== CYPRESS

PERFORM

SMBus Slave Datasheet smBussiave v 2.00

Copyright © 2012-2013 Cypress Semiconductor Corporation. All Rights Reserved.

PSoC® Blocks API Memory (Bytes)
Resources Digital Analog CT Analog SC Flash RAM Pins

Supported devices: CY8C29x66, CY8C27x43, CY8C28xxx, CY8C24x23, CY8C24x33, CY8C21x23, CY8C21x34,
CY8C21x45, CY8C22x45, CY8C24x94

Configuration 1 0 0 0 934 31 2-5

Features and Overview

Industry standard SMBus compatible slave interface

Supports SMBus Host Notify Protocol (HNP) using command and through a dedicated Alert pin
Optional Packet Error Check (PEC)

Standard data rate of 50/100 kbps

High-level Application Program Interface (API) requires minimal user programming

The SMBus Slave User Module provides a SMBus slave interface that is fully compliant with the Physical
and Digital Link layers described in the SMBus Specification Version 2.0. This user module can be used in
conjunction with other master and slave devices connected to a single SMBus segment. This user module
uses an 12C controller and its interrupt for its physical layer.

Functional Description

The SMBus Slave User Module communicates with the bus master using the protocol described in the
Data Link layer of the SMBus Specification Version 2.0. It communicates over the SMBDAT and SMBCLK
lines and has the following features:

B Detects START, repeated START, STOP, and bus idle conditions
Responds with an ACK when addressed by the bus master

Achieves clock-stretching and synchronization

Communicates in accordance with all of the specification's bus protocols
Responds to data with ACK/NACK

Implements PEC when specified by the user

Notifies the host using the SMBus HNP

Cypress Semiconductor Corporation * 198 Champion Court San Jose, CA 95134-1709 . 408-943-2600
Document Number: 001-81371 Rev. *A Revised May 16, 2013

http://smbus.org/specs/smbus20.pdf
http://smbus.org/specs/smbus20.pdf

SMBusSlave

The SMBus Slave User Module supports all of the bus protocols mentioned in Section 5.5 of the SMBus
Specification Version 2.0. For all of these protocols, PEC applies if the Packet Error Check parameter is
enabled. The generic protocol diagram is shown in Figure 1.

Figure 1. Generic Protocol Diagram

1 7 1T 1 8 1 1
S | Slave Address | Wr | A Data Byte AlP
X X

S Start Condition

Sr Repeated Start Condition

Rd Read (bit value of 1)

Wr Write (bit value of 0)

X Shown under a field indicates that that

field is required to have the value of X’

A Acknowledge (this bit position may be
‘0" for an ACK or ‘1" for a NACK)
P Stop Condition

PEC Packet Error Code

Master-to-Slave

:I Slave-to-Master

Continuation of protocol

Note The SMBus Slave User Module does not support Address Resolution Protocol (ARP).

Addressing Mechanism

The slave address has to be configured in the parameters wizard using the Slave Address parameter. It
can also be dynamically changed in firmware using SMBusSlave_SetAddr().

You can use two GPIO pins to set the lower two bits of the slave address by enabling the Hardwired Slave
Address parameter. The Slave Address Pin A0 and Slave Address Pin A1 parameters select the two GPIO
pins. If the Hardwired Slave Address parameter is enabled, these two pins will be monitored during
startup, and their logic levels will be used to set the two least significant bits of the slave address (Pin A1 =
slave address bit 1, Pin AO = slave address bit 0). The upper five bits of the slave address will equal bits
6-—2 of the Slave Address parameter.

When SMBusSlave SetAddr() is used to dynamically change the slave address in firmware, Slave
Address Pin A0 and Slave Address Pin A1 are ignored even if the Hardwired Slave Address parameter is
enabled. The new slave address will be set by the parameters passed to the SMBusSlave_SetAddr()
function. Slave Address Pin A0 and Slave Address Pin A1 are only monitored during startup.

Document Number: 001-81371 Rev. *A Page 2 of 17

http://smbus.org/specs/smbus20.pdf
http://smbus.org/specs/smbus20.pdf

= CYPRESS SMBusSlave

PERFORM

RAM Interface for SMBus Commands

The SMBus Slave User Module allows the master to access specific RAM buffers through each SMBus
command. The data presented to the master can be a single variable, an array of values, or a structure. A
different RAM buffer can be exposed for each SMBus command. The SMBus Slave User Module will read
from/write to the appropriate RAM buffer depending on the command it receives from the master.

Before any transfers occur, the user has to assign a command code and initialize the RAM buffer for each
SMBus command using SMBusSlave_SetCommand() and SMBusSlave SetBuffer(). Both of these
functions have to be performed during initialization before starting the user module.

Assign a Command Code
SMBusSlave _SetCommand (BYTE Command_Name, BYTE Command_Code)

Command Name: The SMBus command name that the user module uses to map the command name to
its command code. Possible values for this parameter are: WRITE_BYTE, WRITE_WORD, READ_BYTE,
READ_WORD, PROCESS_CALL, BLOCK_WRITE, BLOCK_READ, and

BLOCK WRITE_BLOCK_READ_PROCESS_CALL.

Command Code: The command code for the given command name. Possible values for this parameter
are 0x00-OxFF. The user has to make sure no two commands have the same command code.

Exceptions: The Quick Command, Send Byte, and Receive Byte commands do not need to be assigned
a command code.

Initialize the RAM Buffer
SMBusSlave_ SetBuffer (BYTE Command_Name, (BYTE *) pAddr)

Command_Name: The SMBus command name that the User Module will use to map the command name
to its RAM buffer. Possible values for this parameter are: WRITE_BYTE, WRITE_WORD, READ_BYTE,
READ_WORD, BLOCK_WRITE, and BLOCK_READ.

pAddr: A pointer to the RAM buffer for the given command name.

Exceptions:

B The Quick Command, Send Byte and Receive Byte commands do not need to be assigned a RAM
Buffer. These commands use default single byte RAM variables.
B The Process Call command uses the Write Word and Read Word command buffers.

B The Block Write Block Read Process Call command uses the Block Write and Block Read command
buffers.

Buffer lengths:

B Write Byte and Read Byte command buffers = one byte
B Write Word and Read Word command buffers = two bytes
B Block Write = Block Write Buffer Length parameter

Block Ready = Block Read Buffer Length parameter
Note The sum of these two buffers cannot exceed 32 bytes

Refer to the Sample Firmware Source Code for the initialization code.

Document Number: 001-81371 Rev. *A Page 3 of 17

= CYPRESS SMBusSlave

PERFORM

Command Descriptions

Quick Command

The SMBus Slave sets/clears a pre-defined flag (variable) which reflects the R/W bit received through
this command.

Send Byte
The SMBus Slave writes the received byte to a pre-defined user module variable.

Receive Byte
The SMBus Slave sends the byte variable from a pre-defined user module variable.

Write Byte
When the SMBus Slave receives a byte through this protocol along with a valid command code
defined by the user, it writes the byte to the RAM buffer initialized by the user.

Write Word
When the SMBus Slave receives a word through this protocol, along with a valid command code
defined by the user, it writes the word to the RAM buffer initialized by user.

Read Byte
When the SMBus Slave receives this command along with a valid command code defined by the user,
it sends one byte from the RAM buffer initialized by user.

Read Word
When the SMBus Slave receives this command along with a valid command code defined by the user,
it sends the word from the RAM buffer initialized by user.

Process Call

When the SMBus Slave receives this command along with a valid command code defined by the user,
it receives the word sent by the master, writes it to the RAM buffer assigned to the Write Word
command, and sends the word from the RAM buffer assigned to the Read Word command.

Block Write

When the SMBus Slave receives this command along with a valid command code defined by the user,
it checks the Byte Count (N) the master wants to write. If N is less than or equal to the Block Write
Buffer Length parameter, the slave reads N bytes from the master, and writes them to the RAM buffer
assigned to the Block Write command. If N is greater than the Block Write Buffer Length parameter,
it NACKSs the Byte Count byte sent by the master.

Block Read

When the SMBus Slave receives this command along with a valid command code defined by the user,
it sends the Byte Count (N) to the master, where N is equal to the Block Read Buffer Length param-
eter. Then, it sends N bytes to the master from the RAM buffer assigned to the Block Read command.

Block Write-Block Read Process Call

When the SMBus Slave receives this command along with a valid command code defined by the user,
it checks the Byte Count (N) the master wants to write. If N is less than or equal to the Block Write
Buffer Length parameter, it reads N bytes from the master, and writes them to the RAM buffer
assigned to the Block Write command. After a repeated start, the SMBus Slave sends the Byte Count
(M) to the master, where M is equal to the Block Read Buffer Length parameter. Then, it sends M

Document Number: 001-81371 Rev. *A Page 4 of 17

= CYPRESS SMBusSlave

PERFORM

bytes to the master from the RAM assigned to the Block Read command. The total bytes transferred
during this command must be less than 32 bytes.

SMBus Host Notify Protocol

This protocol will not be initiated by the master. Whenever the user wants to notify the host, they can
do so using SMBusSlave_NotifyHost().

SMBusSlave_NotifyHost (BYTE Type, BYTE Databyte1, BYTE Databyte2)
Type: This determines the method for notifying the host:

0 = SMBALERT pin method

1 = Host notify command method

Databyte1: This is the Data Byte Low of the SMBus Host Notify protocol
Databyte2: This is Data Byte High byte of the SMBus Host Notify protocol

Note The Databyte1 and Databyte2 parameters are valid only for the HNP method. For the SMBALERT
pin method, these parameters are ignored.

The user module will momentarily become the master and drive both SMBDAT and SMBCLK. The
SMBus Slave will use the byte sequence shown in Figure 2 to notify the host.

Figure 2. Host Notify Protocol

1 7 1 1 8 1 8 1 8 1 1
| S | sMB HostAddr. | Wr [A] Device Address [A] DataByte Low [A] DataByte High [A] P]

D Master (SMBus Device) to Slave
Slave (SMBus Host) to Master

DC and AC Electrical Characteristics

The following values are indicative of expected performance and based on initial characterization data.
Unless otherwise specified, temperature ranges are —40 °C to 125 °C, supply voltages range from 2.95 V
to 5.3 V.

Table 1. DC Electrical Characteristics
Limits
Symbol Parameter Min Max Units
VIL Data, Clock Input Low Voltage - 0.8
VIH Data, Clock Input High Voltage 2.1 VDD
VOL Data, Clock Output Low Voltage - 0.4
ILEAK Input leakage - 5 MA
IPULLUP Current through pull-up resistor or current 100 350 MA
source
VDD Nominal bus voltage 2.7 5.5 \Y

Document Number: 001-81371 Rev. *A Page 5 of 17

o
CYPRESS

PERFORM

SMBusSlave

Note The TrimeouT TsexT: and TyexT specifications mentioned in SMBus Specification Version 2.0,

are not met by this user module because of the hardware limitation.

Table 2. AC Electrical Characteristics

after power-on reset

Symbol Parameter

FSMB SMBus Operating Frequency

TBUF Bus free time between Stop and Start
Condition

THD:STA Hold time after (Repeated) Start Condition.
After this period, the first clock is generated

TSU:STA Repeated Start Condition setup time

TSU:STO Stop Condition setup time

THD:DAT Data hold time

TSU:DAT Data setup time

TLOW Clock low period

THIGH Clock high period

TF Clock/Data Fall Time

TR Clock/Data Rise Time

TPOR Time in which a device must be operational

10
4.7

4.7
4.0
300
250
4.7
4.0

Min

Limits

100

300
1000
500

Max

Units
kHz

us

MuS

us
us
ns
ns
us
us
ns
ns

ms

Placement

The SMBus Slave User Module does not require any digital or analog PSoC blocks. It consumes one 12C

controller block and its dedicated interrupt. The devices that have multiple 12C controller blocks will
support multiple SMBus Slave User Module placements. Multiple placements are not supported in other

devices.

Parameters and Resources

After a SMBus Slave User Module is selected and placed using the Device Editor, values may be selected

and altered for the following parameters.

Slave Address

This parameter selects the 7-bit slave address for the SMBus_Slave User Module.

Type
Range
Default

Document Number: 001-81371 Rev. *A

Char
0-127

Page 6 of 17

http://smbus.org/specs/smbus20.pdf

SMBusSlave

Dependence on other parameters:

B [f the Hardwired Slave Address is enabled, the slave address is limited to only the most significant five
bits. The remaining two bits are set to Slave Address Pin A0 and Slave Address Pin A1.
B If the Hardwired Slave Address is disabled, the slave address is all seven bits of this parameter.
Hardwired Slave Address
This parameter selects whether the two least significant bits of the slave address are hardwired.

Type Boolean
Range Enable/Disable
Default Disable

Packet Error Check
This parameter checks whether to use PEC during communication.

Type Boolean
Range Enable/Disable
Default Enable

Auto Address Check

This parameter selects whether the hardware address recognizing feature is enabled. If it is disabled,
the hardware address comparison feature is not available. This parameter is available only in the
CY8C28xxx family PSoC devices.

Type Boolean
Range Enable/Disable
Default Enable

SMBus Clock

This parameter selects the clock speed used with the SMBus slave.

Type Integer

Range 50 kHz-100 kHz

Default 100 kHz
SMBus Pins

This parameter selects the Port 1 pins for the SMBus Slave signals (SMBDAT and SMBCLK).

Document Number: 001-81371 Rev. *A Page 7 of 17

SMBusSlave

Type Boolean
Range P1[0] - P1[1] or P1[5] - P1[7]
Default P1[0] - P1[1]

SMBALERT Pin
This parameter selects the pin for SMBALERT signal.

Type Enum
Range Any GPIO
Default None

Slave Address Pin A0
This parameter selects the pin for AO bit of slave address.

Type Enum
Range Any GPIO
Default None

Dependence on other parameters:

B [f the Hardwired Slave Address is enabled, this parameter is valid
B [f the Hardwired Slave Address is disabled, this parameter is grayed out

Slave Address Pin A1
This parameter selects the pin for A1 bit of slave address.

Type Enum
Range Any GPIO
Default None

Dependence on other parameters:

B If the Hardwired Slave Address is enabled, this parameter is valid
B |f the Hardwired Slave Address is disabled, this parameter is grayed out

Block Write Buffer Length
This parameter sets the RAM buffer length for the Block Write command.

Document Number: 001-81371 Rev. *A Page 8 of 17

SMBusSlave

Type Integer
Range 1-32
Default 1

Block Read Buffer Length
This parameter sets the RAM buffer length for the Block Read command.

Type Integer
Range 1-32
Default 1

Application Programming Interface

The Application Programming Interface (API) routines are provided as part of the User Module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the "include" files.

Note

In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This “registers are volatile” policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
may do so in the future.

Slave Functions

The following functions are specific to the Slave version of the SMBusSlave User Module.

SMBusSlave _Start
Description:
Enables the SMBusSlave.

C Prototype:
void SMBusSlave Start (void);

Assembly:
lcall SMBusSlave Start

Parameters:
None

Return Value:
None

Document Number: 001-81371 Rev. *A Page 9 of 17

oz
CYPRESS SMBusSlave

PERFORM

SMBusSlave SetAddr

Description:
This function sets the slave address that is recognized by the SMBus Master. The range of this
address should be limited depending on the Hardwired Slave Address parameter.

C Prototype:
void SMBusSlave SetAddr (BYTE bAddr) ;

Assembly:

movA, 0x05
lcall SMBusSlave SetAddr

Parameters:
BYTE bAddr: Slave address range depending on Hardwired Slave Address

Return Value:
None

SMBusSlave Stop

Description:
Disables the SMBusSlave.

C Prototype:
void SMBusSlave Stop (void);

Assembly:
lcall SMBusSlave Stop

Parameters:
None

Return Value:
None

SMBusSlave SetBuffer

Description:
Configures the RAM Buffer for reading and writing operations from the master for a particular
command.

C Prototype:
void SMBusSlave SetBuffer (BYTE bCommand Name, BYTE * pAddr);

Assembly:
lcall SMBusSlave SetBuffer

Parameters:
BYTE Command_Name: The SMBus command being initialized.
BYTE Command_Code: The command code for the specified command name.

Document Number: 001-81371 Rev. *A Page 10 of 17

= CYPRESS SMBusSlave

PERFORM

Return Value:
None

SMBusSlave SetCommand

Description:
Assigns a command code for a specific SMBus command.

C Prototype:
void SMBusSlave SetCommand (BYTE Command Name, BYTE Command Code);
Assembly:
lcall SMBusSlave SetCommand
Parameters:
BYTE Command_Name: The SMBus command being initialized.
BYTE Command_Code: The command code for the specified command name.

Return Value:
None

SMBusSlave_NotifyHost

Description:
Notifies the host either through the SMBALERT pin or through the Host notify command depending
on the "Type" parameter.

C Prototype:

void SMBusSlave NotifyHost (BYTE Type, BYTE Databytel, BYTE Databyte2);

Assembly:

lcall SMBusSlave NotifyHost

Parameters:
BYTE Type: This determines the method of notifying the host.
0 = SMBALERT pin
1 = Host notify command

BYTE Databyte1: This is the data byte 1 of the SMBus Host notify protocol. This parameter is only
valid when Type = 1.

BYTE Databyte2: This is the data byte 2 of the SMBus Host notify protocol. This parameter is only
valid when Type = 1.

Return Value:
None

Document Number: 001-81371 Rev. *A Page 11 of 17

SMBusSlave

Sample Firmware Source Code
The following C code illustrates the use of the APls:

// SMBusSlave sample code

// UM should be configured as follows:

// - Name: SMBusSlave

// - Slave Address: 4

// - Block Write Buffer Length: 6

// - Block Read Buffer Length: 6

// All other UM parameters should be left by default
//

//Here is almost SMBus Protocols to use with Bridge Control Panel tool:

// w 4 bb 80 p ;send byte NOTIFYHOST (PEC 80)

// r 4 x x p ;receilve byte (PEC e2)

// w 4 40 b6 01 p ;write byte SMBALERT (PEC 01)

// w 4 50 ab cd 76 p ;write word (PEC 76)

// w 4 60 r 4 x x p ;read byte (PEC 82)

// w4 70 r 4 x x x p ;read word (PEC bo)

// w 4 80 ab cd r 4 x x x p ;process call (PEC 83)

// w 4 20 41 2 3 4 bd p ;block write (PEC bd)

// w4 30 rd x x x x X Xx X X p ;block read (PEC a6)

// w4 1052 345 671r4dxxxx X xXx X X p ;block process call (PEC 04)
e ittt b
#include <m8c.h> // part specific constants and macros

#include "PSoCAPI.h" // PSoC API definitions for all User Modules

BYTE baBlockWriteBuffer[SMBusSlave BLOCK WRITE BUFFER LENGTH];
BYTE baBlockReadBuffer[] = {10, 11, 12, 13, 14, 15};

BYTE WriteByteBuffer;

WORD WriteWordBuffer;

BYTE ReadByteBuffer = Oxad;

WORD ReadWordBuffer Oxbcde;

void main (void)

{
M8C EnableGInt;
SMBusSlave Start();

SMBusSlave SetCommand
SMBusSlave SetCommand
SMBusSlave SetCommand
SMBusSlave SetCommand
SMBusSlave SetCommand
SMBusSlave SetCommand
SMBusSlave SetCommand
SMBusSlave SetCommand

SMBusSlave BLOCK WRITE, 0x20);

SMBusSlave BLOCK READ, 0x30);

SMBusSlave WRITE BYTE, 0x40);

SMBusSlave WRITE WORD, 0x50) ;

SMBusSlave READ BYTE, 0x60);

SMBusSlave READ WORD, 0x70);

SMBusSlave PROCESS CALL, 0x80);

SMBusSlave BLOCK WRITE BLOCK READ PROCESS CALL, 0x10) ;

~ o~~~ o~~~ —~

SMBusSlave SetBuffer
SMBusSlave SetBuffer
SMBusSlave SetBuffer
SMBusSlave SetBuffer
SMBusSlave SetBuffer
SMBusSlave SetBuffer

SMBusSlave BLOCK WRITE, baBlockWriteBuffer);
SMBusSlave BLOCK READ, baBlockReadBuffer);
SMBusSlave WRITE BYTE, &WriteByteBuffer);
SMBusSlave WRITE WORD, (BYTE *) &WriteWordBuffer) ;
SMBusSlave READ BYTE, &ReadByteBuffer);
SMBusSlave READ WORD, (BYTE *) &ReadWordBuffer);

—~ o~ o~~~ —~

Document Number: 001-81371 Rev. *A Page 12 of 17

L
CYPRESS

PERFORM

SMBusSlave bReceiveByte = Oxaa;
while (1)
{

if (SMBusSlave bSendByte == 0xbb)

{

SMBusSlave bSendByte = 0;

SMBusSlave NotifyHost (SMBusSlave NOTIFYHOST, 5, 6);
}
if (WriteByteBuffer == 0xb6)

{
WriteByteBuffer = 0;

SMBusSlave NotifyHost (SMBusSlave SMBALERT, 5, 6);

}
The following is the Assembly sample code:

; SMBusSlave sample code

; UM should be configured as follows:

; — Name: SMBusSlave

; - Slave Address: 4

; - Block Write Buffer Length: 6

; — Block Read Buffer Length: 6

; All other UM parameters should be left by default

; Here are some SMBus Protocols to use with Bridge Control Panel tool:

bb 80 p ;send byte NOTIFYHOST (PEC 80)
w 4 40 b6 01 p ;write byte SMBALERT (PEC 01)

; w4 2041 2 3 4 bd p ;block write (PEC bd)
w 4
w 4

=
S

30r 4 x x x x x x X x p ;block read (PEC a6)
1052 345 61r 4 xxx x XXX xXxp ;block process call (PEC 04)

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export main

export baBlockWriteBuffer
export baBlockReadBuffer
export bWriteByteBuffer

area data (rel,con,ram)
baBlockWriteBuffer: BLK SMBusSlave BLOCK WRITE BUFFER LENGTH
baBlockReadBuffer: BLK SMBusSlave BLOCK READ BUFFER LENGTH

bWriteByteBuffer: BLK 1

area text (rel,con,rom,code)

Document Number: 001-81371 Rev. *A

SMBusSlave

Page 13 of 17

SMBusSlave

PERFORM

_main:
mov [baBlockReadBuffer + 0], 10
mov [baBlockReadBuffer + 1], 11
mov [baBlockReadBuffer + 2], 12
mov [baBlockReadBuffer + 3], 13
mov [baBlockReadBuffer + 4], 14
mov [baBlockReadBuffer + 5], 15
mov [SMBusSlave bReceiveByte], aah

M8C EnableGInt
lcall SMBusSlave Start

mov X, 40h

mov A, SMBusSlave WRITE BYTE
lcall SMBusSlave SetCommand
mov X, 30h

mov A, SMBusSlave BLOCK_ READ
lcall SMBusSlave SetCommand
mov X, 20h

mov A, SMBusSlave BLOCK WRITE
lcall SMBusSlave SetCommand
mov X, 10h

mov A, SMBusSlave BLOCK WRITE BLOCK READ PROCESS CALL
lcall SMBusSlave SetCommand

mov A, >baBlockReadBuffer

push A

mov A, <baBlockReadBuffer
push A

mov A, SMBusSlave BLOCK_ READ
push A

lcall SMBusSlave SetBuffer
add Sp, -3

mov A, >baBlockWriteBuffer

push A

mov A, <baBlockWriteBuffer
push A

mov A, SMBusSlave BLOCK WRITE
push A

lcall SMBusSlave SetBuffer
add Sp, -3

mov A, >bWriteByteBuffer

push A
mov A, <bWriteByteBuffer
push A
mov A, SMBusSlave WRITE BYTE
push A
lcall SMBusSlave SetBuffer
add sp, -3

.mainloop:

cmp [SMBusSlave bSendByte], bbh
jnz .SmbAlertCheck

Document Number: 001-81371 Rev. *A Page 14 of 17

CYPRESS SMBusSlave

mov [SMBusSlave bSendByte], 0
mov A, 6 ;Data Byte High
push A

mov A, 5 ;Data Byte Low

push A

mov A, SMBusSlave NOTIFYHOST
push A

lcall SMBusSlave NotifyHost
add sp, -3

.SmbAlertCheck:
cmp [bWriteByteBuffer], b6h
jnz .mainloop
mov [bWriteByteBuffer], O
mov A, SMBusSlave SMBALERT

push A
lcall SMBusSlave NotifyHost
add sp, -1

jmp .mainloop

Configuration Registers

This section describes the PSoC Resource Registers used or modified by the SMBusSlave User Module.
The use of these registers is not required when using the SMBusSlave User Module, but is provided as a
reference.

Table 3. Resource 12C_CFG: Bank 0 reg[D6] Configuration Register

Bit 7 6 5 4 3 2 1 0
Value Reserved PinSelect Bus Error Stop IE Clock Clock 0 Enable
IE Rate[1] Rate[0] Slave

Pin Select: Selects either SCL and SDA as P1[5]/P1[7] or P1[0}/P1[1].
Bus Error Interrupt Enable: Enables I°C interrupt generation on a Bus Error.

Stop Error Interrupt Enable: Enables an 1°C interrupt on an 12C Stop condition.
Clock Rate[1,0]: Selects among three valid clock rates 50, 100, or 400 kbps.

Enable Slave: Enables the 12C HW block as a bus Slave.
Table 4. Resource 12C_SCR: Bank 0 reg[D7] Status Control Register
Bit 7 6 5 4 3 2 1 0

Value Bus Error NA Stop Status ACK out Address Transmit Last Recd Byte
Bit (LRB) Complete

Bus Error: Indicates detection of a Bus Error condition.
Stop Status: Indicated detection of an 12C stop condition.

ACK out: Directs the 12C block to Acknowledge (1) or Not Acknowledge (0) a received byte.

Address: Received or transmitted byte is an address.

Document Number: 001-81371 Rev. *A Page 15 of 17

SMBusSlave

Last Received Bit (LRB): Value of last received bit (bit 9) in a transmit sequence, status of ACK/NACK
from destination device.

Byte Complete: 8 data bits were received. For Receive Mode, the bus is stalled waiting for an ACK/NACK.
For Transmit Mode ACK/NACK was also received (see LRB) and the bus is stalled for the next action.

Table 5. Resource 12C_DR: Bank 0 reg[D8] Data Register
Bit 7 6 5 4 3 2 1 0

Value Data

Received or Transmitted data. To transmit data, you must load this register before a write to the 1I2C_SCR
register. Received data is read from this register and may contain an address or data.

Table 6. Resource 12C_ADDR: Bank 1 reg[AD] Data Register
Bit 7 6 5 4 3 2 1 0

Value Data

The I2C address register is used to configure the hardware address automatic comparison feature so that
the microcontroller is not disturbed by an unwanted slave request. The hardware address automatic
compare feature is available in the Slave only mode in the CY8C21x45, CY8C22x45, and CY8C28xxx
family PSoC devices.

Document Number: 001-81371 Rev. *A Page 16 of 17

SMBusSlave

Version History

Version Originator Description
1.00 DHA Initial version.
2.00 MYKZ 1. Corrected method of clearing posted interrupts.

2. Fixed 12C address saving in User Module parameters and corrected 12C address
constant generation.

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Document Number: 001-81371 Rev. *A Revised May 16, 2013 Page 17 of 17

Copyright © 2012-2013 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features and Overview
	Functional Description
	Addressing Mechanism
	RAM Interface for SMBus Commands
	Command Descriptions

	DC and AC Electrical Characteristics
	Placement
	Parameters and Resources
	Application Programming Interface
	Slave Functions

	Sample Firmware Source Code
	Configuration Registers
	Version History

