
PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Ch
Document Number: 001-69402 Rev. *A

Features

 Adjustable counter size: 8, 16, or 32 bits

 Counter resolution of 1x, 2x, or 4x the fre
for more accurate determination of positi

 Optional index input to determine absolu

 Optional glitch filtering to reduce the imp
on the inputs

General Description
The Quadrature Decoder (QuadDec) Compo
pair of digital signals. The signals are typica
mounted on a motor or trackball.

The signals, typically called A and B, are po
Gray code output. A Gray code is a sequenc
essential to avoid glitches. It also allows det
optional signal, named Index, is used as a re
rotation.

When to Use a Quadrature Decoder

A quadrature decoder is used to decode the
encoder senses the current position, velocity
trackball, robotic axles, and others).

A quadrature decoder can also be used for p
position of a motor's rotor and with rotary kn
Quadrature Decoder (QuadDec)
ampion Court • San Jose, CA 95134-1709 • 408-943-2600
Revised November 1, 2011

quency of the A and B inputs,
on or speed

te position

act of system-generated noise

nent gives you the ability to count transitions on a
lly provided by a speed/position feedback system

sitioned 90 degrees out of phase, which results in a
e where only one bit changes on each count. This is

ection of direction and relative position. A third
ference to establish an absolute position once per

output of a quadrature encoder. A quadrature
, and direction of an object (for example, mouse,

recision measurement of speed, acceleration, and
obs to determine user input.

2.0



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 2 of 32 Document Number: 001-69402 Rev. *A

Input/Output Connections
This section describes the various input and output connections for the Quadrature Decoder
Component. An asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol
under the conditions listed in the description of that I/O.

quad_A – Input

The “A” input of the Quadrature Decoder.

quad_B – Input

The “B” input of the Quadrature Decoder.

index – Input *

This input detects a reference position for the Quadrature Decoder. When using an index input, if
inputs A, B, and index are all zero, the counter is also reset to zero. Additional logic is typically
added to gate the index pulse. Index gating allows the counter to only be reset during one of
many possible rotations. An example is a linear actuator that only resets the counter when the
far limit of travel has been reached. This limit is signaled by a mechanical limit switch whose
output is connected to the Index pulse.

This input displays by default, but it can be hidden by deselecting the Use index input
parameter.

clock – Input
Clock signal for sampling and glitch filtering the inputs. If you are using glitch filtering, the filtered
outputs will not change until three successive samples of the input have the same value. For
effective glitch filtering, the sample clock period should be greater than the maximum time during
which glitching is expected to take place. A counter can be incremented or decremented at a
resolution of 1x, 2x, or 4x the frequency of the A and B inputs.

The clock input frequency should be greater than or equal to 10x the maximum A or B input
frequency.

interrupt – Output

Interrupt on one or more of the following events:

 Counter overflow and underflow

 Counter reset due to index input (if index is used)

 Invalid state transition on the A and B inputs



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 3 of 32

Component Parameters
Drag a Quadrature Decoder component onto your design and double-click it to open the
Configure dialog. The dialog contains multiple tabs with categorized parameters.

Counter Size Tab

This tab is used to define the counter size, in bits. The counter holds the current position
encoded by a quadrature encoder.

Select a counter that is large enough to encode the maximum position in both the positive and
negative directions. The setting can be: 8 bit, 16 bit, or 32 bit.

The 32-bit counter implements the lower 16 bits in the hardware counter and the upper 16 bits in
software to reduce hardware resource use. For this target, an additional ISR is used. To work
properly with the 32-bit counter, interrupts must be enabled. You can add ISR code to source
files as needed; see the Interrupt Component datasheet for more details.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 4 of 32 Document Number: 001-69402 Rev. *A

Counter Resolution Tab

This tab contains the number of counts recorded in one period of the A and B inputs. It shows
the transitions of the input signals that are used to update the counter. As the resolution gets
higher, the position can be resolved more accurately, at the possible cost of a larger counter.
The setting can be 1x, 2x, or 4x.

Use Index Input Tab



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 5 of 32

This tab contains a field to enable or disable the index input. An index input can be used to
indicate that a reference position has been reached. If an index input is used, then when the A,
B, and index inputs are all zero, the counter is reset and an interrupt can be generated. Index
input is enabled by default.

Enable Glitch Filtering Tab

This tab contains a field to enable or disable digital glitch filtering. Filtering can be applied to
reduce the probability of miscounts because of glitches on the inputs. Some filtering is already
done using hysteresis on the GPIOs, but additional filtering could be required.

If enabled, filtering is applied to all inputs. The filtered outputs do not change until three
successive samples of the input have the same value. For effective filtering, the period of the
sample clock should be greater than the maximum time during which glitching is expected to
occur. Glitch filtering is enabled by default.

Clock Selection
A clock source for clocking the Quadrature Decoder component must be connected. It clocks the
status register and generates interrupts.

Placement
The Quadrature Decoder component is placed in the UDB array and all placement information is
provided to the API through the cyfitter.h file.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 6 of 32 Document Number: 001-69402 Rev. *A

Resources

1x Resolution without Glitch Filtering

Resource Type
API Memory

(Bytes)

Resources
Datapath

Cells PLDs
Status
Cells

Control/ Count7
Cells Interrupts Flash RAM

Pins (per
External I/O)

8 bits 1 6 2 1 0 566 7 2

8 bits * 1 6 2 1 0 566 7 3

16 bits 2 6 2 1 0 652 9 2

16 bits * 2 6 2 1 0 652 9 3

32 bits 2 6 2 1 1 906 14 2

32 bits * 2 9 2 1 1 906 14 3

* Using Index Input

1x Resolution with Glitch Filtering

Resource Type
API Memory

(Bytes)

Resources
Datapath

Cells PLDs
Status
Cells

Control/ Count7
Cells Interrupts Flash RAM

Pins (per
External I/O)

8 bits 1 7 2 1 0 566 7 2

8 bits * 1 9 2 1 0 566 7 3

16 bits 2 7 2 1 0 652 9 2

16 bits * 2 9 2 1 0 652 9 3

32 bits 2 7 2 1 1 906 14 2

32 bits * 2 9 2 1 1 906 14 3

* Using Index Input



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 7 of 32

2x Resolution without Glitch Filtering

Resource Type
API Memory

(Bytes)

Resources
Datapath

Cells PLDs
Status
Cells

Control/
Count7 Cells Interrupts Flash RAM

Pins (per
External I/O)

8 bits 1 6 2 1 0 566 7 2

8 bits * 1 7 2 1 0 566 7 3

16 bits 2 6 2 1 0 652 9 2

16 bits * 2 7 2 1 0 652 9 3

32 bits 2 6 2 1 1 906 14 2

32 bits * 2 7 2 1 1 906 14 3

* Using Index Input

2x Resolution with Glitch Filtering

Resource Type
API Memory

(Bytes)

Resources
Datapath

Cells PLDs
Status
Cells

Control/
Count7 Cells Interrupts Flash RAM

Pins (per
External I/O)

8 bits 1 8 2 1 0 566 7 2

8 bits * 1 9 2 1 0 566 7 3

16 bits 2 8 2 1 0 652 9 2

16 bits * 2 9 2 1 0 652 9 3

32 bits 2 8 2 1 1 906 14 2

32 bits * 2 9 2 1 1 906 14 3

* Using Index Input



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 8 of 32 Document Number: 001-69402 Rev. *A

4x Resolution without Glitch Filtering

Resource Type
API Memory

(Bytes)

Resources
Datapath

Cells PLDs
Status
Cells

Control/ Count7
Cells Interrupts Flash RAM

Pins (per
External I/O)

8 bits 1 7 2 1 0 566 7 2

8 bits * 1 7 2 1 0 566 7 3

16 bits 2 7 2 1 0 652 9 2

16 bits * 2 7 2 1 0 652 9 3

32 bits 2 7 2 1 1 906 14 2

32 bits * 2 7 2 1 1 906 14 3

* Using Index Input

4x Resolution with Glitch Filtering

Resource Type
API Memory

(Bytes)

Resources
Datapath

Cells PLDs
Status
Cells

Control/ Count7
Cells Interrupts Flash RAM

Pins (per
External I/O)

8 bits 1 8 2 1 0 566 7 2

8 bits * 1 9 2 1 0 566 7 3

16 bits 2 8 2 1 0 652 9 2

16 bits * 2 9 2 1 0 652 9 3

32 bits 2 8 2 1 1 906 14 2

32 bits * 2 9 2 1 1 906 14 3

* Using Index Input



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 9 of 32

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “QuadDec_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“QuadDec.”

Function Description

QuadDec_Start() Initializes UDBs and other relevant hardware

QuadDec_Stop() Turns off UDBs and other relevant hardware

QuadDec_GetCounter() Reports the current value of the counter

QuadDec_SetCounter() Sets the current value of the counter

QuadDec_GetEvents() Reports the current status of events

QuadDec_SetInterruptMask() Enables or disables interrupts due to the events

QuadDec_GetInterruptMask() Reports the current interrupt mask settings

QuadDec_Sleep() Prepares the component to go to sleep

QuadDec_Wakeup() Prepares the component to wake up

QuadDec_Init() Initializes or restores default configuration provided with the customizer

QuadDec_Enable() Enables the Quadrature Decoder

QuadDec_SaveConfig() Saves the current user configuration

QuadDec_RestoreConfig() Restores the user configuration

Global Variables

Function Description

QuadDec_initVar QuadDec_initVar indicates whether the Quadrature Decoder has been initialized.
The variable is initialized to 0 and set to 1 the first time QuadDec_Start() is called.
This allows the component to restart without reinitialization after the first call to the
QuadDec_Start() routine.

If reinitialization of the component is required, then the QuadDec_Init() function
can be called before the QuadDec_Start() or QuadDec_Enable() function.

QuadDec_count32SoftPart High 16 bits of 32-bit counter value is stored in this variable.

QuadDec_swStatus Status register value is stored in this variable.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 10 of 32 Document Number: 001-69402 Rev. *A

void QuadDec_Start(void)

Description: Initializes UDBs and other relevant hardware. Resets counter to 0, and enables or disables
all relevant interrupts. Starts monitoring the inputs and counting.

Parameters: None

Return Value: None

Side Effects: None

void QuadDec_Stop(void)

Description: Turns off UDBs and other relevant hardware.

Parameters: None

Return Value: None

Side Effects: None

int8/16/32 QuadDec_GetCounter(void)

Description: Reports the current value of the counter.

Parameters: None

Return Value: int8/16/32: Counter value. Return type is signed depending on the counter size setting. A
positive value indicates clockwise movement (B before A).

Side Effects: None

void QuadDec_SetCounter(int8/16/32 value)

Description: Sets the current value of the counter.

Parameters: int8/16/32 value: The new value. Parameter type is signed depending on the counter size
setting.

Return Value: None

Side Effects: None



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 11 of 32

uint8 QuadDec_GetEvents(void)

Description: Reports the current status of events.

Parameters: None

Return Value: The events, as bits in an unsigned 8-bit value:

Bit Description

QuadDec_COUNTER_OVERFLOW Counter overflow

QuadDec_COUNTER_UNDERFLOW Counter underflow

QuadDec_COUNTER_RESET Counter reset due to index, if index input is
used

QuadDec_INVALID_IN Invalid A, B inputs state transition

Side Effects: None

void QuadDec_SetInterruptMask(uint8 mask)

Description: Enables or disables interrupts caused by the events. For the 32-bit counter, the overflow,
underflow, and reset interrupts cannot be disabled; these bits are ignored.

Parameters: uint8 mask: Enable or disable bits in an 8-bit value, where 1 enables the interrupt:

Bit Description

QuadDec_COUNTER_OVERFLOW Enable interrupt caused by counter overflow

QuadDec_COUNTER_UNDERFLOW Enable interrupt caused by counter underflow

QuadDec_COUNTER_RESET Enable interrupt caused by counter reset

QuadDec_INVALID_IN Enable interrupt caused by invalid input state
transition

Return Value: None

Side Effects: None



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 12 of 32 Document Number: 001-69402 Rev. *A

uint8 QuadDec_GetInterruptMask(void)

Description: Reports the current interrupt mask settings.

Parameters: None

Return Value: Enable or disable bits in an 8-bit value, where 1 enables the interrupt.

For the 32-bit counter, the overflow, underflow, and reset enable bits are always set.

Bit Description

QuadDec_COUNTER_OVERFLOW Interrupt caused by counter overflow

QuadDec_COUNTER_UNDERFLOW Interrupt caused by counter underflow

QuadDec_COUNTER_RESET Interrupt caused by counter reset

QuadDec_INVALID_IN Interrupt caused by invalid A, B inputs state
transition

Side Effects: None

void QuadDec_Sleep(void)

Description: This is the preferred routine to prepare the component for sleep. The QuadDec_Sleep()
routine saves the current component state. Then it calls the QuadDec_Stop() function and
calls QuadDec_SaveConfig() to save the hardware configuration.

Call the QuadDec_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power management functions.

Parameters: None

Return Value: None

Side Effects: None

void QuadDec_Wakeup(void)

Description: This is the preferred routine to restore the component to the state when QuadDec_Sleep()
was called. The QuadDec_Wakeup() function calls the QuadDec_RestoreConfig() function
to restore the configuration. If the component was enabled before the QuadDec_Sleep()
function was called, the QuadDec_Wakeup() function will also re-enable the component.

Parameters: None

Return Value: None

Side Effects: Calling the QuadDec_Wakeup() function without first calling the QuadDec_Sleep() or
QuadDec_SaveConfig() function may produce unexpected behavior.



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 13 of 32

void QuadDec_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings. It
is not necessary to call QuadDec_Init() because the QuadDec_Start() routine calls this
function and is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: All registers will be set to values according to the customizer Configure dialog.

void QuadDec_Enable(void)

Description: Activates the hardware and begins component operation. It is not necessary to call
QuadDec_Enable() because the QuadDec_Start() routine calls this function, which is the
preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: None

void QuadDec_SaveConfig(void)

Description: This function saves the component configuration and nonretention registers. This function
also saves the current component parameter values, as defined in the Configure dialog or as
modified by appropriate APIs. This function is called by the QuadDec_Sleep() function.

Parameters: None

Return Value: None

Side Effects: None

void QuadDec_RestoreConfig(void)

Description: This function restores the component configuration and nonretention registers. This function
also restores the component parameter values to what they were before calling the
QuadDec_Sleep() function.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the QuadDec_Sleep() or QuadDec_SaveConfig()
function may produce unexpected behavior.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 14 of 32 Document Number: 001-69402 Rev. *A

Sample Firmware Source Code
PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

Functional Description

Default Configuration

The default configuration for the Quadrature Decoder is an 8-bit up and down counter with 1x
resolution, enabled index input, and enabled glitch filtering.

State Transition

Quadrature phase signals are typically decoded with a state machine and an up/down counter. A
conventional decoder has four states, corresponding to all possible values of the A and B inputs.
The state transition diagram is shown below (same-state transitions are not depicted). State
transitions marked with a “+” and “–” indicate increment and decrement operations on the
quadrature phase counter.

AB
00

AB
10

AB
01

AB
11

+

+

+

+

- -

- -

For each full cycle of the quadrature phase signal, the quadrature phase counter changes by
four counts. Lower-resolution counters can also be used by implementing up/down operations on
only a subset of the state transitions. A quarter-resolution decoder is shown below.



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 15 of 32

All inputs are sampled using a clock signal derived internally within the device.

Block Diagram and Configuration
The Quadrature Decoder is only available as a UDB configuration of blocks. The APIs are
described earlier in this document and the registers are described in the next section to define
the overall implementation of the component.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 16 of 32 Document Number: 001-69402 Rev. *A

Registers

Status

Bits 7 6 5 4 3 2 1 0

Value reserved invalid in reset underflow overflow

The status register is read-only. It contains the various status bits defined for the Quadrature
Decoder. The value of this register is available with the QuadDec_GetEvents() function. The
interrupt output signal is generated from an ORing of the masked bit fields within the status
register.

You can set the mask using the QuadDec_SetInterruptMask() function. After you receive an
interrupt you can retrieve the interrupt source by reading the status register with the
QuadDec_GetEvents() function. The status register is transparent, so the QuadDec_GetEvents()
function does not clear the bits of the status register. All operations on the status register must
use the following defines for the bit fields, because these bit fields may be moved within the
status register at build time.

There are several bit field masks defined for the status registers. Any of these bit fields may be
included as an interrupt source. All bit fields are configured as sticky bits in the status register.
Defines are available in the generated header (.h) file as follows:

 QuadDec_COUNTER_OVERFLOW – Defined as the bit mask of the Status register bit
“counter overflow.”

 QuadDec_COUNTER_UNDERFLOW – Defined as the bit mask of the Status register bit
“Counter underflow.”

 QuadDec_RESET – Defined as the bit-mask of the Status register bit “reset due index.”

 QuadDec_INVALID_IN – Defined as the bit- mask of the Status register bit “invalid state
transition on the A and B inputs.”



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 17 of 32

DC and AC Electrical Characteristics
The following values indicate expected performance and are based on initial characterization
data.

Timing Characteristics “Maximum with Nominal Routing”

Parameter Description Config. Min Typ Max Units

Config 1
1

34 MHz

Config 2
2

29 MHz

fCLOCK Component clock frequency

Config 3
3

16 MHz

tCLOCKH Input clock high time
4

N/A 0.5 1/fCLOCK

tCLOCKL Input clock low time
4

N/A 0.5 1/fCLOCK

Inputs

tPD_ps Input path delay, pin to sync
5

1 STA
6

ns

tPD_ps Input path delay, pin to sync
7

2 8.5 ns

tPD_IE Input path delay to component clock
(edge-sensitive input)

1,2 tPD_ps + tSYNC

+ tPD_si

tPD_ps + tSYNC

+ tPD_si +
tI_clk

ns

1
Config 1 options:

CounterResolution: 1
CounterSize: 8
UsingGlitchFiltering: false
UsingIndexInput: true

2
Config 2 options:

CounterResolution: 2
CounterSize: 16
UsingGlitchFiltering: true
UsingIndexInput : true

3
Config 3 options:

CounterResolution: 4
CounterSize: 32
UsingGlitchFiltering: true
UsingIndexInput: true

4
tCY_clock = 1/fCLOCK - Cycle time of one clock period

5
tPD_ps is found in the Static Timing Results, as described later. The number listed here is a nominal value based on STA

analysis on many inputs.

6
tPD_ps and tPD_si are route path delays. Because routing is dynamic, these values can change and directly affect the maximum

component clock and sync clock frequencies. The values must be found in the Static Timing Analysis results.

7
tPD_ps in configuration 2 is a fixed value defined per pin of the device. The number listed here is a nominal value of all of the pins

available on the device.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 18 of 32 Document Number: 001-69402 Rev. *A

Parameter Description Config. Min Typ Max Units

tPD_si Sync output to input path delay (route) 1,2,3,4 STA
6

ns

tI_clk Alignment of clockX and clock 1,2,3,4 0 1 tCY_clock

tIH Input high time 1,2 tCY_clock ns

tIL Input low time 1,2 tCY_clock ns

tPD_IE Input path delay to component clock
(edge-sensitive input)

3,4 tSYNC + tPD_si tSYNC + tPD_si

+ tI_clk

ns

tIH Input high time 1,2,3,4 tCY_clock ns

tIL Input low time 1,2,3,4 tCY_clock ns

fAB Component A and B Frequency N/A fCLOCK/10 MHz

Without
glitch
filtering

2 × tCY_clock +
5

nstIND Index signal width

With glitch
filtering

3 × tCY_clock +
5

ns

Without
glitch
filtering

2 tCY_clocktRD Index input low to reset time

With glitch
filtering

5 tCY_clock

tGL Time during which glitching is
expected to occur

With glitch
filtering

3 tCY_clock

tCD Delay time, rising edge of clock to
count valid

N/A 2 tCY_clock

tE Encoder pulse width (low or high) N/A 4 tCY_clock

tES Encoder state period N/A 2 tCY_clock

tELP Encoder period width N/A 10 tCY_clock



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 19 of 32

Timing Characteristics “Maximum with All Routing”

Parameter Description Config. Min Typ Max
1

Units

Config 1
2

17 MHz

Config 2
3

14 MHz

fCLOCK Component clock frequency

Config 3
4

8 MHz

tCLOCKH Input clock high time
5

N/A 0.5 1/fCLOCK

tCLOCKL Input clock low time
5

N/A 0.5 1/fCLOCK

Inputs

tPD_ps Input path delay, pin to sync
6

1 STA
7

ns

tPD_ps Input path delay, pin to sync
8

2 8.5 ns

tPD_IE Input path delay to component clock
(edge-sensitive input)

1,2 tPD_ps +
tSYNC +
tPD_si

tPD_ps +
tSYNC +
tPD_si +

tI_clk

ns

tPD_si Sync output to input path delay (route) 1,2,3,4 STA
7

ns

tI_clk Alignment of clockX and clock 1,2,3,4 0 1 tCY_clock

1
Maximum for “All Routing” is calculated by <nominal>/2 rounded to the nearest integer. This value provides a basis for you to

not have to worry about meeting timing if the component is running at or below this component frequency.

2
Config 1 options:

CounterResolution: 1
CounterSize: 8
UsingGlitchFiltering: false
UsingIndexInput: true

3
Config 2 options:

CounterResolution: 2
CounterSize: 16
UsingGlitchFiltering: true
UsingIndexInput : true

4
Config 3 options:

CounterResolution: 4
CounterSize: 32
UsingGlitchFiltering: true
UsingIndexInput: true

5
tCY_clock = 1/fCLOCK - Cycle time of one clock period

6
tPD_ps ios found in the Static Timing Results, as described later. The number listed here is a nominal value based on STA

analysis on many inputs.

7
tPD_ps and tPD_si are route path delays. Because routing is dynamic, these values can change and will directly affect the

maximum component clock and sync clock frequencies. The values must be found in the Static Timing Analysis results.

8
tPD_ps in configuration 2 is a fixed value defined per pin of the device. The number listed here is a nominal value of all of the pins

available on the device.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 20 of 32 Document Number: 001-69402 Rev. *A

Parameter Description Config. Min Typ Max
1

Units

tIH Input high time 1,2 tCY_clock ns

tIL Input low time 1,2 tCY_clock ns

tPD_IE Input path delay to component clock
(edge-sensitive input)

3,4 tSYNC +
tPD_si

tSYNC +
tPD_si +

tI_clk

ns

tIH Input high time 1,2,3,4 tCY_clock ns

tIL Input low time 1,2,3,4 tCY_clock ns

fAB Component A and B frequency N/A fCLOCK/10 MHz

Without
glitch
filtering

2 × tCY_clock

+ 5
nstIND Index signal width

With glitch
filtering

3 × tCY_clock

+ 5
ns

Without
glitch
filtering

2 tCY_clocktRD Index input low to reset time

With glitch
filtering

5 tCY_clock

tGL Time during which glitching is expected to
occur

With glitch
filtering

3 tCY_clock

tCD Delay time, rising edge of clock to count
valid

N/A 2 tCY_clock

tE Encoder pulse width (low or high) N/A 4 tCY_clock

tES Encoder state period N/A 2 tCY_clock

tELP Encoder period width N/A 10 tCY_clock



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 21 of 32

Figure 1. Timing Diagram Without Using Glitch Filtering

Input @ index

Internal signal @
quad_B_filtered

Internal signal @
quad_A_filtered

clock

tCY_clock

tRD

count

Internal signal @
Index_filtered

tCD

Input @ quad_A

Input @ quad_B

Internal signal @
reset

Internal signal @
count 1x

N N + 1 00 01

tELP

tE tE

tEStES

tIND



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 22 of 32 Document Number: 001-69402 Rev. *A

Figure 2. Timing Diagram Using Glitch Filtering

Input @ index

Internal signal @
quad_B_filtered

Internal signal @
quad_A_filtered

clock

tRD

count

Internal signal @
Index_filtered

tCD

Input @ quad_A

Input @ quad_B

Internal signal @
reset

Internal signal @
count 1x

N N + 1 00 01

tELP

tE tE

tEStES

tIND

Noise
Spike

tGL

tCY_clock



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 23 of 32

How to Use STA Results for Characteristics Data

Nominal route maximums are gathered through multiple test passes with Static Timing Analysis
(STA). You can calculate the maximums for your designs with the STA results using the
following methods:

fCLOCK Maximum component clock frequency appears in Timing results in the clock summary as
the named external clock. The graphic below shows an example of the clock limitations
from the _timing.html file:

Input Path Delay and Pulse Width

When characterizing the functionality of inputs, all inputs, no matter how you have configured
them, look like one of the four possible configurations shown in Figure 3.

All inputs must be synchronized. The synchronization mechanism depends on the source of the
input to the component. To fully interpret how your system will work you must understand which
input configuration you have set up for each input and the clock configuration of your system.
This section describes how to use the Static Timing Analysis (STA) results to determine the
characteristics of your system.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 24 of 32 Document Number: 001-69402 Rev. *A

Figure 3. Input Configurations for Component Timing Specifications

Configuration Component Clock Synchronizer Clock (Frequency) Figures

1 master_clock master_clock Figure 8

1 clock master_clock Figure 6

1 clock clockX = clock
1

Figure 4

1 clock clockX > clock Figure 5

1 clock clockX < clock Figure 7

2 master_clock master_clock Figure 8

2 clock master_clock Figure 6

3 master_clock master_clock Figure 13

1
Clock frequencies are equal but alignment of rising edges is not guaranteed.



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 25 of 32

Configuration Component Clock Synchronizer Clock (Frequency) Figures

3 clock master_clock Figure 11

3 clock clockX = clock
1

Figure 9

3 clock clockX > clock Figure 10

3 clock clockX < clock Figure 12

4 master_clock master_clock Figure 13

4 clock clock Figure 9

1. The input is driven by a device pin and synchronized internally with a “sync” component. This
component is clocked using a different internal clock than the clock the component uses (all
internal clocks are derived from master_clock).

When characterizing inputs configured in this way clockX may be faster, equal to, or slower
than the component clock. It may also be equal to master_clock, which produces the
characterization parameters shown in Figure 4, Figure 5, Figure 7, and Figure 8.

2. The input is driven by a device pin and synchronized at the pin using master_clock.

When characterizing inputs configured in this way, master_clock is faster than or equal to the
component clock (it is never slower). This produces the characterization parameters shown in
Figure 5 and Figure 8.

Figure 4. Input Configuration 1 and 2; Sync Clock Freq.= Component Clock Frequency
(Edge alignment of clock and clockX is not guaranteed)



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 26 of 32 Document Number: 001-69402 Rev. *A

Figure 5. Input Configuration 1 and 2; Sync. Clock Freq. > Component Clock Frequency

Figure 6. Input Configuration 1 and 2; [Sync. Clock Freq. == master_clock] > Component
Clock Frequency



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 27 of 32

Figure 7. Input Configuration 1; Sync. Clock Freq. < Component Clock Frequency

Input @ pin

clock

tPD_ps

tPD_si

clockX

master_clock

tsync

tIH tILtPD_IE

Input @ sync output

Input @ component

Figure 8. Input Configuration 1 and 2; Sync. Clock = Component Clock = master_clock

3. The input is driven by logic internal to the PSoC, which is synchronous based on a clock
other than the clock the component uses (all internal clocks are derived from master_clock).

When characterizing inputs configured in this way, the synchronizer clock is faster than,
slower than, or equal to the component clock, which produces the characterization
parameters shown in Figure 9, Figure 10, and Figure 12.

4. The input is driven by logic internal to the PSoC, which is synchronous based on the same
clock the component uses.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 28 of 32 Document Number: 001-69402 Rev. *A

When characterizing inputs configured in this way, the synchronizer clock will be equal to the
component clock, which will produce the characterization parameters as shown in Figure 13.

Figure 9. Input Configuration 3 only; Sync. Clock Freq. = Component Clock Frequency
(Edge alignment of clock and clockX is not guaranteed)

Figure 9 represents the extent to which Static Timing Analysis understands the clocks. All clocks
in the digital clock domain are synchronous to master_clock. However, it is possible that two
clocks with the same frequency are not rising-edge aligned. Therefore, the static timing analysis
tool does not know which edge the clocks are synchronous to and must assume the minimum of
one master_clock cycle. This means that tPD_si now has a limiting effect on master_clock of the
system. master_clock setup time violations appear if this path delay is too long. You must
change the synchronization clocks of your system or run master_clock at a slower frequency.

Figure 10. Input Configuration 3; Sync. Clock Freq. > Component Clock Frequency



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 29 of 32

In much the same way as shown in Figure 9, all clocks are derived from master_clock. STA
indicates the tPD_si limitations on master_clock for one master_clock cycle in this configuration.
master_clock setup time violations appear if this path delay is too long. You must change the
synchronization clocks of your system or run the master_clock at a slower frequency.

Figure 11. Input Configuration 3; Synchronizer Clock Frequency = master_clock >
Component Clock Frequency

Figure 12. Input Configuration 3; Synchronizer Clock Frequency < Component Clock
Frequency

In much the same way as shown in Figure 9, all clocks are derived from master_clock. STA
indicates the tPD_si limitations on master_clock for one master_clock cycle in this configuration.
master_clock setup time violations appear if this path delay is too long. You must change the
synchronization clocks of your system or run master_clock at a slower frequency.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 30 of 32 Document Number: 001-69402 Rev. *A

Figure 13. Input Configuration 4 only; Synchronizer Clock = Component Clock

In all previous figures in this section, the most critical parameters to use when understanding
your implementation are fCLOCK and tPD_IE. tPD_IE is defined by tPD_ps and tSYNC (for configurations 1
and 2 only), tPD_si, and tI_Clk. It is crucial to note that tPD_si defines the maximum component clock
frequency. tI_Clk does not come from the STA results but is used to represent when tPD_IE is
registered. This is the margin left over after the route between the synchronizer and the
component clock.

tPD_ps and tPD_si are included in the STA results.

To find tPD_ps, look at the input setup times defined in the _timing.html file. The fanout of this input
may be more than 1 so you will need to evaluate the maximum of these paths.

tPD_si is defined in the register-to-register times. You will need to know the name of the net to use
the _timing.html file. The fanout of this path may be more than 1 so you will need to evaluate the
maximum of these paths.



PSoC® Creator™ Component Datasheet Quadrature Decoder (QuadDec)

Document Number: 001-69402 Rev. *A Page 31 of 32

Output Path Delays

When characterizing the path delays of outputs, you must consider where the output is going in
order to know where you can find the data in the STA results. For this component, all outputs are
synchronized to the component clock. Outputs fall into one of two categories. The output goes
either to another component inside the device, or to a pin to the outside of the device. In the first
case, you must look at the register-to-register times shown for the logic-to-input descriptions
given previously (the source clock is the component clock). For the second case, you can look at
the clock-to-output times in the _timing.html STA results.



Quadrature Decoder (QuadDec) PSoC® Creator™ Component Datasheet

Page 32 of 32 Document Number: 001-69402 Rev. *A

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

Updated block diagram of Quadrature
Decoder in the Block Diagram and
Configuration section of the datasheet.

For use with the latest version of the Counter component.

Updated internal Counter component to
version 2.0 on Quadrature Decoder
Component schematic.

For use with the latest version of the Counter component.

2.0

Removed obsolete defines.

Added characterization data to
datasheet

1.50.a

Minor datasheet edits and updates

Changed QuadDec_Start() API:
removed write to Control Register.

Beta5 STA-Based Optimization.

Added QuadDec_Sleep()/
QuadDec_Wakeup() APIs.

Added APIs to support the low power modes.

1.50

Added QuadDec_Init() API. Added to provide an API to initialize/restore the component
without starting it.

1.20 Updated the Configure dialog.

Removed the QuadDec_INT.c file after compilation if the counter size is less than 32.

Removed the checking condition in the QuadDec_INT.c file for counter size = 32 bit.

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks and of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.


