

REF_5AR4770AG_13W1

About this document

Scope and purpose

This document is a reference design for a 13 W auxiliary power supply for an outdoor air-conditioner unit with the latest fifth-generation Infineon Fixed-Frequency (FF) CoolSET™ ICE5AR4770AG. The power supply is designed with a universal input compatible with most geographic regions, and two non-isolated outputs (+12 V/0.85 A, +15 V/150 mA) on a single-layer PCB. The PCB has a provision to add a linear regulator to support a third output (e.g. +5 V), which is connected to a +12 V output.

Highlights of the auxiliary power supply for the outdoor air-conditioner unit are:

- Tightly regulated output voltages, high efficiency under light load and low standby power
- Comprehensive protection feature CoolSET™ with integrated input Line Over Voltage Protection (LOVP) and externally implemented brown-in protection (GATE pin resistor to GND)
- Auto-restart protection scheme to minimize interruption and enhance end-user experience

Intended audience

This document is intended for power supply design engineers who are designing auxiliary power supplies for outdoor air-conditioner units that are efficient, reliable and easy to design.

Table of contents

Abou	t this documentt	1
Table	e of contents	1
1	System introduction	3
2	Reference board design	5
3	Power supply specifications	6
4	Circuit diagram	
5	Circuit description	8
5.1	EMI filtering and line rectification	
5.2	Flyback converter power stage	
5.3	Control of flyback converter through fifth-generation FF CoolSET™ ICE5AR4770AG	8
5.3.1	Current sensing	8
5.3.2	Feedback and compensation network	8
5.4	Unique features of the fifth-generation FF CoolSET™ ICE5AR4770AG	9
5.4.1	Fast self-start-up and sustaining of V _{CC}	9
5.4.2	CCM, DCM operation with frequency reduction	9
5.4.3	Frequency jittering with modulated gate drive	9
5.4.4	System robustness and reliability through protection features	9
5.5	Clamper circuit	10
5.6	PCB design tips	
5.7	EMI reduction tips	11

System introduction

6	PCB layout	12
6.1	Top side	12
6.2	Bottom side	12
7	BOM	13
8	Transformer specification	14
9	Measurement data and graphs	15
9.1	Efficiency curve	
9.2	Standby power	17
9.3	Line and load regulation	17
9.4	Maximum input power	18
9.5	Frequency reduction	18
9.6	Surge immunity (EN 61000-4-5)	19
9.7	Conducted emissions (EN 55022 class B)	19
9.8	Thermal measurement	20
9.9	+18 V rail regulation (LDO input)	21
10	Waveforms and oscilloscope plots	22
10.1	Start-up at full load	
10.2	Soft-start at full load	22
10.3	Drain and CS voltage at full load	
10.4	Frequency jittering and modulated gate drive at full load	
10.5	Load transient response (dynamic load from minimum to full load)	
10.6	Output ripple voltage at full load	
10.7	Output ripple voltage at ABM (minimum load)	
10.8	Entering ABM	
10.9	During ABM	26
10.10	Leaving ABM	26
10.11	V _{cc} OV/UV protection	27
10.12	Over-load protection	27
10.13	Brown-in and LOVP	28
11	Appendix A: Transformer design and spreadsheet [3]	29
12	References	
	sion history	

System introduction

1 System introduction

With the growing household trend for internet-connected devices, the new generation of home appliances such as air-conditioners are equipped with advanced features such as wireless control and monitoring capability, smart sensors and touch screen display. These can transform a static product into an interactive and intelligent home appliance, capable of adapting to the smart-home theme. To support this trend, Infineon has introduced the latest fifth-generation FF CoolSET™ to address this need in an efficient and cost-effective manner.

An auxiliary SMPS is needed to power the various modules and sensors, which typically operate from a stable DC voltage source. The Infineon CoolSET™ (as shown in Figure 1) forms the heart of the system, providing the necessary protection and AC/DC conversion from the mains to multiple regulated DC voltages to power the various blocks.

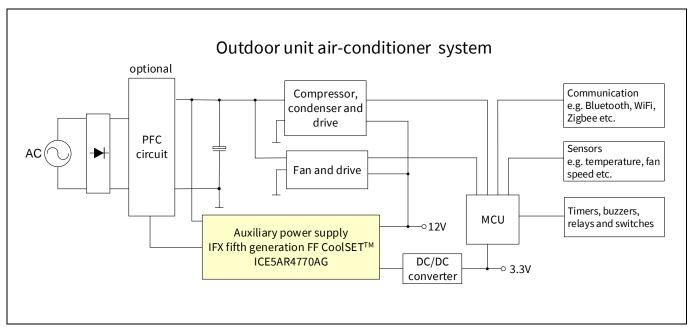


Figure 1 Simplified outdoor air-conditioner unit system block diagram example

Table 1 lists the system requirements for auxiliary power supply for the outdoor air-conditioner unit, and the corresponding Infineon solution is shown in the right-hand column.

Table 1 System requirements and Infineon solutions

	System requirement for outdoor air-conditioner unit power supply	Infineon solution – ICE5AR4770AG
1	High efficiency under light load and low standby power	New FF control and Active Burst Mode (ABM)
2	Robust system and protection features	Comprehensive protection feature CoolSET™ in DSO-12 package with integrated LOVP and externally implemented brown-in protection
3	Auto-restart protection scheme to minimize interruption to enhance end-user experience	All protections are in auto-restart

System introduction

1.1 High efficiency under light load and low standby power

During typical air-conditioner operation, the power requirement fluctuates according to various use cases. However, in most cases where room temperature is already stabilized, the indoor and outdoor air-conditioner units will reside in an idle state, in which the loading towards the auxiliary power supply is low. It is crucial that the auxiliary power supply operates as efficiently as possible, because it will be in this particular state for most of the period. Under light-load conditions, losses incurred with the power switch are usually dominated by the switching operation. The choice of switching scheme and frequency play a crucial role in ensuring high conversion efficiency.

In this reference design, ICE5AR4770AG was primarily chosen due to its frequency reduction switching scheme. Compared with a traditional FF flyback, the CoolSET[™] reduces its switching frequency from medium to light load, thereby minimizing switching losses. Therefore, an efficiency of more than 80 percent is achievable under 25 percent loading conditions and nominal input voltages.

1.2 Simplified circuitry with good integration of power and protection features

To relieve the designer of the complexity of PCB layout and circuit design, CoolSET™ is a highly integrated device with both a controller and a HV MOSFET integrated into a single, space-saving DSO-12 package. These certainly help the designer to reduce component count as well as simplifying the layout into a single-layer PCB design for ease of manufacturing, using the traditional cost-effective wave-soldering process.

The various protection features of the CoolSET™, such as integrated LOVP and externally implemented brownin protection, boosts the reliability of the power supply.

1.3 Auto-restart protection scheme to minimize interruption to enhance end-user experience

For an outdoor air-conditioner unit, it would be annoying to both the end-user and the manufacturer if the system were to halt and latch after protection. Accessibility of the input AC plug may also be difficult; therefore, to minimize interruption, the CoolSET™ implements auto-restart mode for all abnormal protections.

Reference board design

2 Reference board design

This document provides complete design details including specifications, schematics, Bill of Materials (BOM), PCB layout, and transformer design and construction information. Performance results pertaining to line/load regulation, efficiency, transient load, thermal conditions, conducted EMI scans and so on are also included.

Figure 2 REF_5AR4770AG_13W1

Power supply specifications

Power supply specifications 3

The table below represents the minimum acceptance performance of the design at 25°C ambient temperature. Actual performance is listed in the measurements section.

Specifications of REF_5AR4770AG_13W1 Table 2

Description	Symbol	Min	Type	Max	Units	Comments
Input						
Voltage	V _{IN}	85	_	264	V AC	2 wires (no P.E.)
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load input power	P _{stby_NL}	_	-	100	mW	
630 mW load input power	P _{stby_ML}	_	-	1	W	
Brown-in	V _{BI}	_	75	-	V AC	
LOVP	V_{LOVP}	-	300	-	V AC	
Output						
Output voltage 1	V _{OUT1}	-	12	-	V	± 1 percent
Output current 1	I _{OUT1}	-	-	0.85	Α	
Output voltage ripple 1	V _{RIPPLE1}	-	-	50	mV	
Output voltage 2	V_{OUT2}	-	15	-	V	± 1 percent
Output current 2	I _{OUT2}	-	-	0.15	Α	
Output voltage ripple 2	V _{RIPPLE2}	-	-	50	mV	
Output power	P _{OUT_Nom}	-	12.45	-	W	
Output over-current protection (+12 V)	I _{OCP}	-	1.15	-	Α	0.15 A load on +15 V
Start-up time	t _{start_up}	-	-	250	ms	
Efficiency						
Maximum load	η	80	-	-	%	
Average efficiency (25 percent, 50 percent, 75 percent, 100 percent)	η_{avg}	82	_	-	%	115 V AC/220 V AC
Environmental			•	•		
Conducted EMI			10		dB	Margin, CISPR 22 class B
Surge immunity						EN 61000-4-5
Differential mode			±2		kV	
PCB dimension			80 x 50		mm ²	L x W (single-layer PCB)

Circuit diagram

Circuit diagram 4

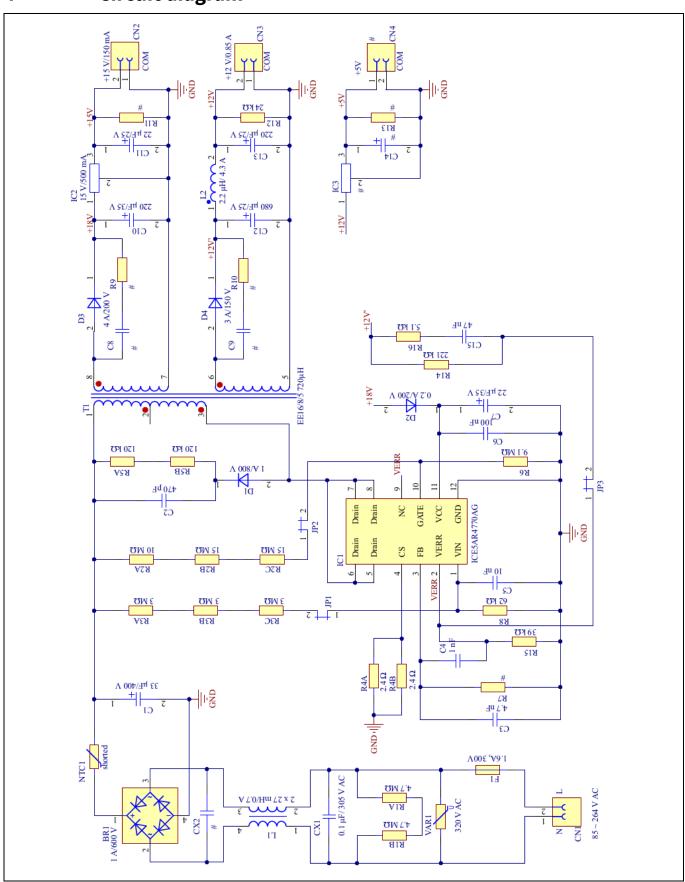


Figure 3 Schematic of REF_5AR4770AG_13W1

Circuit description

5 Circuit description

In this section, the design circuit for the SMPS unit will be briefly described by the different functional blocks. For details of the design procedure and component selection for the flyback circuitry please refer to the IC design guide [2] and calculation tool [3].

5.1 EMI filtering and line rectification

The input of the power supply unit is taken from the AC power grid which is in the range of 85 V AC ~ 264 V AC. The fuse F1 is directly connected to the input line to protect the system in case of excess current entering the system circuit due to any fault. Following is the varistor VAR1, which is connected across the input to absorb excessive energy during line-surge transient. The X-capacitor CX1 and Common Mode Choke (CMC) L1 reduce the EMI noise. R1A and R1B serve as the X-capacitor discharge resistor. The bridge rectifier BR1 rectifies the AC input into DC voltage, filtered by the bulk capacitor C1.

5.2 Flyback converter power stage

The flyback converter power stage consists of transformer T1, CoolSET[™], secondary rectification diodes D3 and D4, secondary output capacitors C10 and C12 and output filter inductor L2.

When the primary HV MOSFET turns on, energy is stored in the transformer. When it turns off, the stored energy is discharged to the output capacitors and into the output load.

Secondary winding is sandwiched between two layers of primary winding to reduce leakage inductance. This improves efficiency and reduces voltage spikes. An addition of shield winding between the first layer of primary winding and secondary winding helps reduce EMI noise.

For the output rectification, lower forward voltage and ultra-fast recovery diodes can improve efficiency. Capacitor C12 stores the energy needed during output load jumps. LC filter L2/C13 reduces the high-frequency ripple voltage.

The +15 V output is from the 15 V Low Drop-Out (LDO) regulator (IC2) with an input of +18 V. As such, this output should not be affected by cross-regulation. However, its input should be maintained within the operating range of the LDO.

5.3 Control of flyback converter through fifth-generation FF CoolSET™ ICE5AR4770AG

5.3.1 Current sensing

The ICE5AR4770AG is a current mode controller. The primary peak current is controlled cycle-by-cycle through the CS resistors R4A and R4B in the CS pin (pin 4). Transformer saturation can be avoided through Peak Current Limitation (PCL); therefore, the system is more protected and reliable.

5.3.2 Feedback and compensation network

+12 V output is sensed by resistor/dividers R14 and R15 connected to the VERR pin (pin 2), which is the negative input of the integrated error amplifier of the ICE5AR4770AG. A feed-forward compensation network (C15 and R16) and capacitors C3 and C4 are added for feedback loop stability.

The FB pin of ICE5AR4770AG is a multi-function pin, which is used to select the entry/exit burst power level through the resistor at the FB pin (R7) and also the burst-on/burst-off sense input during ABM.

Circuit description

5.4 Unique features of the fifth-generation FF CoolSET™ ICE5AR4770AG

5.4.1 Fast self-start-up and sustaining of V_{cc}

The IC uses a cascode structure to fast-charge the V_{CC} capacitor. Pull-up resistors R2A, R2B and R2C connected to the GATE pin (pin 10) are used to initiate the start-up phase. At first, 0.2 mA is used to charge the V_{CC} capacitor from 0 V to 1.1 V. This is a protection which reduces the power dissipation of the power MOSFET during V_{CC} short-to-GND condition. Thereafter, a much higher charging current of 3.2 mA will charge the V_{CC} capacitor until the V_{CC} on is reached. Start-up time of less than 250 ms is achievable with a V_{CC} capacitor of 22 μ F.

After start-up, the IC V_{CC} supply is usually sustained by the auxiliary winding of the transformer, which needs to support the V_{CC} to be above Under Voltage Lockout (UVLO) voltage (10 V typ.). In this reference board, the V_{CC} supply is tapped from the +18 V winding.

5.4.2 CCM, DCM operation with frequency reduction

ICE5AR4770G can be operated in either Discontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM) with frequency-reduction features. This reference board is designed to operate in DCM at operating input voltage and load conditions. When the system is operating at high output load, the controller will switch at 100 kHz fixed frequency. In order to achieve a better efficiency between light load and medium load, frequency reduction is implemented as a function of V_{FB} , as shown in Figure 4. Switching frequency will not reduce further once the minimum switching frequency of 43 kHz is reached.

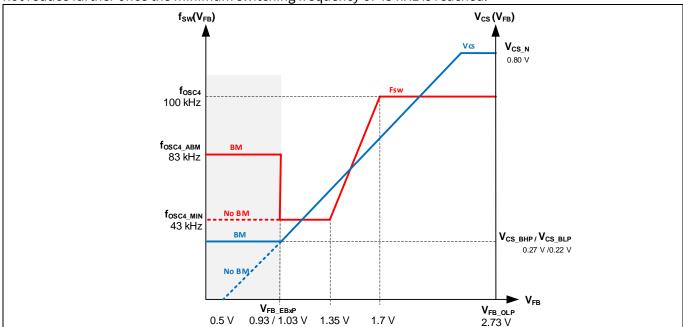


Figure 4 Frequency-reduction curve

5.4.3 Frequency jittering with modulated gate drive

The ICE5AR4770AG has a frequency jittering feature with modulated gate drive to reduce the EMI noise. The jitter frequency is internally set at 100 kHz (±4 kHz), and the jitter period is 4 ms.

5.4.4 System robustness and reliability through protection features

Protection is one of the major factors in determining whether the system is safe and robust – therefore sufficient protection is necessary. ICE5AR4770AG provides comprehensive protection to ensure the system is operating safely. This includes V_{IN} LOVP, V_{CC} OV and UV, over-load, over-temperature, CS short-to-GND and V_{CC}

Circuit description

short-to-GND. When those faults are found, the system will enter into protection mode. Once the fault is removed, the system resumes normal operation. A list of protections and the failure conditions is shown in the table below.

Table 3 **Protection functions of ICE5AR4770AG**

Protection function	Failure condition	Protection mode
V _{cc} OV	V _{VCC} greater than 25.5 V	Odd-skip auto-restart
V _{cc} UV	V _{VCC} less than 10 V	Auto-restart
V _{IN} LOVP	V _{VIN} greater than 2.85 V	Non-switch auto-restart
Over-load	V _{FB} greater than 2.73 V and lasts for 54 ms	Odd-skip auto-restart
Over-temperature	T _J greater than 140°C (40°C hysteresis)	Non-switch auto-restart
CS short-to-GND	V_{CS} less than 0.1 V, lasts for 0.4 μs and three consecutive pulses	Odd-skip auto-restart
V _{cc} short-to-GND	V_{VCC} less than 1.1 V, $I_{VCC_Charge1} \approx -0.2$	Cannot start up
$(V_{VCC} = 0 \text{ V}, \text{ start-up} = 50 \text{ M}\Omega \text{ and } V_{DRAIN} = 90 \text{ V})$	mA	

5.5 Clamper circuit

A clamper network consisting of D1, C2, R5A and R5B is used to reduce the switching voltage spikes across the DRAIN of the integrated HV MOSFET of the CoolSET™, which are generated by the leakage inductance of the transformer T1. This is a dissipative circuit; therefore, R5A, R5B and C2 need to be fine-tuned depending on the voltage derating factor and efficiency requirement.

PCB design tips 5.6

For a good PCB design layout, there are several points to note.

The switching power loop needs to be as small as possible (see Figure 5). There are three power loops in the reference design; one on the HV side and two on the output side. The HV side loop starts from the bulk capacitor (C1) positive terminal, primary transformer winding (pin 1 and pin 3 of T1), CoolSET™, CS resistors and back to the C1 negative terminal. The first output side loop (+12 V output) starts at the transformer winding (pin 6 of T1), output diode D4, output capacitor C12 and back to pin 5 of T1. The second output side loop (+18 V output) starts at the transformer winding (pin 8 of T1), output diode D3, output capacitor C10 and back to pin 7 of T1.

Circuit description

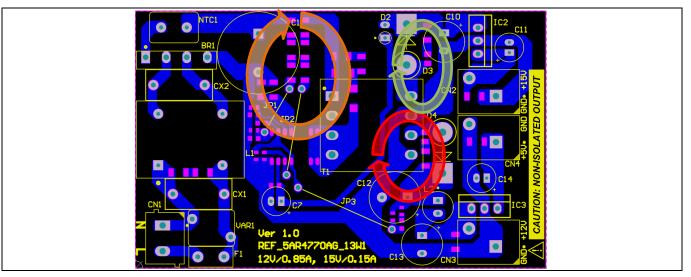
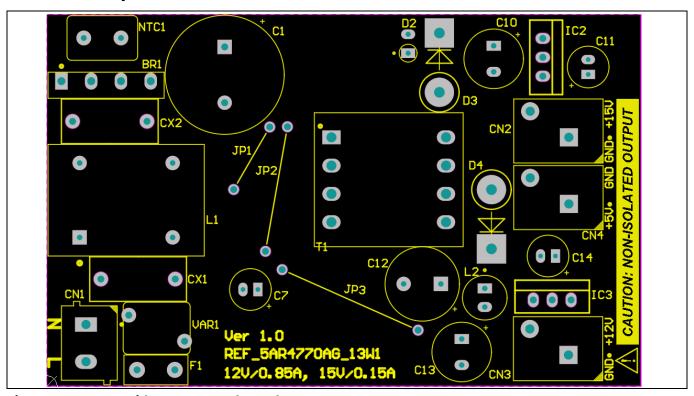


Figure 5 PCB layout tips

- Star-ground connection should be used to reduce High Frequency (HF) noise coupling that can affect the functional operation. The ground of the small-signal components, e.g. R6, R7, R8, R15, C3, C5 and C6, should connect directly to the IC ground (pin 12 of IC1).
- Separating the HV components and LV components, e.g. clamper circuit D1, C2, R5A and R5B, at the top part of the PCB and the other LV components at the lower part of the PCB can reduce the spark-over chance of the high energy surge during a lightning surge test.
- Make the PCB copper pour on the DRAIN pin of the MOSFET cover as wide an area as possible to act as a heatsink.

5.7 EMI reduction tips

EMI compliance is always a challenge for the power supply designer. There are several critical points to consider in order to achieve a satisfactory EMI performance.


- A proper transformer design can significantly reduce EMI. Low leakage inductance can incur a low switching spike and HF noise. Interlaced winding technique is the most common practice to reduce leakage inductance. Winding shield, core shield and whole transformer shield are also some of the techniques used to reduce EMI.
- Input CMC and X-capacitor greatly reduce EMI, but this is costly and impractical especially for low-power applications.
- Short-switching power-loop design in the PCB (as described in section 5.6) can reduce radiated EMI due to the antenna effect.
- An output diode snubber circuit (R9, R10, C8 and C9) can reduce HF noise.
- Ferrite beads can reduce HF noise, especially on critical nodes such as the DRAIN pin, clamper diode and output diode terminals. There is no ferrite bead used in this design, as this can reduce the efficiency due to additional losses especially on high-current terminals.

PCB layout

PCB layout 6

6.1 Top side

Top side component legend Figure 6

6.2 **Bottom side**

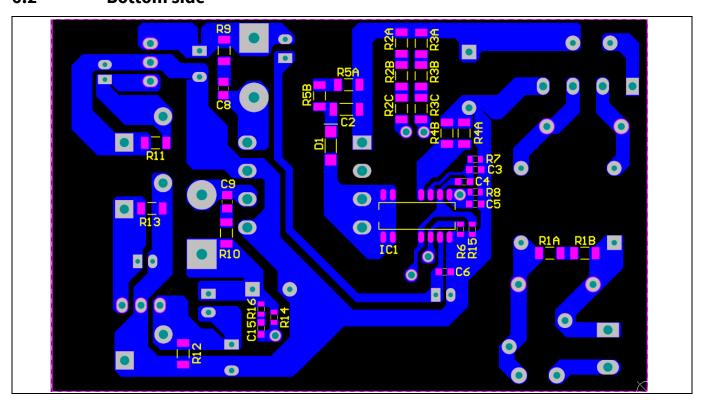


Figure 7 **Bottom side copper and component legend**

BOM

BOM 7

Table 4 **BOM**

No.	Designator	Description	Part number	Manufacturer	Quantity
1	BR1	600 V/1 A	S1VBA60	Shindengen	1
2	C1	33 μF/400 V	EKXG401ELL330ML20S	United Chemicon	1
3	C2	470 pF/630 V/1206			1
4	C3	4.7 nF/50 V/0603			1
5	C4	1 nF/50 V/0603			1
6	C5	10 nF/50 V/0603			1
7	C6	100 nF/50 V/0603			1
8	C7	22 μF/50 V	50PX22MEFC5X11	Rubycon	1
9	C10	220 μF/35 V	35ZLH220MEFC8X11.5	Rubycon	1
10	C11	22 μF/25 V	25ZLG22MEFC5X7	Rubycon	1
11	C12	680 μF/25 V	25ZLS680MEFC10X16	Rubycon	1
12	C13	220 μF/25 V	25ZL220MEFC8X11.5	Rubycon	1
13	C15	47 nF/50 V/0603			1
14	CX1	0.1 μF/305 V AC	B32921C3104M000	Epcos	1
15	D1	1 A/800 V	US1K-13-F		1
16	D2	0.2 A/200 V	1N485B		1
17	D3	4 A/200 V	MUR420G		1
18	D4	3 A/150V	STPS3150RL		1
19	F1	1.6 A/300 V	36911600000	Littlefuse	1
20	IC1	CoolSET™	ICE5AR4770AG	Infineon	1
21	IC2	15 V/500 mA LDO	LM2937ET-15		1
22	JP1, JP2, JP3	Jumper wire			3
23	L1	2 x 27 mH/0.7 A	B82731M2701A030	Epcos	1
24	L2	2.2 μH/4.3A	7447462022	Würth Electronics	1
25	NTC1	Shorted			1
26	R1A, R1B	4.7 MΩ/0.25 W/			2
20	KIA, KID	5 percent/1206			2
27	R2A	10 MΩ/0.25 W/1 percent/1206			1
28	R2B, R2C	15 MΩ/0.25W /1 percent/1206			2
29	R3A, R3B, R3C	3 MΩ/0.25 W/1 percent/1206			3
30	R4A, R4B	2.4 Ω/0.25 W/1 percent/1206			2
31	R5A, R5B	120 kΩ/0.25 W/			2
	·	5 percent/1206			
32	R6	9.1 MΩ/0.1 W/1 percent/0603			1
33	R8	62 kΩ/0.1 W/1 percent/0603			1
34	R12	24 kΩ/0.25 W/5 percent/1206			1
35	R14	221 kΩ/0.1 W/1 percent/0603			1
36	R15	39 kΩ/0.1 W/1 percent/0603			1
37	R16	5.1 kΩ/0.1 W/1 percent/0603			1
38	T1	720 μH/EE16	750344153	Würth Electronics	1
39	VAR1	Varistor, 0.3 W/320 V	ERZE07A511	Panasonic	1
40	CN1	Connector	691102710002	Würth Electronics	1
41	CN2, CN3	Connector	691412120002B	Würth Electronics	2
42	РСВ	80 mm x 50 mm (L x W), single layer, 1 oz., FR-4			1

Transformer specification

8 Transformer specification

Refer to Appendix A for transformer design and Appendix B for WE transformer specification.

Würth Electronics core part number: 150-2182 (EE16/8/5)

Würth Electronics bobbin: 070-5420 (8-pin, THT, horizontal version)

Primary inductance: $L_p = 720 \mu H$ (±10 percent), measured between pin 1 and pin 3

Manufacturer and part number: Würth Electronics Midcom (750344153)

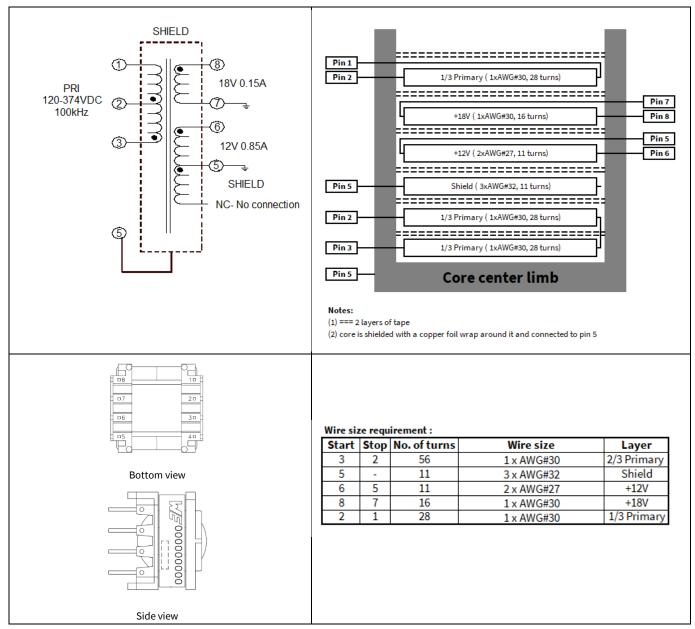


Figure 8 Transformer structure

Measurement data and graphs

Measurement data and graphs 9

Electrical measurements Table 5

Input (V AC/Hz)	P _{IN} (W)	+12 V _{оυт} (V)	+12 I _{оυτ} (A)	+15 V _{оυт} (V)	+15 l _{out} (A)	Р _{оит} (W)	Efficiency (%)	Average efficiency (%)	OLP P _{IN} (W)	OLP +12 I _{OUT} at 15 V/0.15 A
	0.059	11.959	0.0000	14.940	0.0000					
	0.846	11.961	0.0401	14.944	0.0098	0.63	74.00			
85 V AC/	3.834	11.967	0.2128	14.950	0.0373	3.10	80.97		10.52	1.12
60 Hz	7.595	11.964	0.4253	14.954	0.0748	6.21	81.72	01.10	19.53	1.13
	11.435	11.963	0.6376	14.955	0.1123	9.31	81.39	81.19		
	15.382	11.958	0.8505	14.956	0.1499	12.41	80.69			
	0.061	11.962	0.0000	14.942	0.0000					
	0.842	11.964	0.0401	14.946	0.0098	0.63	74.34			1.14
115 V AC/	3.809	11.966	0.2128	14.951	0.0373	3.10	81.48	82.31	19.21	
60 Hz	7.511	11.964	0.4253	14.955	0.0748	6.21	82.63			
	11.249	11.963	0.6376	14.957	0.1123	9.31	82.74			
	15.067	11.958	0.8505	14.957	0.1499	12.41	82.38			
	0.077	11.963	0.0000	14.943	0.0000					
	0.886	11.966	0.0401	14.947	0.0098	0.63	70.71			1.16
220 V AC/	3.855	11.969	0.2128	14.951	0.0373	3.10	80.54		19.18	
50 Hz	7.555	11.969	0.4253	14.954	0.0748	6.21	82.18	02.26		
	11.215	11.969	0.6376	14.957	0.1123	9.31	83.02	82.26		
	14.908	11.966	0.8505	14.958	0.1499	12.42	83.31			
264 V AC/	0.087	11.963	0.0000	14.943	0.0000					
	0.909	11.966	0.0401	14.946	0.0098	0.63	68.91			
	3.899	11.970	0.2128	14.951	0.0373	3.10	79.64		10.47	1.10
50 Hz	7.584	11.971	0.4253	14.955	0.0748	6.21	81.88		19.47	1.18
	11.291	11.971	0.6376	14.957	0.1123	9.31	82.48	81.76		
	14.957	11.968	0.8505	14.959	0.1499	12.42	83.05			

Minimum load condition: 12 V/40 mA, 15 V/10 mA

25 percent load condition: 12 V/0.213 A, 15 V/0.038 A

50 percent load condition: 12 V/0.425 A, 15 V/0.075 A

75 percent load condition: 12 V/0.638 A, 15 V/0.113 A

100 percent load condition: 12 V/0.85 A, 15 V/0.15 A

Measurement data and graphs

9.1 Efficiency curve

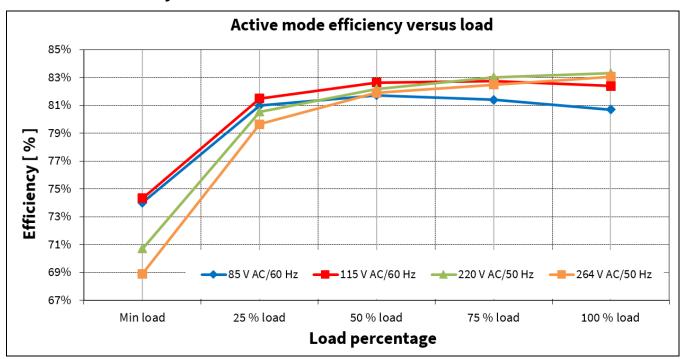


Figure 9 Efficiency vs output load

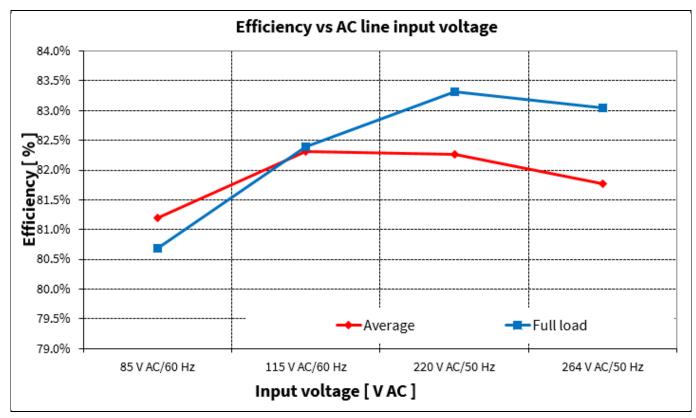


Figure 10 Efficiency vs AC line input voltage

Measurement data and graphs

9.2 Standby power

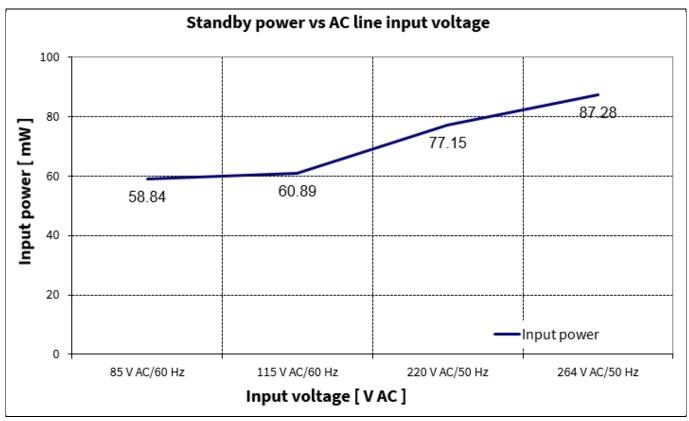


Figure 11 Standby power at no load vs AC line input voltage (measured by Yokogawa WT210 power meter – integration mode)

9.3 Line and load regulation

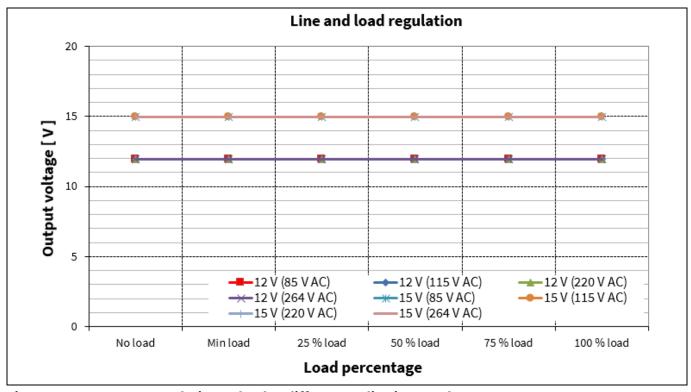


Figure 12 Output regulation vs load at different AC line input voltages

Measurement data and graphs

9.4 Maximum input power

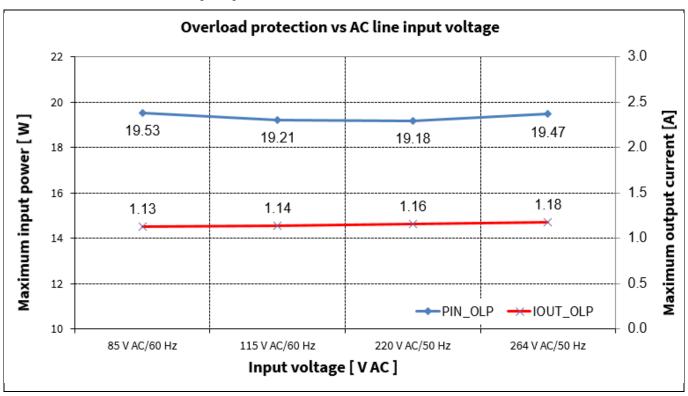


Figure 13 Maximum input power and output current (before overload protection) vs AC line input voltage at 15 V/0.15 A load

9.5 Frequency reduction

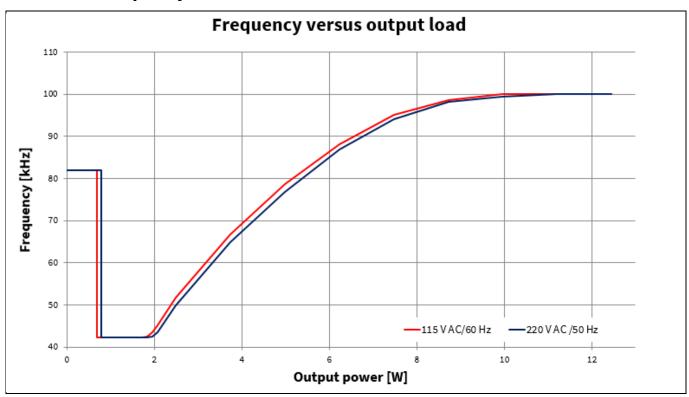


Figure 14 Frequency reduction curve vs output load

V 1.0

Measurement data and graphs

9.6 Surge immunity (EN 61000-4-5)

The reference board was subjected to a surge immunity test (±2 kV DM) according to EN 61000-4-5. It is tested at full load (12.45 W) using resistive load at input voltage of 220 V AC with LOVP disabled (R3A removed). A test failure was defined as a non-recoverable and/or system auto-restart.

Table 6 System surge immunity test result

Description	Toot	Level		N	umbei	To at was with		
Description	Test			0°	90°	180°	270°	Test result
220 V AC	DM	+2 kV	$L \rightarrow N$	3	3	3	3	Pass
100 percent load	DM	-2 kV	$L \rightarrow N$	3	3	3	3	Pass

9.7 Conducted emissions (EN 55022 class B)

The conducted EMI was measured by Schaffner (SMR4503) and followed the test standard of EN 55022 (CISPR 22) class B. The reference board is tested at full load (12.45 W) using resistive load at input voltage of 115 V AC and 220 V AC.

- 115 V AC: pass with greater than 10 dB margin
- 220 V AC: pass with greater than 10 dB margin

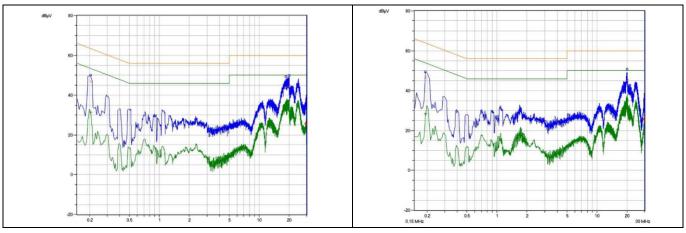


Figure 15 Conducted emissions at 115 V AC and full load on line (left) and neutral (right)

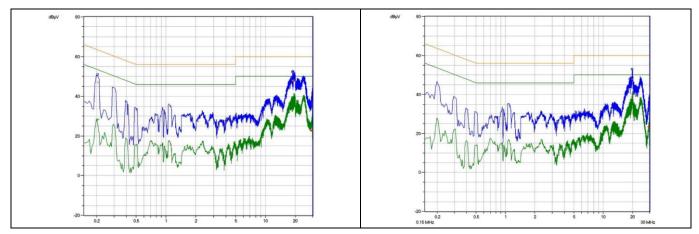


Figure 16 Conducted emissions at 220 V AC and full load on line (left) and neutral (right)

Measurement data and graphs

9.8 Thermal measurement

Thermal measurement was done using an infrared thermography camera (FLIR-T62101) at an ambient temperature of 25°C taken after one hour running at full load. The temperature of the components was taken in an open-frame set-up.

Table 7 Thermal measurement of components (open-frame)

No.	Components	Temperature at 85 V AC (°C)	Temperature at 264 V AC (°C)
1	D4 (+12 V diode)	73.3	73.9
2	T1 (transformer)	66.1	69.2
3	IC2 (15 V regulator)	63.3	63.5
4	IC1 (ICE5AR4770AG)	73.6	64.2

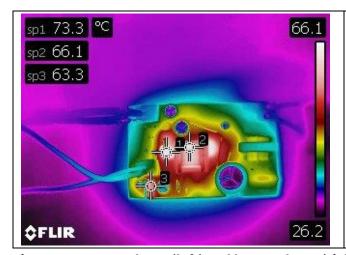


Figure 17 Top layer (left) and bottom layer (right) thermal image at 85 V AC input voltage

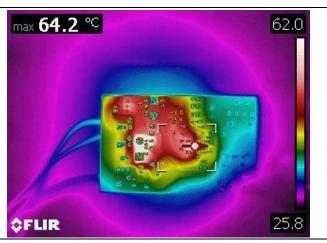


Figure 18 Top layer (left) and bottom layer (right) thermal image at 264 V AC input voltage

Measurement data and graphs

9.9 +18 V rail regulation (LDO input)

As the +15 V output via a LDO is derived from the +18 V rail from the transformer which is also shared by the CoolSET™ V_{CC}; thus, there are several design goals to achieve during normal operating conditions:

- Avoid V_{CC} UVLO (10 V typ.)
- Avoid V_{cc} OVP (25.5 V typ.)
- Ensure that the +18 V rail does not exceed the specification of the LDO (V_{in min}: 15.5 V and V_{in max}: 26 V)

From the chart and table below, the +18 V rail is operating between 16.88 V and 21.25 V under different load combination and line conditions, which is well within the design objectives outlined above.

Table 8 +18 V rail line and load regulation

	12 V/0 A, 15 V/0 A	12 V/40 mA, 15 V/10 mA	12 V/40 mA, 15 V/0.15 A	12 V/0.85 A, 15 V/10 mA	12 V/0.85 A, 15 V/0.15 A
	(V)	(V)	(V)	(V)	(V)
85 V AC/60 Hz	16.95	17.84	16.98	20.97	18.05
115 V AC/60 Hz	16.95	17.84	16.97	21.09	18.05
220 V AC/50 Hz	16.89	17.83	16.93	21.21	18.07
264 V AC/50 Hz	16.88	17.83	16.91	21.25	18.07

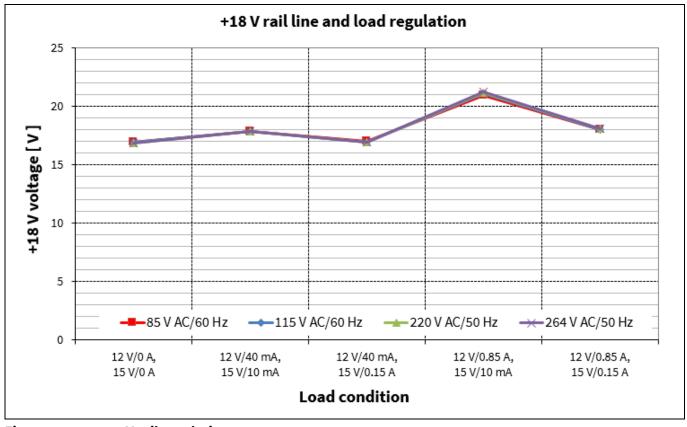


Figure 19 +18 V rail regulation

Waveforms and oscilloscope plots

10 Waveforms and oscilloscope plots

All waveforms and scope plots were recorded with a Teledyne LeCroy HDO4034 oscilloscope.

10.1 Start-up at full load

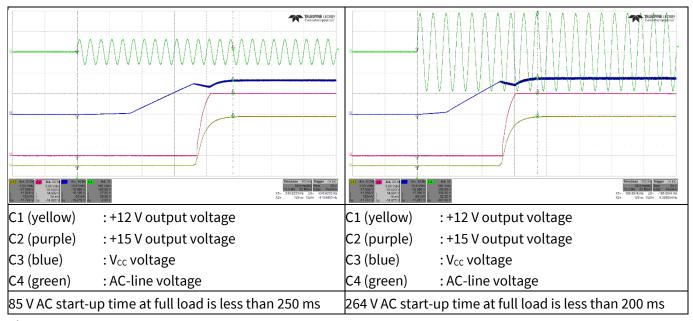


Figure 20 Start-up

10.2 Soft-start at full load

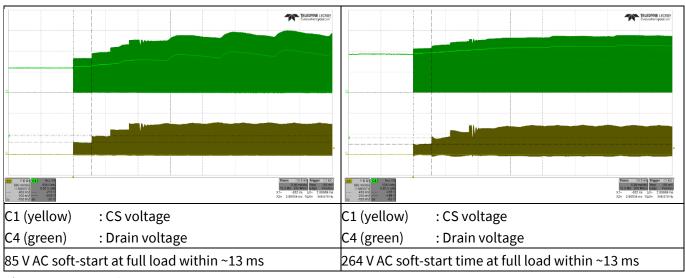


Figure 21 Soft-start

Waveforms and oscilloscope plots

10.3 Drain and CS voltage at full load

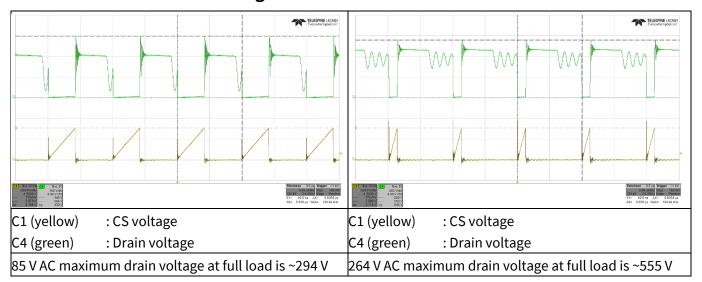


Figure 22 Drain and CS voltage

10.4 Frequency jittering and modulated gate drive at full load

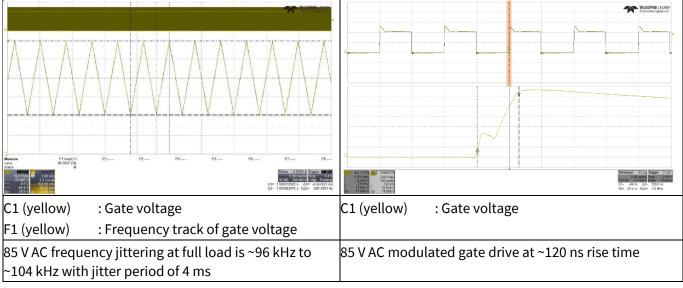


Figure 23 Frequency jittering and modulated gate drive

Waveforms and oscilloscope plots

Load transient response (dynamic load from minimum to full load) 10.5

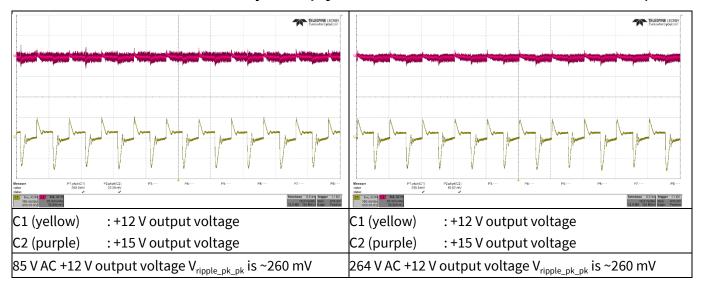


Figure 24 Load transient response with +12 V output load change from minimum (40 mA) to full load (0.85 A) at 0.4 A/ μ s slew rate, 100 Hz. +15 V output load is fixed at 0.15 A. Probe terminals are decoupled with 1 μ F electrolytic and 0.1 μ F ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz.

10.6 Output ripple voltage at full load

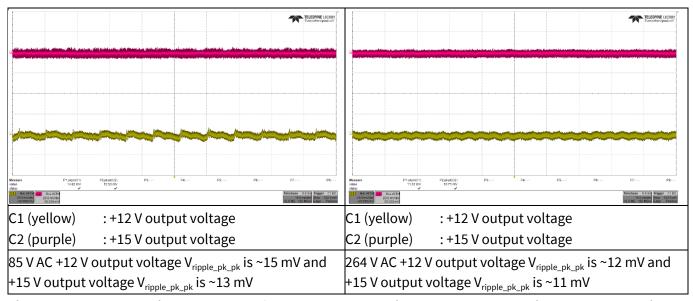
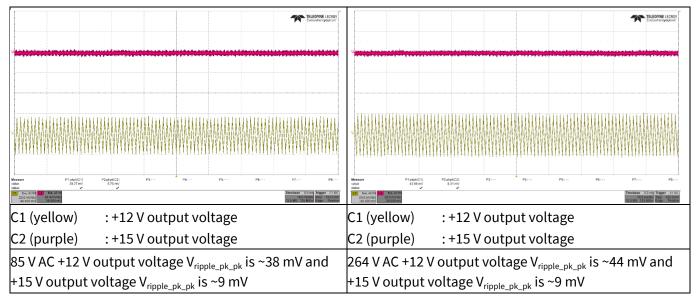



Figure 25 Output ripple voltage at full load. Probe terminals are decoupled with 1 μ F electrolytic and 0.1 μF ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz.

Waveforms and oscilloscope plots

Output ripple voltage at ABM (minimum load) 10.7

Output ripple voltage at 10 mA load. Probe terminals are decoupled with a 1 μF electrolytic Figure 26 and 0.1 µF ceramic capacitors. Oscilloscope is bandwidth filter limited to 20 MHz.

Entering ABM 10.8

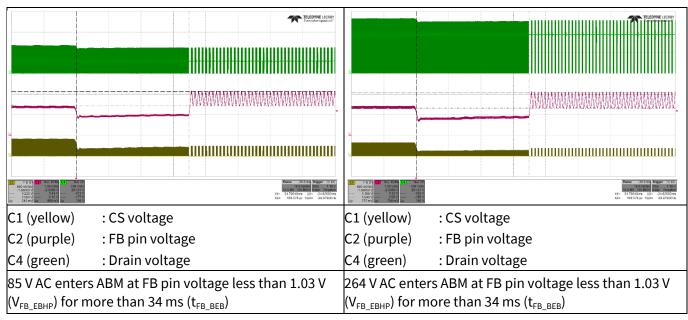


Figure 27 Entering ABM. +12 V output load from 0.2 A to 40 mA load. +15 V output has 10 mA fixed load.

Waveforms and oscilloscope plots

10.9 **During ABM**

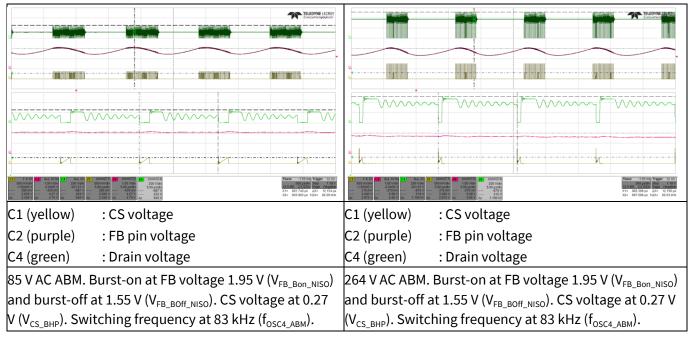


Figure 28 During ABM. Output at minimum load.

10.10 **Leaving ABM**

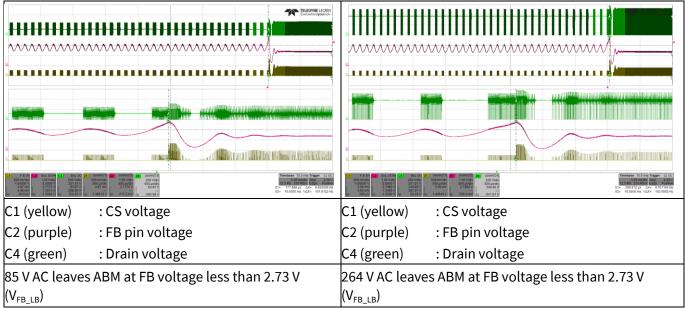
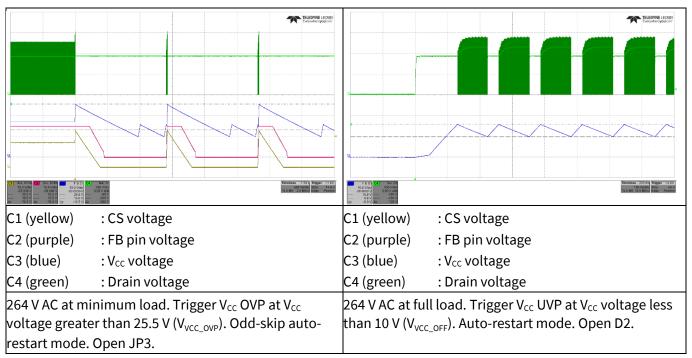



Figure 29 Leaving ABM. +12 V output load from 40 mA to 0.2 A load. +15 V output has 10 mA fixed load.

Waveforms and oscilloscope plots

10.11 Vcc OV/UV protection

V_{cc} OV/UV protection Figure 30

10.12 **Over-load protection**

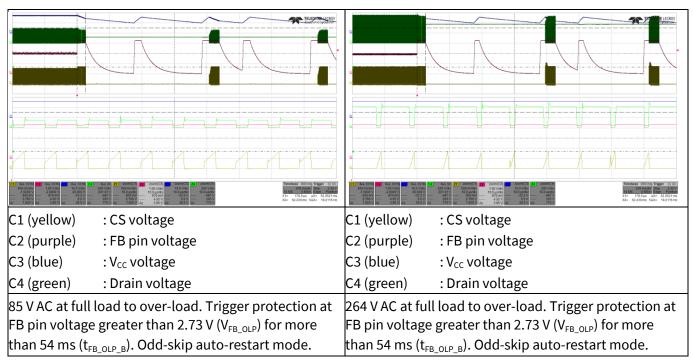
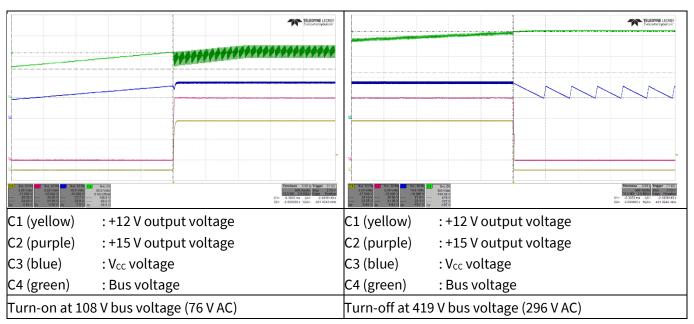



Figure 31 Over-load protection. Load increased at +12 V output from 0.85 A to 2 A load to trigger protection. +15 V output has 0.15 A fixed load.

Waveforms and oscilloscope plots

Brown-in and LOVP 10.13

Brown-in and LOVP Figure 32

Appendix A: Transformer design and spreadsheet [3]

Appendix A: Transformer design and spreadsheet [3] 11

Calculation tool for FF flyback converter using Gen5 CoolSET™ (Version 1.0)

Project:	85 ~ 264 V AC 13 W non-isolated flyback
Application:	AUX for outdoor air-conditioner unit
CoolSET™:	ICE5AR4770AG
Date:	24 August 2018
Revision:	V 1.0

Notes:

Enter design variables in yellow colored cells

Read design results in green colored cells

Equation numbers are according to the design guide

Select component values based on standard values available

Voltage/current rating does not include design margin, voltage spikes and transient currents

	Description	Eq. #	Parameter	Unit	Value
	CoolSET™ specs				
Line inpu Input	Minimum AC input voltage		V _{ACMin}	[V]	85
Input	Maximum AC input voltage		VACMIN	[V]	264
Input	Line frequency		f _{AC}	[Hz]	60
Input	Bus capacitor DC ripple voltage		V _{DCRipple}	[V]	28
0					
Output 1 Input	Output voltage 1		V _{Out1}	[V]	12
Input	Output current 1		I _{Out1}	[A]	0.85
Input	Forward voltage of output diode 1		V _{FOut1}	[V]	0.4
Input	Output ripple voltage 1		V _{OutRipple1}	[V]	0.2
Result	Output power 1	Eq 001	P _{Out1}	[W]	10.2
Result	Output load weight 1	Eq 004	K _{L1}		0.79
• • • •					
Output 2 Input	Output voltage 2		V _{Out2}	[V]	18
Input	Output current 2		I _{Out2}	[A]	0.15
Input	Forward voltage of output diode 2		V _{FOut2}	[V]	0.4
 Input	Output ripple voltage 2		V _{OutRipple2}	[V]	0.2
Result	Output power 2	Eq 002	P _{Out2}	[W]	2.7
Result	Output load weight 2	Eq 005	K _{L2}		0.21
Auxiliary					
Input	V _{cc} voltage		V _{Vcc}	[V]	14
Input	Forward voltage of Vcc diode (D2)		V _{FVcc}	[V]	0.6
Power					
Input	Efficency		η		0.85

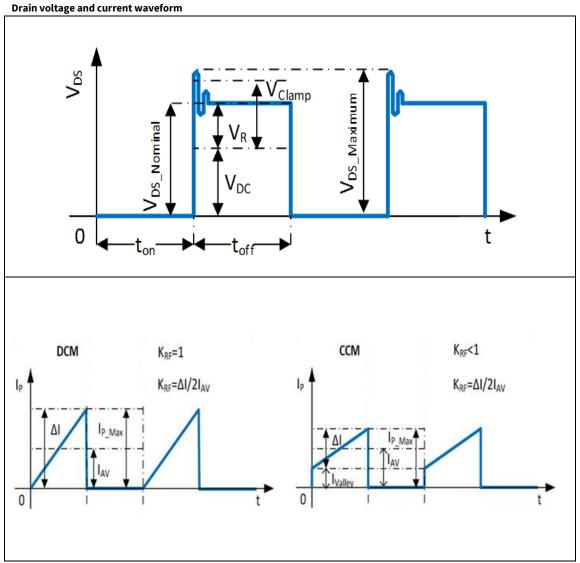
Input	Efficency		η		0.85
Result	Nominal output power	Eq 003	P _{OutNom}	[W]	12.90
Input	Maximum output power for over-load protection		P _{OutMax}	[W]	13
Result	Maximum input power for over-load protection	Eq 006	P _{InMax}	[W]	15.18
Input	Minimum output power		P _{OutMin}	[W]	2

Appendix A: Transformer design and spreadsheet [3]

Controller/CoolSET™

	Controller/CoolSET [™]			ICE5AR4770AG
Input	Switching frequency	fs	[Hz]	100000
Input	Targeted max. drain source voltage	V _{DSMax}	[V]	700
Input	Max. ambient temperature	T _{amax}	[°C]	50

Diode bridge and input capacitor


Diode bridge

Input	Power factor Power factor		cosφ		0.5
Result	Maximum AC input current	Eq 007	I _{ACRMS}	[A]	0.357
Result	Peak voltage at V _{ACMax}	Eq 008	$V_{DCMaxPk}$	[V]	373.35

Input capacitor

Result	Peak voltage at V _{ACMin}	Eq 009	V _{DCMinPk}	[V]	120.21
Result	Selected minimum DC input voltage	Eq 010	$V_{DCMinSet}$	[V]	92.21
Result	Discharging time at each half-line cycle	Eq 011	T _D	[ms]	6.49
Result	Required energy at discharging time of input capacitor	Eq 012	Wın	[Ws]	0.10
Result	Calculated input capacitor	Eq 013	C _{INCal}	[μF]	33.10
Input	Select input capacitor (C1)		Cin	[μF]	33
Result	Calculated minimum DC input voltage	Eq 015	V _{DCMin}	[V]	92.11

Transformer design

Appendix A: Transformer design and spreadsheet [3]

Primary induct	ance and	winding	currents

Input	Reflection voltage		V _{RSET}	[V]	95
Result	Maximum duty cycle	Eq 016	D _{Max}		0.51
Input	Select current ripple factor		K _{RF}		1
Result	Primary inductance	Eq 017	L _P	[H]	7.21E-04
Result	Primary turn-on average current	Eq 018	I _{AV}	[A]	0.32
Result	Primary peak-to-peak current	Eq 019	ΔΙ	[A]	0.65
Result	Primary peak current	Eq 020	I _{PMax}	[A]	0.65
Result	Primary valley current	Eq 021	I _{Valley}	[A]	0.00
Result	Primary RMS current	Eq 022	I _{PRMS}	[A]	0.267

Select core type

Input	Select core type			10
Result	Core type			EE16/8/5
Result	Core material			TP4A(TDG)
Result	Maximum flux density	B _{Max}	[T]	0.3
Result	Cross-sectional area	Ae	[mm²]	20.1
Result	Bobbin width	BW	[mm]	10.11
Result	Winding cross-section	An	[mm²]	24
Result	Average length of turn	l _N	[mm]	34

Winding calculation

Result	Calculated minimum number of primary turns	Eq 023	N _{PCal}	Turns	77.56
Input	Select number of primary turns		N _P	Turns	84
Result	Calculated number of secondary 1 turns	Eq 024	N _{S1Cal}	Turns	10.96
Input	Select number of secondary 1 turns		N _{S1}	Turns	11
Result	Calculated number of secondary 2 turns	Eq 025	N _{S2Cal}	Turns	16.27
Input	Select number of secondary 2 turns		N _{S2}	Turns	16
Result	Calculated number of auxiliary turns	Eq 026	N _{VccCal}	Turns	12.95
Input	Select number of auxiliary turns		N _{Vcc}	Turns	16
Result	Calculated V _{CC} voltage	Eq 027	V _{VccCal}	[V]	17.44

Post calculation

Result	Primary to secondary 1 turns ratio	Eq 028	N _{PS1}		7.64
Result	Primary to secondary 2 turns ratio	Eq 029	N _{PS2}		5.25
Result	Post-calculated reflected voltage	Eq 030	V _{RPost}	[V]	94.69
Result	Post-calculated maximum duty cycle	Eq 031	D _{MaxPost}		0.51
Result	Duty cycle prime	Eq 032	D _{Max} '		0.49
Result	Actual flux density	Eq 033	B _{MaxAct}	[T]	0.277
Result	Maximum DC input voltage for CCM operation	Eq 034	V _{DCmaxCCM}	[V]	92.40

Transformer winding design

Input	Margin according to safety standard		М	[mm]	0
Input	Copper space factor		f _{Cu}		0.4
Result	Effective bobbin window	Eq 035	BW _E	[mm]	10.1
Result	Effective winding cross-section	Eq 036	A _{Ne}	[mm²]	24.0
Input	Primary winding area factor		AF _{NP}		0.50
Input	Secondary 1 winding area factor		AF _{NS1}		0.30
Input	Secondary 2 winding area factor		AF _{NS2}		0.15
Input	Auxiliary winding area factor		AF _{NVcc}		0.05

Appendix A: Transformer design and spreadsheet [3]

Primary winding

Result	Calculated wire copper cross-sectional area	Eq 037	A _{PCal}	[mm²]	0.0571
Result	Calculated maximum wire size	Eq 038	AWG _{PCal}		30
Input	Select wire size		AWG _P		30
Input	Select number of parallel wire		nw₽		1
Result	Wire copper diameter	Eq 039	d₽	[mm]	0.26
Result	Wire copper cross-sectional area	Eq 040	A _P	[mm ²]	0.0517
Result	Wire current density	Eq 041	S _P	[A/mm ²]	5.16
Input	Insulation thickness		INS _P	[mm]	0.01
Result	Turns per layer	Eq 042	NL_P	Turns/layer	36
Result	Number of layers	Eq 043	Ln _P	Layers	3

Secondary 1 winding

Result	Calculated wire copper cross-sectional area	Eq 044	A _{NS1Cal}	[mm²]	0.2618
Result	Calculated maximum wire size	Eq 045	AWG _{S1Cal}		23
Input	Select wire size		AWG _{S1}		27
Input	Select number of parallel wire		nw _{S1}		2
Result	Wire copper diameter	Eq 046	d _{S1}	[mm]	0.3629
Result	Wire copper cross-sectional area	Eq 047	A _{S1}	[mm²]	0.2069
Result	Peak current	Eq 048	I _{S1Max}	[A]	3.9189
Result	RMS current	Eq 049	I _{S1RMS}	[A]	1.5901
Result	Wire current density	Eq 050	S _{S1}	[A/mm ²]	7.69
Input	Insulation thickness		INS _{S1}	[mm]	0.01
Result	Turns per layer	Eq 051	NL _{S1}	Turns/layer	11
Result	Number of layers	Eq 052	Ln _{S1}	Layers	1

Secondary 2 winding

Result	Calculated wire copper cross-sectional area	Eq 053	A _{NS2Cal}	[mm²]	0.0900
Result	Calculated maximum wire size	Eq 054	AWG _{S2Cal}		28
Input	Select wire size		AWG _{S2}		30
Input	Select number of parallel wire		nw _{S2}		1
Result	Wire copper diameter	Eq 055	d _{S2}	[mm]	0.2566
Result	Wire copper cross-sectional area	Eq 056	A _{S2}	[mm ²]	0.0517
Result	Peak current	Eq 057	I _{S2Max}	[A]	0.7132
Result	RMS current	Eq 058	I _{S2RMS}	[A]	0.2894
Result	Wire current density	Eq 059	S _{S2}	[A/mm ²]	5.59
Input	Insulation thickness		INS _{S2}	[mm]	0.01
Result	Turns per layer	Eq 060	NL _{S2}	Turns/layer	36
Result	Number of layers	Eq 061	Ln _{S2}	Layers	1

RCD clamper and CS resistor

RCD clamper circuit

Input	Leakage inductance percentage		L _{LK%}	[%]	1
Result	Leakage inductance	Eq 062	L _{LK}	[H]	7.21E-06
Result	Clamping voltage	Eq 063	V _{Clamp}	[V]	231.96
Result	Calculated clamping capacitor	Eq 064	C _{ClampCal}	[nF]	0.04
Input	Select clamping capacitor value (C2)		C _{clamp}	[nF]	0.47
Result	Calculated clamping resistor	Eq 065	R _{clampCal}	[kΩ]	644.0
Input	Select clamping resistor value (R4)		R _{clamp}	[kΩ]	240

CS resistor

Input	CS threshold value from datasheet		V _{CS_N}	[V]	0.8
Result	Calculated current sense resistor (R8A, R8B)	Eq 066	R _{sense}	[Ω]	1.23

Appendix A: Transformer design and spreadsheet [3]

Output rectifier

Secondary 1 Output rectifier

	1 Output rectiner				
Result	Diode reverse voltage	Eq 067	V _{RDiode1}	[V]	60.89
Result	Diode RMS current		I _{S 1RMS}	[A]	1.59
Input	Max voltage undershoot at output capacitor		ΔV_{Out1}	[V]	0.3
Input	Number of clock periods		n _{cp1}		20
Result	Output capacitor ripple current	Eq 068	I _{Ripple1}	[A]	1.34
Result	Calculated minimum output capacitor	Eq 069	C _{Out1Cal}	[μF]	567
Input	Select output capacitor value (C152)		C _{Out1}	[μF]	680
Input	ESR (Zmax) value from datasheet at 100 kHz		R _{ESR1}	[Ω]	0.032
Input	Number of parallel capacitors		nccout1		1
Result	Zero frequency of output capacitor	Eq 070	f _{ZCOut1}	[kHz]	7.31
Result	First-stage ripple voltage	Eq 071	V _{Ripple1}	[V]	0.125404
Input	Select LC filter inductor value (L151)		L _{out1}	[μH]	2.2
Result	Calculated LC filter capacitor	Eq 072	C _{LCCal1}	[μF]	215.2
Input	Select LC filter capacitor value (C153)		C _{LC1}	[μF]	220
Result	LC filter frequency	Eq 073	f _{LC1}	[kHz]	7.23
Result	Second-stage ripple voltage	Eq 074	V _{2ndRipple1}	[mV]	0.65

Secondary 2 Output rectifier

Result	Diode reverse voltage	Eq 075	V _{RDiode2}	[V]	89.11
Result	Diode RMS current		I _{S2RMS}	[A]	0.29
Input	Max. voltage undershoot at output capacitor		ΔV_{Out1}	[V]	0.15
Input	Number of clock periods		n _{cp2}		20
Result	Output capacitor ripple current	Eq 076	I _{Ripple2}	[A]	0.25
Result	Calculated minimum output capacitor	Eq 077	C _{Out2Cal}	[μF]	200
Input	Select output capacitor value (C152)		C _{Out2}	[μF]	220
Input	ESR (Zmax) value from datasheet at 100 kHz		R _{ESR2}	[Ω]	0.032
Input	Number of parallel capacitors		nc _{COut2}		1
Result	Zero-frequency of output capacitor	Eq 078	f _{ZCOut2}	[kHz]	22.61
Result	First-stage ripple voltage	Eq 079	V _{Ripple2}	[V]	0.02

Vcc diode and capacitor

Vcc diode and capacitor

Result	Auxiliary diode reverse voltage (D2)	Eq 083	$V_{RDiodeVCC}$	[V]	88.55
Input	Soft-start time from datasheet		t _{ss}	[ms]	12
Input	Ivcc,charge3 from datasheet		Ivcc_charge3	[mA]	3
Input	V _{CC} on-threshold		V _{VCC_ON}	[V]	16
Input	V _{CC} off-threshold		V _{VCC_OFF}	[V]	10
Result	Calculated V _{CC} capacitor	Eq 084	Cvcccal	[μF]	6.00
Input	Select V _{CC} capacitor (C3)		Cvcc	[μF]	22
Input	V _{CC} short threshold from datasheet		V _{VCC_SCP}	[V]	1.1
Input	I _{VCC_Charge1} from datasheet		Ivcc_Charge1	[mA]	0.2
Result	Start-up time	Eq 085	t _{StartUp}	[ms]	230.267

Calculation of losses

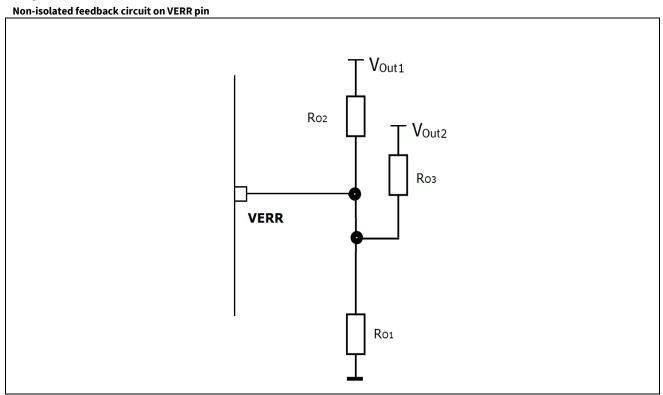
Input diode bridge

Input	Diode bridge forward voltage		V _{FBR}	[V]	1
Result	Diode bridge power loss	Eq 086	P _{DIN}	[W]	0.71

Transformer copper

Result	Primary winding copper resistance	Eq 087	R _{PCu}	[mΩ]	949.56
Result	Secondary 1 winding copper resistance	Eq 088	R _{S1Cu}	[mΩ]	31.10
Result	Secondary 2 winding copper resistance	Eq 089	R _{S2Cu}	[mΩ]	180.87

Appendix A: Transformer design and spreadsheet [3]


Result	Primary winding copper loss	Eq 090	P _{PCu}	[mW]	67.69
Result	Secondary 1 winding copper loss	Eq 091	P _{S1Cu}	[mW]	78.62
Result	Secondary 2 winding copper loss	Eq 092	P _{S2Cu}	[mW]	15.14
Result	Total transformer copper loss	Eq 093	Pcu	[W]	0.1615
Result	Total transformer copper toss	Eq 055	i cu	[vv]	0.1013
	ctifier diode				
Result	Secondary 1 diode loss	Eq 094	P _{Diode1}	[W]	0.64
Result	Secondary 2 diode loss	Eq 095	P _{Diode2}	[W]	0.12
RCD clam	per circuit				
Result	RCD clamper loss	Eq 096	P _{Clamper}	[W]	0.21
Current se	ense resistor				
Result	CS resistor loss	Eq 097	Pcs	[W]	0.09
MOSFET Input	R _{DSON} from datasheet		R _{DSON} at T _A =	[Ω]	8.73
			125°C		
Input	C _{o(er)} from datasheet External drain-to-source capacitance		C _{O(er)}	[pF]	3.4
Input Result	Switch-on loss at minimum AC input voltage	Eq 098	P _{SONMinAC}	[pF] [W]	0.0059
Result	Conduction loss at minimum AC input voltage	Eq 099	P _{condMinAC}	[W]	0.6224
Result	Total MOSFET loss at minimum AC input voltage	Eq 100	P _{MOSMinAC}	[W]	0.6283
Result	Switch-on loss at maximum AC input voltage	Eq 101	P _{SONMaxAC}	[W]	0.0283
Result	Conduction loss at maximum AC input voltage	Eq 102	P _{condMaxAC}	[W]	0.0372
Result	Total MOSFET loss at maximum AC input voltage	Eq 103	P _{MOSMaxAC}	[W]	0.1908
Result	Total MOSFET loss (from minimum or maximum AC)	Eq 103	P _{MOS}	[W]	0.6283
resure	Total most 21 toss (non-minimal of maximal file)		1 MO3	[**]	0.0203
Controlle				r	
Input	Controller current consumption		I _{VCC_Normal}	[mA]	0.9
Result	Controller loss	Eq 104	P _{Ctrl}	[W]	0.0157
Efficiency	after losses				
Result	Total power loss	Eq 105	P _{Losses}	[W]	2.57
Result	Post calculated efficiency	Eq 106	η _{Post}	%	83.37 percei
	FET temperature				
	//MOSFET temperature		6	FOLC (1447)	1010
Input	Enter thermal resistance junction-ambient (include copper pour)	Eq. 107	R _{thJA_As}	[°K/W]	104.0
Result Result	Temperature rise Junction temperature at T _{amax}	Eq 107	ΔT Tjmax	[°K] °C	65.3 115.3
Result	Junction temperature at ramax	Lq 100	Tjillax	C	113.3
OVP					
Line OVP	Select AC input LOVP		Vove AC	[\/ AC]	300
	Select AC input LOVP High-side DC input voltage divider/resistor (R3A, R3B, R3C)		V _{OVP_AC}	[V AC] [MΩ]	300

Line OV					
Input	Select AC input LOVP		V _{OVP_AC}	[V AC]	300
Input	High-side DC input voltage divider/resistor (R3A, R3B, R3C)		R _{I1}	[ΜΩ]	9
Input	Controller LOVP threshold		V _{VIN_LOVP}	[V]	2.85
Result	Low-side DC input voltage divider/resistor	Eq 109	R _{I2Cal}	[kΩ]	60.87
Input	Select low-side DC input voltage divider/resistor (R7)		R ₁₂	[kΩ]	62
Result	Post-calculated LOVP	Eq 110	V _{OVP_ACPost}	[V AC]	294.55

Appendix A: Transformer design and spreadsheet [3]

Output regulation (non-isolated)

Output regulation

output. c	B				
Input	Error amplifier reference voltage		V _{ERR_REF}	[V]	1.8
Input	Weighted regulation factor of V _{Out1}		W ₁	%	100 percent
Input	Select voltage divider RO1 (R11)		R ₀₁	[kΩ]	39
Result	Calculated voltage divider RO2	Eq 125	R _{O2Cal}	[kΩ]	221.00
Input	Select voltage divider RO2 (R153)		R ₀₂	[kΩ]	221.0
Result	Calculated voltage divider RO3	Eq 126	R _{O3Cal}	[kΩ]	na
Input	Select voltage divider RO3 (R103)		R ₀₃	[kΩ]	na

Final design

Electrical

Minimum AC voltage	[V]	85
Maximum AC voltage	[V]	264
Maximum input current	[A]	0.18
Minimum DC voltage	[V]	92
Maximum DC voltage	[V]	373
Maximum output power	[W]	12.9
Output voltage 1	[V]	12.0
Output ripple voltage 1	[mV]	0.7
Output voltage 2	[V]	18.0
Output ripple voltage 2	[mV]	1.1
Transformer peak current	[A]	0.65
Maximum duty cycle		0.51
Reflected voltage	[V]	95
Copper losses	[W]	0.16
MOSFET losses	[W]	0.63
Sum losses	[W]	2.57
Efficiency	[%]	83.37 percent

Appendix A: Transformer design and spreadsheet [3]

Transformer

ilei		
Core type		EE16/8/5
Core material		TP4A(TDG)
Effective core area	[mm²]	20.1
Maximum flux density	[mT]	277
Inductance	[μH]	721
Margin	[mm]	0
Primary turns	Turns	84
Primary copper wire size	AWG	30
Number of primary copper wires in parallel		1
Primary layers	Layer	3
Secondary 1 turns (N _{S1})	Turns	11
Secondary 1 copper wire size	AWG	27
Number of secondary 1 copper wires in parallel		2
Secondary 1 layers	Layer	1
Secondary 2 turns (N ₅₂)	Turns	16
Secondary 2 copper wire size	AWG	30
Number of secondary 2 copper wires in parallel		1
Secondary 2 layers	Layer	1
Auxiliary turns	Turns	16
Leakage inductance	[μH]	7.2

Components

Input capacitor (C1)	[μF]	33.0
Secondary 1 output capacitor (C152)	[μF]	680.0
Secondary 1 output capacitor in parallel		1.0
Secondary 1 LC filter inductor (L151)	[μH]	2.2
Secondary 1 LC filter capacitor (C153)	[μF]	220.0
Secondary 2 output capacitor (C102)	[μF]	220.0
Secondary 2 output capacitor in parallel		1.0
V _{CC} capacitor (C3)	[μF]	22.0
Sense resistor (R8A, R8B)	[Ω]	1.23
Clamping resistor (R4)	[kΩ]	240.0
Clamping capacitor (C2)	[nF]	0
High-side DC input voltage divider/resistor (R3A, R3B, R3C)	[ΜΩ]	9
Low-side DC input voltage divider/resistor (R7)	[kΩ]	62

Regulation components (non-isolated)

Voltage divider (R11)	RO1	[kΩ]	39.0
Voltage divider (V _{out1} sense) (R153)	RO2	[kΩ]	221.0
Voltage divider (V _{out2} sense) (R103)	RO3	[kΩ]	na

References

12 References

- [1] ICE5xRxxxxAG datasheet
- [2] Design guide fifth-generation fixed-frequency design guide ICE5xSAG and ICE5xRxxxxAG
- [3] Calculation tool ICE5xSAG and ICE5xRxxxxAG

Revision history

Revision history

Document version	Date of release	Description of changes
V 1.0	24 Sept 2018	First release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-09-24
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN_1809_PL83_1810_045410

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.