, -4.3 A, SLL	BSS209PW ⁴⁾ 900 mΩ, -0.58 A, SLL	BSV236SP ⁴⁾ 285 mΩ, -1.5 A, SLL
			IRLTS2242 ^{1) 4)} 55 mΩ, -6.9 A, SLL			IRLML6402 ^{1) 4)} 135 mΩ, -3.7 A, SLL	BSS223PW ⁴⁾ 2.1 Ω, -0.39 A, SLL	BSD223P ⁴⁾ 2.1 Ω, -0.39 A, SLL, dual
-20	0 V		IRLMS6802 ^{1) 4)} 100 mΩ, -5.6 A, SLL			IRLML2246 ^{1) 4)} 236 mΩ, -2.6 A, SLL		
			BSL211SP ⁴⁾ 110 mΩ, -4.7 A, SLL			BSS215P ⁴⁾ 280 mΩ, -1.5 A, SLL		
-12	2 V					IRLML6401 ⁴⁾ 125 mΩ, -4.3 A, ULL		

Small-signal/small-power complementary

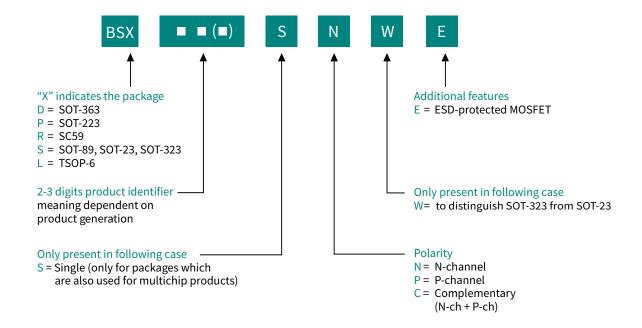
Voltage [V]		TSOP-6	SOT-363
tary	-20/20	BSL215C 4 N: 250 mΩ, 1.5 A, SLL P: 280 mΩ, -1.5 A, SLL	BSD235C ⁴⁾ N: 600 mΩ, 0.95 A, SLL P: 2.1 Ω, -0.53 A, SLL
Complementary	00/00	BSL308C $^{3)}$ N: 93 mΩ, 2.3 A, LL P: 130 mΩ, -2.0 A, LL	
Com	-30/30	BSL316C ³⁾ N: 280 mΩ, 1.4 A, LL P: 270 mΩ, -1.5 A, LL	

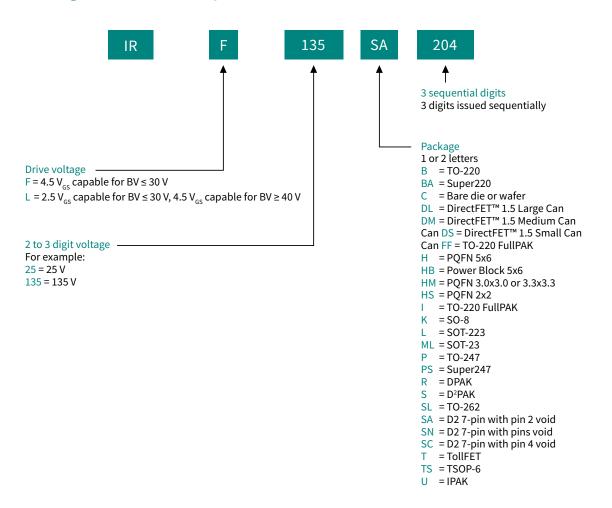

Click here to learn more:

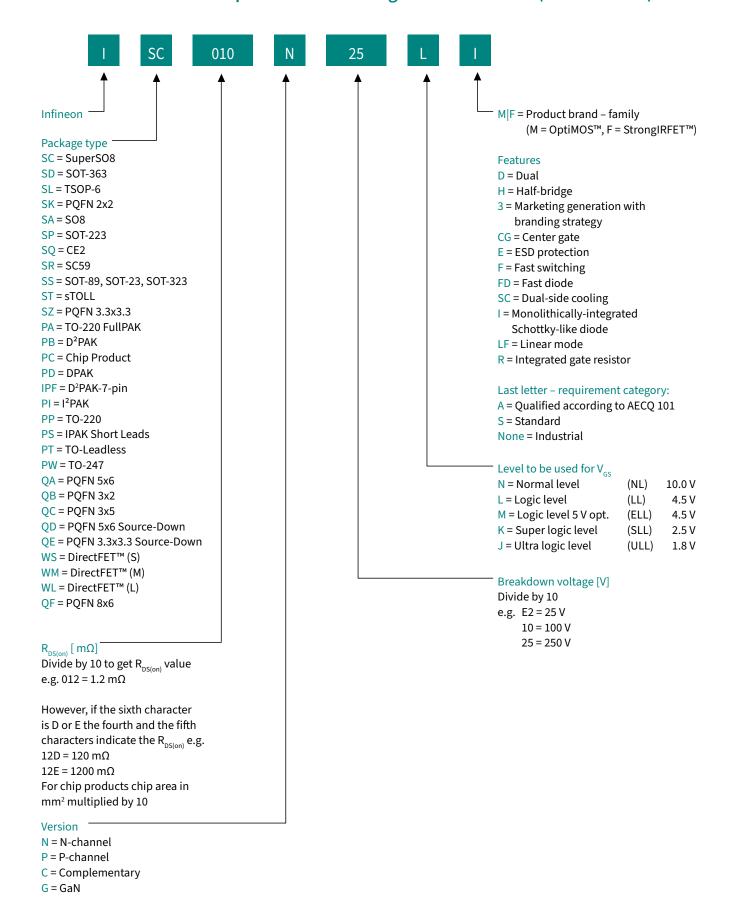
www.infineon.com/powermosfet-12V-300V www.infineon.com/optimos-strongirfet-packages www.infineon.com/optimos7


www.infineon.com/optimos6

Nomenclature


OptiMOS™


OptiMOS™ 30 V


Small signal

StrongIRFET™ (from May 2015 to 2019)

New nomenclature for OptiMOS™ and StrongIRFET™ MOSFETs (2019 onward)

Infineon hotline - get connected with the answers! Wherever, whenever.

Infineon offers its toll-free service hotline as one central number, available 24/7 in English, Mandarin, and German.

Germany (Toll-Free)
China, Mainland (Toll-Free)
USA (Toll-Free)
India (Toll-Free)
0800 951 951 (German/English)
4001 200 951 (Mandarin/English)
1 866 951 9519 (English/German)
1 800 572 4924 NEW (English)

- Other countries 00* 800 951 951 (English/German)

Direct access +49 89 234 65555 (interconnection fee, German/English)

* Please note:

Some countries may require you to dial a code other than "00" to access this international number. Please visit our service center for more information!

www.infineon.com

Published by Infineon Technologies Austria AG 9500 Villach, Austria

© 2024 Infineon Technologies AG. All Rights Reserved.

Please note!

This Document is for information purposes only and any information given herein shall in no event be regarded as a warranty, guarantee or description of any functionality, conditions and/or quality of our products or any suitability for a particular purpose. With regard to the technical specifications of our products, we kindly ask you to refer to the relevant product data sheets provided by us. Our customers and their technical departments are required to evaluate the suitability of our products for the intended application.

We reserve the right to change this document and/or the information given herein at any time.

Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.